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Abstract

We construct an endogenous growth model with automation (the introduction

of machines which replace low-skill labor) and horizontal innovation. The economy

follows three phases. First, low-skill wages are low, which induces little automa-

tion, and income inequality and labor’s share of GDP are constant. Second, as

low-skill wages increase, automation increases which reduces the labor share, in-

creases the skill premium and may decrease future low-skill wages. Finally, the

economy moves toward a steady state, where low-skill wages grow but at a lower

rate than high-skill wages. Surprisingly, a more productive automation technology

increases low-skill wages in the long-run.
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1 Introduction

How does the automation of the production process drive economic growth and affect

the distribution of income? Conversely, how do wages shape technological progress?

The last 40 years in particular have seen dramatic changes in the income distribution

with the skill premium rising throughout, low-skill wages stagnating and more recently a

phase of wage polarization. These changes are often attributed to skill-biased technical

change: by allowing for the use of machines in some tasks, automation increases economic

output, but it also reduces the demand for certain types of labor, particularly low-skill

labor. Autor, Levy and Murnane (2003) among others provide evidence in support

of this mechanism. As the range of tasks that machines can perform has expanded

considerably, the general public is increasingly worried about the negative consequences

of technological progress. Yet, economists often argue that technological development

also creates new products and tasks, which boost the demand for labor; and certainly

many of today’s jobs did not exist just a few decades ago.1 Surprisingly, the economics

literature lacks a dynamic framework to analyze the interaction between automation and

the creation of new products. This paper provides the first model that can do so.

Of course, a large literature exists which relates exogenous technical change to the

income distribution (e.g. Goldin and Katz, 2008, and Krusell, Ohanian, Ŕıos-Rull and

Violante, 2002). Previous attempts at endogenizing the direction of technical change

rely on factor-augmentation and exogenous shocks to the skill supply (Acemoglu, 1998).

The novelty of our approach is that we present an endogenous growth version of a task

framework in the vein of Autor, Levy and Murnane (2003) and Acemoglu and Autor

(2011), in which the direction of innovation evolves endogenously.

The main lesson from our framework is the following. If tasks performed by a scarce

factor (say labor) can potentially be automated but it is not presently profitable to do so,

then, in a growing economy, the return to this factor will eventually increase sufficiently

to make it profitable. Once automation has been triggered, the economy endogenously

transitions from one aggregate production function to another and during this transition

factor returns might drop. We characterize when this might happen and show that this

decrease must be temporary. Although, we focus on a general equilibrium model with

low-skill labor, the insights extend to subsectors of the economy and other scarce factors.

We consider an expanding variety growth model with low-skill and high-skill workers.

1For instance, the introduction of the telephone led to the creation of new jobs. In 1970 there were
421 000 switchboard operators in the United States. This occupation has largely been automated today.
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Horizontal innovation, modeled as in Romer (1990), increases the demand for both

low- and high-skill workers. Automation allows for the replacement of low-skill workers

with machines in production. It takes the form of a secondary innovation in existing

product lines, similar to the secondary innovations in Aghion and Howitt (1996) (though

their focus is on the interplay between applied and fundamental research, and not on

automation). Within a firm, automation increases the demand for high-skill workers

but reduces the demand for low-skill workers. “Non-automated” products only use low-

skill and high-skill labor. Once invented, a specific machine is produced with the same

technology as the consumption good.

We first take the level of technology as exogenous and show that an increase in the

number of varieties will increase all wages. An increase in automation, however, will

have the dual effect of increasing the overall productivity of the economy and allowing

substitution away from low-skill workers, resulting in an ambiguous net effect on low-

skill wages. Nevertheless, we show that for very general processes of horizontal and

automation innovation, the asymptotic growth rate of low-skill wages must be positive,

albeit strictly lower than that of high-skill wages.

Having studied the impact of technological change on wages, we require innovation

to be the process of deliberate investment and show the key role played by low-skill

wages. The cost advantage of an automated over a non-automated firm increases with

the real wage of low-skill workers, so that the incentive to automate is not constant

over time. As a consequence, the economy does not support a balanced growth path.

Instead, an economy with an initially low level of technology first goes through a phase

where growth is mostly generated by horizontal innovation and the skill premium and

the labor share are constant. Only when low-skill wages are sufficiently high will firms

invest in automation. During this second phase—where our model differs most from the

existing literature—the share of automated products increases, the skill premium rises

and, depending on parameters, the real low-skill wage may temporarily decrease. The

total labor share decreases progressively, in line with recent evidence (Karabarbounis

and Neiman, 2013). Finally, the economy moves towards its asymptotic steady state.

The share of automated products stabilizes as the entry of new, non-automated prod-

ucts compensates for the automation of existing ones. The total labor share stabilizes.

Eventually, the economy will have endogenously shifted from a Cobb-Douglas aggregate

production function to a nested CES one.

A simpler capital deepening model without automation innovation, but where low-
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skill labor and capital are always substitutes would also feature a secular rise in the

skill premium and a drop in the labor share. Yet our analysis shows that there are

several features which distinguish our model from previous work. First, contrary to

a capital deepening model, we can generate stagnating or even declining real low-skill

wages along the equilibrium path. Second, we can analyze the interaction between

automation and another form of technological progress. For instance, we obtain the

surprising result that a more productive automation technology increases the long-run

growth rate of low-skill wages because it encourages horizontal innovation—although it

may lead to lower low-skill wages for some time. This simple comparative statics result

speaks to potential differences in policy implications between this setup and one without

endogenous technical change. Third, by analyzing innovation patterns, our set-up makes

some of the misconceptions that arise from restricting attention to factor-augmenting

models apparent: for instance, intense automation can be consistent with a decline in

labor productivity growth and the impact of automation on low-skill wages and the

skill-premium need not be the strongest when expenses on automation are the largest; a

response to two points of critique of the skill-biased technological change hypothesis put

forward by Card and DiNardo (2002). In addition, while the elasticity of substitution

between factors is of central importance for the labor share in factor-augmenting models

(Piketty, 2014 and Karabarbounis and Neiman, 2014), our model highlights the role

played by the share parameters.

Then, we extend the baseline model to include a supply response in the skill distribu-

tion, and calibrate it to match the evolution of the skill premium, the skill ratio, the labor

share and productivity growth since the 1960s. As is common in the literature, for this

exercise (and only this exercise) we identify skill groups with education groups, such that

high-skill workers correspond to college-educated workers. This exercise demonstrates

that our model is able to replicate the trends in the data quantitatively, even though we

do not feed in any input time paths from the data as is usually done.

Finally, recent empirical work has increasingly found that workers in the middle of

the income distribution are most adversely affected by technological progress. To ad-

dress this, we extend the baseline model to include middle-skill workers as a separate

skill-group. Products either rely on low-skill or middle-skill workers and the two skill-

groups are symmetric except that automating to replace middle-skill workers is more

costly (or alternatively machines are less productive in middle-skill firms). This implies

that the automation of low-skill workers’ tasks happens first, with a delayed automation
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process for the tasks of middle-skill workers. We show that this difference can reproduce

important trends in the United States income distribution: In a first period, there is a

uniform dispersion of the income distribution, as low-skill workers’ products are rapidly

automated but middle-skill ones are not; while in the second period there is wage po-

larization: low-skill workers’ share of automated products is stabilized, and middle-skill

products are more rapidly automated.

Our modeling of automation as a skill-biased innovation is motivated by a large

empirical literature. For instance, Autor, Katz and Krueger (1998) and Autor, Levy

and Murnane (2003) use cross-sectional data to demonstrate that computerization is

associated with relative shifts in demand favoring college-educated workers, Bartel, Ich-

niowski and Shaw (2007) present similar evidence at the firm level. Similarly, Graetz

and Michaels (2015) show that the introduction of industrial robots leads to a reduction

in the demand for low- (and middle-) skill workers. The idea that high wages could

incentivize technological progress in the form of automation dates back to Habakkuk

(1962). The empirical literature on this relationship is more modest, but Lewis (2001)

finds that low-skill immigration slows down the adoption of automation technology and

Hornbeck and Naidu (2014) find that the emigration of black workers from the American

South favored the adoption of modern agricultural production techniques.

There is a small theoretical literature on labor-replacing technology. In Zeira (1998),

exogenous increases in TFP raise wages and encourage the adoption of a capital-intensive

technology analogous to automation in this paper. Acemoglu (2010) shows that labor

scarcity induces innovation (the Habbakuk hypothesis), if and only if innovation is labor-

saving, that is, if it reduces the marginal product of labor. Neither paper analyzes labor-

replacing innovation in a fully dynamic model nor focuses on income inequality, as we

do. Peretto and Seater (2013) build a dynamic model of factor-eliminating technical

change where firms learn how to replace labor with capital. Since wages are constant

the incentive to automate does not change over time. In addition, they do not focus

on income inequality. Benzell, Kotlikoff, LaGarda and Sachs (2015), following Sachs

and Kotlikoff (2012), build an overlapping generation model where a code-capital stock

can substitute for labor. A technological shock which favors the accumulation of code-

capital can lead to lower long-run GDP by reducing wages and thereby investment in

physical capital. In both papers (and contrary to our model), the technological shock is

completely exogenous. Finally, in work subsequent to our paper, Acemoglu and Restrepo

(2015) also develop a growth model where technical changes involves automation and
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the creation of new tasks. We discuss their model in details in section 3.8.

A large literature has used skill-biased technical change (SBTC) as a possible ex-

planation for the increase in the skill premium in developed countries since the 1970’s,

despite a large increase in the relative supply of skilled workers (see Hornstein, Krusell

and Violante, 2005, for a more complete literature review). One can categorize theo-

retical papers into one of three strands. The first strand emphasizes the hypothesis of

Nelson and Phelps (1966) that more skilled workers are better able to adapt to techno-

logical change (see Lloyd-Ellis, 1999; Caselli, 1999; Galor and Moav, 2000, and Aghion,

Howitt and Violante, 2002). However, such theories mostly explain transitory increases

in inequality whereas inequality has been increasing for decades. Our model, on the

contrary, introduces a mechanism that creates permanent and widening inequality.

A second strand sees the complementarity between capital and skill as the source

for the increase in the skill premium. Krusell, Ohanian, Ŕıos-Rull and Violante (2000)

develop a framework where capital equipment and high-skill labor are complements. By

adding the observed increase in the stock of capital equipment, they can account for most

of the variation in the skill premium. Our model shares features with their framework:

machines play an analogous role to capital equipment in their model, since they are more

complementary with high-skill labor than with low-skill labor. The focus of our paper

is different though since we seek to explain why innovation has been directed towards

automation, and analyze the interactions between automation and horizontal innovation.

Finally, a third branch of the literature, building on Katz and Murphy (1992), con-

siders technology to be either high-skill or low-skill labor augmenting and infers the

bias of technology from changes in the relative supply and the skill-premium. Goldin

and Katz (2008) employ this framework to conclude that technical change has been

skill-biased throughout the 20th century in the United States (Katz and Margo, 2014,

argue that the relative demand for white-collar workers has been increasing since 1820).

This work, however, does not attempt to endogenize the skill bias of technical change.

This is done in the (more theoretical) directed technical change literature (most notably

Acemoglu, 1998, 2002 and 2007). Such models, which also use factor-augmenting tech-

nical change, deliver important insights about inequality and technical change, but they

have no role for labor-replacing technology (a point emphasized in Acemoglu and Autor,

2011). In addition, even though income inequality varies, wages cannot decrease in ab-

solute terms, and their asymptotic growth rates must be the same. The present model

is also a directed technical change framework as economic incentives determine the form
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that technical change takes, but it deviates from the assumption of factor-augmenting

technologies and explicitly allows for labor-replacing automation, generating the possi-

bility for (temporary) absolute losses for low-skill workers, and permanently increasing

income inequality.

More recently, Autor, Katz, and Kearney (2006, 2008) and Autor and Dorn (2013),

amongst others, show that whereas income inequality has continued to increase above

the median, there has been a reversal below the median. They argue that the rou-

tine tasks performed by many middle-skill workers—storing, processing and retrieving

information—are more easily done by computers than those performed by low-skill work-

ers, now predominantly working in service occupations. This “wage polarization” has

been accompanied by a “job polarization” as employment has followed the same pat-

tern of decreasing employment in middle-skill occupations.2 Our explanation is related

but distinct: it is because low-skill tasks have already been heavily automated that

automation is now more prominent in middle-skill tasks. Hence, we provide a unified

explanation for the relative decline of middle-skill wages since the mid-1980s and the

relative decline of low-skill wages in the period before.

The paper proceeds as follows: Section 2 describes the baseline model for exogenous

technological change, it shows the consequences of technological change on wages and

derives the asymptotic behavior. Section 3 endogenizes the path of technological change

and describes the evolution of the economy through three phases. Section 4 calibrates

an extended version of the model (with an endogenous labor supply response in the skill

distribution) to the US economy since the 1960s. Section 5 extends the model to analyze

wage polarization. Section 6 concludes.

2 A Baseline Model with Exogenous Innovation

2.1 Preferences and production

We consider a continuous time infinite-horizon economy populated by H high-skill and

L low-skill workers. Both types of workers supply labor inelastically and have identical

2This phenomenon has also been observed and associated with the automation of routine tasks in
Europe (Spitz-Oener, 2006, and Goos, Manning and Salomons, 2009). A related literature analyzes this
non-monotonic pattern in inequality changes through the lens of assignment models where workers of
different skill levels are matched to tasks of different skill productivities (e.g. Costinot and Vogel, 2010;
Burstein, Morales and Vogel, 2014 and Feng and Graetz, 2015).
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preferences over a single final good of:

Uk,t =

ˆ ∞
t

e−ρ(τ−t)
C1−θ
k,τ

1− θ
dτ,

where ρ is the discount rate, θ ≥ 1 is the inverse elasticity of intertemporal substitution

and Ck,t is consumption of the final good at time t by group k ∈ {H,L}. H and L

are kept constant in our baseline model, but we consider the case where workers choose

occupations based on relative wages and heterogeneous skill-endowments in Section 4.1.

The final good is produced by a competitive industry combining an endogenous set

of intermediate inputs, i ∈ [0, Nt] using a CES aggregator:

Yt =

(ˆ Nt

0

yt(i)
σ−1
σ di

) σ
σ−1

,

where σ > 1 is the elasticity of substitution between these inputs and yt(i) is the use

of intermediate input i at time t. As in Romer (1990), an increase in Nt represents

a source of technological progress. Throughout the paper, we use interchangeably the

terms “intermediate input” and “product”.

We normalize the price of Yt to 1 at all points in time and drop time subscripts when

there is no ambiguity. The demand for each intermediate input i is:

y(i) = p(i)−σY, (1)

where p(i) is the price of intermediate input i and the normalization implies that the

ideal price index, [
´ N
0
p(i)1−σdi]1/(1−σ) equals 1.

Each intermediate input is produced by a monopolist who owns the perpetual rights

of production. She can produce the intermediate input by combining low-skill labor, l(i),

high-skill labor, h(i), and, possibly, type-i machines, x(i), using the production function:

y(i) =
[
l(i)

ε−1
ε + α(i) (ϕ̃x (i))

ε−1
ε

] εβ
ε−1

h(i)1−β, (2)

where α(i) ∈ {0, 1} is an indicator function for whether or not the monopolist has access

to an automation technology which allows for the use of machines. If the product is not

automated (α(i) = 0), production takes place using a Cobb-Douglas production function

with only low-skill and high-skill labor with a low-skill factor share of β. If the product
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is automated (α(i) = 1) machines can be used in the production process. We allow

for perfect substitutability, in which case ε = ∞ and the production function is y(i) =

[l(i) + α(i)ϕ̃x (i)]β h(i)1−β. The parameter ϕ̃ is the relative productivity advantage of

machines over low-skill workers and G denotes the share of automated products.3

Since each input is produced by a single firm, from now on we identify each input with

its firm and we refer to a firm which produces an automated product as an automated

firm. We refer to the specific labor inputs provided by high-skill and low-skill workers in

the production of different inputs as“different tasks”performed by these workers, so that

each product comes with its own tasks. It is because α(i) is not fixed, but can change

over time, that our model captures the notion that machines can replace low-skill labor

in new tasks. A model in which α(i) were fixed for each product would only allow for

machines to be used more intensively in production, but always for the same tasks.

Throughout the paper we will refer to x as “machines”, though our interpretation

also includes any form of computer inputs, algorithms, the services of cloud-providers,

etc. For simplicity, we consider that machines depreciate immediately, but Appendix 7.4

relaxes this assumption. Once invented, machines of type i are produced competitively

one for one with the final good, so that the price of an existing machine for an automated

firm is always equal to 1—hence technological progress in machine production follows

that in the rest of the economy. Though a natural starting point, this is an important

assumption and Appendix 7.3 presents a version of the model which relaxes it. Never-

theless, we stress that our model can capture the notion of a decline in the real cost of

equipment: indeed automation for firm i can equivalently be interpreted as a decline of

the price of machines i from infinity to 1.

2.2 Equilibrium wages

In this section we take the technological levels N (the number of products) and G

(the share of automated products) as well as the employment of high-skill workers in

production, HP as given (we will let HP ≤ H to accommodate later sections where high-

skill labor is used to innovate). We now derive how wages are determined in equilibrium.

First, note that all automated firms are symmetric and therefore behave in the same

3Following existing evidence (Autor, Katz and Krueger, 1998, Autor, Levy and Murnane, 2003, or
Bartel, Ichniowski and Shaw, 2007), we assume that the high-skill tasks cannot be automated. Yet, we
discuss the automation of these tasks later in the paper.
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way. Similarly all non-automated firms are symmetric. This gives aggregate output of:

Y = N
1

σ−1×(1−G)
1
σ

((
LNA

)β (
HP,NA

)1−β︸ ︷︷ ︸
)

T1

σ−1
σ

+G
1
σ

([(
LA
) ε−1

ε + (ϕ̃X)
ε−1
ε

] εβ
ε−1 (

HP,A
)1−β︸ ︷︷ ︸

)σ−1
σ

T2


σ
σ−1

,

(3)

where LA (respectively LNA) is the total mass of low-skill workers in automated

(respectively non-automated) firms, HP,A (respectively HP,NA) is the total mass of high-

skill workers hired in production in automated (respectively non-automated) firms and

X =
´ N
0
x(i)di is total use of machines. The aggregate production function takes the

form of a nested CES between two sub-production functions. The first term T1 cap-

tures the classic case where production takes place with constant shares between factors

(low-skill and high-skill labor), while the second term T2 represents the factors used

within automated products and features the substitutability between low-skill labor and

machines. G is the share parameter of the “automated” products nest and therefore an

increase in G is T2-biased (as σ > 1). N
1

σ−1 is a TFP parameter. Besides the functional

form the aggregate production function (3) differs from the often assumed aggregate

CES production function in two ways: first, it is derived from the cost functions of indi-

vidual firms and the technological change that we consider (new products and machines

undertaking more tasks) is more concrete than the usual factor-augmenting technical

change. Second, once we endogenize G we will be able to capture effects that the usual

focus on an exogenous aggregate production function cannot.

The unit cost of intermediate input i is given by:

c(w, v, α(i)) = β−β(1− β)−(1−β)
(
w1−ε + ϕα(i)

) β
1−ε v1−β, (4)

where ϕ ≡ ϕ̃ε, w denotes low-skill wages and v high-skill wages. When ε < ∞, c(·) is

strictly increasing in both w and v and c(w, v, 1) < c(w, v, 0) for all w, v > 0 (automation

reduces costs). The monopolist charges a constant markup over costs such that the price

is p(i) = σ/(σ − 1) · c(w, v, α(i)).

Using Shepard’s lemma and equations (1) and (4) delivers the demand for low-skill
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labor of a single firm.

l(w, v, α(i)) = β
w−ε

w1−ε + ϕα(i)

(
σ − 1

σ

)σ
c(w, v, α(i))1−σY, (5)

which is decreasing in w and v. The effect of automation on demand for low-skill labor

in a given firm is generally ambiguous. This is due to the combination of a negative

substitution effect (the ability of the firm to substitute machines for low-skill workers)

and a positive scale effect (the ability of the firm to employ machines decreases overall

costs, lowers prices and increases production). Since our focus is on labor-substituting

innovation, we impose the condition ε > 1+β (σ − 1) throughout the paper which is both

necessary and sufficient for the substitution effect to dominate and ensure l(w, v, 1) <

l(w, v, 0) for all w, v > 0.

Let x (w, v) denote the use of machines by an automated firm. The relative use of

machines and low-skill labor for such a firm is then:

x(w, v)/l(w, v, 1) = ϕwε, (6)

which is increasing in w as the real wage is also the price of low-skill labor relative to

machines.

The iso-elastic demand (1), coupled with constant mark-up σ/(σ − 1), implies that

revenues are given by R(w, v, α(i)) = ((σ − 1) /σ)σ−1 c(w, v, α(i))1−σY and that a share

1/σ of revenues accrues to the monopolists as profits: π(w, v, α(i)) = R(w, v, α(i))/σ.

Aggregate profits are then a constant share 1/σ of output Y , since output is equal to the

aggregate revenues of intermediate inputs firms. We define µ ≡ β(σ−1)/(ε−1) < 1 (by

our assumption on ε). Using (4), the relative revenues (and profits) of non-automated

and automated firms are given by:

R(w, v, 0)

R(w, v, 1)
=
π(w, v, 0)

π(w, v, 1)
=
(
1 + ϕwε−1

)−µ
, (7)

which is a decreasing function of w. Since non-automated firms rely more heavily on

low-skill labor, their relative market share drops with higher low-skill wages.

The share of revenues in a firm accruing to high-skill labor in production is the same

whether a firm is automated or not and given by νh = (1 − β)(σ − 1)/σ. Using labor

market clearing for high-skill workers in production (
´ N
0
h(i)di = HP ) and aggregating
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over those workers, we get that

vHP = (1− β)
σ − 1

σ
N [GR(w, v, 1) + (1−G)R(w, v, 0)] = (1− β)

σ − 1

σ
Y. (8)

Using factor demand functions, the share of revenues accruing to low-skill labor is

given by νl(w, v, α(i)) = σ−1
σ
β (1 + ϕwε−1α(i))

−1
, and is lower for automated than non-

automated firms. Similarly using low-skill labor market clearing (
´ N
0
l(i)di = L), we

obtain the aggregate revenues of low-skill workers as:

wL = N [GR(w, v, 1)νl(w, v, 1) + (1−G)R(w, v, 0)νl(w, v, 0)] . (9)

Taking the ratio of (8) over (9) and using (7) gives the following lemma.

Lemma 1. For ε <∞, the high-skill wage premium is given by4

v

w
=

1− β
β

L

HP

G+ (1−G)(1 + ϕwε−1)−µ

G (1 + ϕwε−1)−1 + (1−G)(1 + ϕwε−1)−µ
. (10)

For given L/HP and G > 0, the skill premium is increasing in the absolute level of

low-skill wages, which means that if G is bounded above 0, low-skill wages cannot grow

at the same rate as high-skill wages in the long-run. This is the case because higher

low-skill wages both induce more substitution towards machines in automated firms (as

reflected by the term (1 + ϕwε−1)−1 in equation (10)) and improve the cost-advantage

and therefore the market share of automated firms (term (1 + ϕwε−1)−µ ), which rely

relatively less on low-skill workers.

With constant mark-ups, the cost equation (4) and the price normalization give:

σ

σ − 1

N
1

1−σ

ββ (1− β)1−β
(
G
(
ϕ+ w1−ε)µ + (1−G)wβ(1−σ)

) 1
1−σ v1−β = 1. (11)

This productivity condition shows the positive relationship between real wages and the

level of technology given by N , the number of intermediate inputs, and G the share of

automated firms. Together (10) and (11) determine real wages uniquely as a function of

technology N,G and the mass of high-skill workers engaged in production HP .

Though the production function implies that, at the firm level, the elasticity of

substitution between high-skill labor and machines is equal to that between high-skill

4When machines and low-skill workers are perfect substitutes, ε =∞, the skill premium is given by
v
w = 1−β

β
L
HP

if w < ϕ̃−1 such that no firm uses machines, and v
w = 1−β

β
L
HP

G+(1−G)(ϕ̃w)−1

(1−G)(ϕ̃w)−1 if w > ϕ̃−1.
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and low-skill labor, this does not imply that the same holds at the aggregate level.

Therefore our paper is not in contradiction with Krusell et al. (2000), who argue that

the aggregate elasticity of substitution between high-skill and low-skill labor is greater

than the one between high-skill labor and machines.5

Given the amount of resources devoted to production (L,HP ), the static equilibrium

is closed by the final good market clearing condition:

Y = C +X (12)

where C = CL + CH is total consumption.

2.3 Technological change and wages

The consequences of technological changes on the level of wages are most easily seen with

the help of Figure 1 which plots the skill-premium (10) and productivity (11) conditions

in (w, v) space.6
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Figure 1: Evolution of high-skill (v) and low-skill (w) wages following technological changes.
An increase in N pushes out the productivity condition increasing both wages. An
increase in G pushes out the productivity condition and pivots the skill-premium
counter-clockwise, which increases v but has an ambiguous effect on w.

An increase in the number of products, N , pushes out the productivity condition

which results in an increase in both low-skill and high-skill wages. When G = 0, both

5This illustrates the difference between assuming elasticities of substitution of the aggregate produc-
tion function and deriving them from elasticities of substitution at the firm level. In fact, in our model,
the aggregate elasticities of substitution are not constant (see Appendix 8.3.5).

6When ε = ∞ and G = 1, the productivity condition has an horizontal arm and the skill-premium
condition a vertical one.
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types of wages grow at the same rate as the skill premium condition is a straight line with

slope (1 − β)L/(βHP ). For G > 0, the skill premium curve is not linear and high-skill

wages grow proportionally more than low-skill wages (following lemma 1).

An increase in the share of automated products G has a positive effect on high-skill

wages and the skill premium with an ambiguous effect on low-skill wages. Indeed, higher

automation increases the productive capability of the economy and pushes out the pro-

ductivity condition (an aggregate productivity effect), but it also allows the economy to

more easily substitute away from low-skill labor which pivots the skill-premium condi-

tion counter-clockwise (an aggregate substitution). The former effect increases low-skill

wages and the latter decreases low-skill wages. Therefore automation is low-skill labor

saving (in the vocabulary of Acemoglu, 2010) if and only if the aggregate substitution

effect dominates the aggregate productivity effect. The following proposition (derived

in Appendix 8.1) gives the full comparative statics.

Proposition 1. Consider the equilibrium (w, v) determined by equations (10) and (11).

It holds that

A) An increase in the number of products N (keeping G and HP constant) leads

to an increase in both high-skill (v) and low-skill wages (w). Provided that G > 0, an

increase in N also increases the skill premium v/w.

B) An increase in the share of automated products G (keeping N and HP constant)

increases the high-skill wages v and the skill premium v/w. Furthermore,

- i) if 1/ (1− β) ≤ σ − 1, low-skill wages w are decreasing in G;

- ii) if σ − 1 < 1/ (1− β) < (ε− 1) /β, w is decreasing in G for N sufficiently low

and inversely u-shaped in G otherwise, with w|G=1 < w|G=0;

- (iii) if 1/ (1− β) = (ε− 1) /β, w is inversely u-shaped in G with w|G=1 = w|G=0;

- (iv) if (ε− 1) /β < 1/ (1− β), w is increasing in G for N sufficiently low and

inversely u-shaped otherwise (weakly if ε =∞), with w|G=1 > w|G=0.

The proposition states that β/(1 − β) < ε − 1 — such that the elasticity of sub-

stitution between machines and low-skill workers is sufficiently large — is a necessary

and sufficient condition to ensure that low-skill wages are lower in a world where all

products are automated than in a world where none are. A low cost share of low-skill

workers/machines, β, will make this more likely as automation then provides less cost

savings and a lower aggregate productivity effect. For σ − 1 < 1/(1 − β) and N (and

therefore low-skill wages) sufficiently large, w is inversely u-shaped in G. This is be-

cause the automation of the first products has a relatively large productivity effect on

13



the economy, but a relatively small aggregate substitution effect since most firms are

still non-automated, whereas the converse is true once G is sufficiently high.

In section 3, when we specify the innovation process, we will show that as the number

of products N increases, the economy endogenously experiences a change in the share

of automated products: from a low level, close to 0, to a higher level. As a result,

growth will progressively become unbalanced with a rising skill premium, and for some

parameter values, low-skill wages may temporarily decline.

2.4 Asymptotics for general technological processes

We study the asymptotic behavior of the model for given paths of technologies and mass

of high-skill workers in production. For any variable at (such as Nt), we let gat ≡ ȧt/at

denote its growth rate and ga∞ = limt→∞g
a
t if it exists. In Appendix 8.2.1 we derive

Proposition 2. Consider three processes [Nt]
∞
t=0, [Gt]

∞
t=0 and [HP

t ]∞t=0 where (Nt, Gt, H
P
t ) ∈

(0,∞)× [0, 1]× (0, H] for all t. Assume that Gt, g
N
t and HP

t all admit strictly positive

limits G∞, gN∞ and HP
∞. Then, the growth rates of high-skill wages and output admit

limits with:

gv∞ = gY∞ = gN∞/ ((1− β)(σ − 1)) . (13)

Part A) If 0 < G∞ < 1 then the asymptotic growth rate of wt is given by

gw∞ = gY∞/ (1 + β(σ − 1)) . (14)

Part B). If G∞ = 1 and Gt converges sufficiently fast (more specifically if

limt→∞ (1−Gt)N
ψ(1−µ) ε−1

ε
t exists and is finite) then :

- If ε <∞ the asymptotic growth rate of wt is positive at :

gw∞ = gY∞/ε, (15)

where 1 + β(σ − 1) < ε by assumption.7

- If low-skill workers and machines are perfect substitutes then limt→∞wt is finite

and weakly greater than ϕ̃−1 (equal to ϕ̃−1 when limt→∞ (1−Gt)N
ψ
t = 0).

This proposition first relates the growth rate of output and high-skill wages to the

growth rate of the number of products. Without automation Yt would be proportional

7If limt→∞ (1−Gt)N
ψ(1−µ) ε−1

ε
t =∞ then gY∞/ε ≤ gw∞ ≤ gY∞/ (1 + β(σ − 1)) .
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to N
1/(σ−1)
t , as in a standard expanding-variety model: the higher the degree of sub-

stitutability between inputs the lower the gain in productivity from an increase in Nt.

Here, because automation allows the use of machines as an additional input, there is an

acceleration effect as the higher productivity also increases the supply of machines (as

long as G∞ > 0). Asymptotically, this effect is increasing in the factor share of low-skill

workers/machines, β.8

Second, this proposition shows that, with positive growth in Nt, mild assumptions are

sufficient to guarantee an asymptotic positive growth rate for wt: in line with Proposition

1 the only case in which wt would not be increasing occurs when Gt converges to 1

sufficiently fast and low-skill workers and machines are perfect substitutes. To gain

further intuition, first consider the case in which G∞ < 1. Since automated and non-

automated products are imperfect substitutes, then so are machines and low-skill workers

at the aggregate level. As the aggregate production function is a nested CES with

asymptotically constant weights (see equation (3)), a growing stock of machines and

a fixed supply of low-skill labor, implies that the relative price of a worker (wt) to a

machine (pxt ) must grow at a positive rate. Since machines are produced with the same

technology as the consumption good, pxt = pCt , where pCt is the price of the consumption

good (1 with our normalization), and the real wage wt = wt/p
C
t = (wt/p

x
t )(p

x
t /p

C
t ) must

also grow at a positive rate.9

With growing wages, the relative market share of automated firms and their reliance

on machines increase, which ensure that low-skill wages grow at a lower rate than the

economy (with G∞ > 0 the assumptions of Uzawa’s theorem are not satisfied since

horizontal innovation is not low-skill labor augmenting). Under our assumption that

automation is labor-saving at the firm level (ε < 1 + β (σ − 1)), the demand for low-

skill labor increasingly comes from the non-automated firms. As a result, the ratio

between high-skill and low-skill wages growth rates increases with a higher importance

of low-skill workers (a higher β) or a higher substitutability between automated and

non-automated products (a higher σ) since both imply a faster loss of competitiveness

of the non-automated firms. On the other hand, it is independent of the elasticity of

substitution between machines and low-skill workers, ε.

8Equation (13) also makes it clear why we must impose β < 1. If β = 1 the economy reaches a
“world of plenty” in finite time, as infinite production is possible once the number of products N is
sufficiently large relative to the productivity parameter ϕ̃. In reality one may think that other factors
such as natural resources or land would then become the scarce factor.

9A generalized version of Proposition 2 is presented in Appendix 7.3 which allows for asymptotic
(negative) growth in pxt /p

C
t and thereby potentially decreasing real wages for low-skill workers.
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Now, consider the case of G∞ = 1 and ε < ∞ (and let convergence satisfy the

condition in Part B of Proposition 2). Then an analogous argument demonstrates that

low-skill wages must increase asymptotically, though the growth rate relative to that of

the economy must be lower than when G∞ < 1 as all firms are automated and automated

firms more readily substitute workers for machines than the economy substitutes from

non-automated to automated products. The more easily they substitute (the higher is

ε) the lower the growth rate of low-skill workers wages. Only in the special case in which

machines and low-skill workers are perfect substitutes in the production by automated

firms and the share of automated firms is asymptotically 1 will there be economy-wide

perfect substitution between low-skill workers and machines. In this case, wt cannot

grow asymptotically, but will still be bounded below by ϕ̃−1, since a lower wage would

imply that no firm would use machines.10

In general, the processes of Nt, Gt and HP
t will depend on the rate at which new

products are introduced, the extent to which they are initially automated, and the rate

at which non-automated firms are automated. The following lemma derives condition

under which G∞ < 1, so that Part A of Proposition 2 applies.

Lemma 2. Consider processes [Nt]
∞
t=0, [Gt]

∞
t=0 and [HP

t ]∞t=0 , such that gNt and HP
t admit

strictly positive limits. If i) the probability that a new product starts out non-automated

is bounded below away from zero and ii) the intensity at which non-automated firms are

automated is bounded above and below away from zero, then any limit of Gt must have

0 < G∞ < 1.

Proof. See Appendix 8.2.2.

In other words, as long as new non-automated products are continuously introduced

(and stay non-automated for a non negligible time period), there will always be a share of

non-automated products. These provide employment opportunities for low-skill workers

which limits the relative losses of low-skill workers compared to high-skill workers (in

that their wages grow according to (14) instead of (15)). This is endogenously what will

happen in the full dynamic model that we now turn to.

10This provides one possible micro-foundation for the “Android Experiment” in Brynjolfsson and
McAffee (2014) where an android is invented which can perform any task a human worker can do.
Proposition 2 demonstrates that even if (asymptotically) this state is reached, low-skill workers will
get the opportunity cost of such an android which in general will not tend to zero. Appendix 7.3
demonstrates that a necessary (though not sufficient) condition for low-skill wages to approach zero is
that the cost of machines/androids falls faster than the consumption good.
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Note that, the intuition given by the combination of Lemma 2 and Part A of Propo-

sition 2 does not rely on new products being born identical to older products. In a model

where new products are born more productive, the growth rate of high-skill wages and

low-skill wages will obey equations (13) and (14), as long as the automation intensity is

bounded and the economy grows at a positive but finite rate.

3 Endogenous innovation

We now model automation and horizontal innovation as a the result of intentional invest-

ment, which allows us to look at the impact of wages on technological change. Section

3.1-3.5 characterizes the model and its solution, section 3.6 relates it to the historical

experience and section 3.7 is key as it studies the interaction between the two innovation

processes.

3.1 Modeling innovation

We assume that automation results from a risky investment: a non-automated firm which

hires hAt (i) high-skill workers in automation research, becomes automated according to

a Poisson process with rate ηGκ̃
t

(
Nth

A
t (i)

)κ
. Once a firm is automated it remains so for-

ever. η > 0 denotes the productivity of the automation technology, κ ∈ (0, 1) measures

the concavity of the automation technology, Gκ̃
t , κ̃ ∈ [0, κ], represents possible knowledge

spillovers from the share of automated products, and Nt represents knowledge spillovers

from the total number of intermediate inputs. The spillovers in Nt are necessary to

ensure that both automation and horizontal innovation can take place in the long-run.11

Our set-up can be interpreted in two ways. From one standpoint, machines are inter-

mediate input-specific and each producer needs to invent his own machine, which, once

invented, is produced with the same technology as the consumption good.12 From a sec-

11The role of these spillovers is to compensate for the mechanical reduction in the amount of resources
for automation that are available for each product when the number of product increases. With less
spillovers (that is if the process depended on Nq

t h
A
t with q < 1) automation would disappear as the

amount of effective resources per firm available for automation (Nq
tH/Nt) would become arbitrarily

small. With more spillovers (q > 1), the reverse occurs and firms could asymptotically get automated
instantaneously. Furthermore, these spillovers can be micro-funded as follows: let there be a mass
1 of firms with Nt products (instead of assuming that each individual i is a distinct firm), then this

functional form means that when a firm hires a mass H̃A
t (i) of high-skill workers in automation each of its

non-automated products gets independently automated with a Poisson rate of ηGκ̃t

(
H̃A
t (i)/ (1−Gt)

)κ
.

12Alternatively, machine-i may be invented by an outside firm and then sold to the intermediate
input producer. The rents from automation would then be divided between the intermediate input
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ond standpoint, machines are produced by the final good sector, and each intermediate

input producer must spend resources in adapting machines to his product line so as to

make them substitutable with low-skill workers in a new set of tasks.

Horizontal innovation occurs in a standard manner. New intermediate inputs are

developed by high-skill workers according to a linear technology with productivity γNt,

where γ > 0 is a productivity parameter.13 With HD
t high-skill workers pursuing hori-

zontal innovation, the mass of intermediate inputs evolves according to:14

Ṅt = γNtH
D
t .

We assume that firms do not exist before their product is created. Coupled with our

assumption that automation follows a continuous Poisson process, new products must

then be born non-automated. This feature of the model is motivated by the idea that

when a task is new and unfamiliar, the flexibility and outside experiences of workers

allow them to solve unforeseen problems. As the task becomes routine and potentially

codefiable a machine (or an algorithm) can perform it (as argued by Autor, 2013).

In reality, some new tasks may be sufficiently close to older ones that no additional

investment would be required to automate them immediately. Our results carry through

if only a share of the new products are born non-automated and section 3.8 discusses an

alternative set-up where automation is only undertaken at the entry stage.15

Therefore the rate and direction of innovation will depend on the equilibrium allo-

cation of high-skill workers between production, automation and horizontal innovation.

Defining the total mass of high-skill workers working in automation as HA
t ≡
´ Nt
0
hAt (i)di,

producer and the machine producer. Except for a constant representing the bargaining power of each
party, it would not affect any of our results. Yet another alternative would be to have entrants under-
taking automation and potentially displacing the original firm. This would not qualitatively affect the
equilibrium as long as the incumbent has a positive probability of becoming automated.

13As is common in the growth literature, in this set-up each firm is assumed to produce a good
different from the others. Horizontal innovation, however, does not aim to represent the creation of new
firms but the creation of new goods or services.

14The main results of this paper do not depend on the fact that firms are born non-automated.
Appendix 8.6 presents a setting in which when a firm is born (and only when it is born), its owner can
make it automated with probability min(η(Nth

A
t )κ, 1) by hiring hAt high-skill workers in automation.

The transition of the economy is qualitatively identical. What is crucial is that higher low-skill wages
increase the incentive to automate, not at what stage this automation takes place.

15The model predicts that the ratio of high-skill to low-skill labor in production is higher for automated
than non-automated firms. However, this does not necessarily mean that automated firms have a higher
ratio of high-skill to low-skill labor overall, since non-automated firms also hire high-skill workers for the
purpose of automating. In particular, new firms do not always have a higher ratio of low to high-skill
workers (and at a the time of its birth a new firm only relies on high-skill workers).
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we get that high-skill labor market clearing leads to

HA
t +HD

t +HP
t = H. (16)

3.2 Innovation allocation

We denote by V A
t the value of an automated firm, by rt the economy-wide interest rate

and by πAt ≡ π(wt, vt, 1) the profits at time t of an automated firm. The asset pricing

equation for an automated firm is then given by

rtV
A
t = πAt + V̇ A

t . (17)

This equation states that the required return on holding an automated firm, V A
t , must

equal the instantaneous profits plus appreciation. An automated firm only maximizes

instantaneous profits and has no intertemporal investment decisions to make.

A non-automated firm has to decide how much to invest in automation. Denoting by

V N
t the value of a non-automated firm, we get the corresponding asset pricing equation:

rtV
N
t = πNt + ηGκ̃

t

(
Nth

A
t

)κ (
V A
t − V N

t

)
− vthAt + V̇ N

t , (18)

where πNt ≡ π(wt, vt, 0) and hAt is the mass of high-skill workers in automation research

hired by a single non-automated firm (by symmetry HA
t = (1−Gt)Nth

A
t ). This equation

has an analogous interpretation to equation (17), except that profits are augmented

by the instantaneous expected gain from innovation ηGκ̃
t

(
Nth

A
t

)κ (
V A
t − V N

t

)
net of

expenditure on automation research, vth
A
t . This gives the first order condition:

κηGκ̃
tN

κ
t

(
hAt
)κ−1 (

V A
t − V N

t

)
= vt, (19)

which must hold at all points in time. The mass of high-skill workers hired in automation

increases with the difference in value between automated and non-automated firms, and

as such is increasing in current and future low-skill wages—all else equal.

Since non-automated firms get automated at Poisson rate ηGκ̃
t

(
Nth

A
t

)κ
, and since

new firms are born non-automated, the share of automated firms obeys:

Ġt = ηGκ̃
t

(
Nth

A
t

)κ
(1−Gt)−Gtg

N
t , (20)
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Free-entry in horizontal innovation guarantees that the value of creating a new firm

cannot be greater than its opportunity cost:

γNtV
N
t ≤ vt, (21)

with equality whenever there is strictly positive horizontal innovation (Ṅt > 0).

The low-skill and high-skill representative households’ problems are standard and

lead to Euler equations which in combination give

Ċt/Ct = (rt − ρ) /θ, (22)

with a transversality condition requiring that the present value of all time-t assets in the

economy (the aggregate value of all firms) is asymptotically zero:

limt→∞

(
exp

(
−
ˆ t

0

rsds

)
Nt

(
(1−Gt)V

N
t +GtV

A
t

))
= 0.

3.3 Equilibrium characterization

We define a feasible allocation and an equilibrium as follows:

Definition 1. A feasible allocation is defined by time paths of stock of prod-

ucts and share of those that are automated, [Nt, Gt]
∞
t=0, time paths of use of low-

skill labor, high-skill labor, and machines in the production of intermediate inputs

[lt(i), ht(i), xt(i)]
∞
i∈[0,Nt],t=0, a time path of intermediate inputs production [yt(i)]

∞
i∈[0,Nt],t=0,

time paths of high-skill workers engaged in automation [hAt (i)]∞i∈[0,Nt],t=0, and in hori-

zontal innovation [HD
t ]∞t=0, time paths of final good production and consumption levels

[Yt, Ct]
∞
t=0 such that factor markets clear ((16) holds) and good market clears ((12) holds).

Definition 2. An equilibrium is a feasible allocation, a time path of intermediate

input prices [pt(i)]
∞
i∈[0,Nt],t=0, a time path for low-skill wages, high-skill wages, the interest

rate and the value of non-automated and automated firms [wt, vt, rt, V
N
t , V

A
t ]∞t=0 such that

[yt(i)]
∞
i∈[0,Nt],t=0 maximizes final good producer profits, [pt(i), lt(i), ht(i), xt(i)]

∞
i∈[0,Nt],t=0

maximize intermediate inputs producers’ profits, [hAt (i)]∞i∈[0,Nt],t=0 maximizes the value

of non-automated firms, [HD
t ]∞t=0 is determined by free entry, [Ct]

∞
t=0 is consistent with

consumer optimization and the transversality condition is satisfied.

We transform the system by introducing new variables for which the system of differ-

ential equations admits a steady state. Specifically, we introduce nt ≡ N
−β/[(1−β)(1+β(σ−1))]
t
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and ωt ≡ w
β(1−σ)
t which both tend towards 0 as Nt and wt tend towards infinity.16

We define the normalized mass of high-skill workers in automation (ĥAt ≡ Nth
A
t ), nor-

malized high-skill wages and consumption (v̂t = vtN
−ψ
t and ĉt = ctN

−ψ
t ), where ψ ≡

((1− β) (σ − 1))−1 (ψ is equal to the asymptotic elasticity of GDP with respect to Nt),

and the variable χt ≡ ĉt
θ/v̂t (χtis related to the mass of high-skill workers in production

and therefore, given ĥAt , to HD
t and the growth rate of Nt). With positive entry in the

creation of new products at all points in time, the equilibrium can then be characterized

by a system of differential equations with two state variables nt, Gt, two control vari-

ables, ĥAt , χt and an auxiliary equation defining ωt (see Appendix 7.1 for the derivation,

in particular the system is given by equations (27), (28), (30) and (31) with auxiliary

variables defined in (35), (37), (38) and (39)). We then get:

Proposition 3. Assume that

ρ

(
1

ηκκ (1− κ)1−κ

(
ρ

γ

)1−κ

+
1

γ

)
< ψH, (23)

then the system of differential equations admits a steady state (n∗, G∗, ĥA∗, χ∗) with n∗ =

0, 0 < G∗ < 1 and positive growth
(
gN
)∗
> 0.

Proof. See Appendix 8.3.1.

We will refer to the steady state (n∗, G∗, ĥA∗, χ∗) as as an asymptotic steady state

for our original system of differential equations. In addition, the assumption that θ ≥
1 ensures that the transversality condition always holds.17 For the rest of the paper

we restrict attention to parameters such that there exists a unique saddle-path stable

steady state (n∗, G∗, ĥA∗, χ∗) with n∗ = 0, G∗ > 0. Then, for an initial pair (N0, G0) ∈
(0,∞) × [0, 1] sufficiently close to the asymptotic steady state, the model features a

unique equilibrium converging towards the asymptotic steady state.18

16Because the original system only admits an asymptotic steady state, one cannot eliminate the state
variable Nt from the system. We introduce nt to be able to define a proper steady state.

17To see the intuition behind equation (23), consider the case in which the efficiency of the automation
technology η is arbitrarily large, such that the model is arbitrarily close to a Romer model where all
firms are automated. Then equation (23) becomes ρ/γ < ψH, which mirrors the classical condition
for positive growth in a Romer model with linear innovation technology. With a smaller η the present
value of a new product is reduced such that the corresponding condition is more stringent

18Multiple asymptotic steady states with G∗ > 0 are technically possible but are not likely for rea-
sonable parameter values (see Appendix 8.3.2). In addition, with two state variables (nt and Gt) saddle
path stability requires exactly two eigenvalues with positive real parts. In our numerical investigation,
for all parameter combinations which satisfy the previous restrictions, this condition was always met.
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In line with Lemma 2, the steady state features G∗ ∈ (0, 1) as the automation

intensity is positive but bounded. Therefore Proposition 2, part A applies: asymp-

totically high-skill wages grow faster than low-skill wages but the introduction of new

non-automated products limits the ratio between the two growth rates.

3.4 Innovation incentives along the transitional path

A distinctive feature of this economy is that the path of technological change itself will

be unbalanced through the transitional dynamics. In the following we think of the

transitional path of the economy as going through three phases: a first phase where the

incentive to automate is very low and the economy behaves close to a Romer model,

a second phase in which automation pushes up G and the skill-premium condition of

figure 1 pivots counter-clockwise and a final third phase where the economy approaches

the steady state described by the previous section (a formal proof of the results in this

section can be found in Appendix 8.3.3).

To see this, we combine (17) (18) and (19) to write the difference in value between

an automated and a non-automated firm as:

rt(V
A
t − V N

t ) = πAt − πNt −
1− κ
κ

vth
A
t + (

·
V
A

t −
·
V
N

t ).

Integrating over this equation (and using the transversality condition), we obtain that

the difference in value between an automated and a non-automated firm is given by the

discounted flow of the difference in profits adjusted for the cost of automation and the

probability of getting automated:

V A
t − V N

t =

ˆ ∞
t

exp

(
−
ˆ τ

t

rudu

)(
πAτ − πNτ −

1− κ
κ

vτh
A
τ

)
dτ. (24)

The rate of automation depends on the normalized mass of high-skill workers in

automation (ĥAt = Nth
A
t ), which following (19) depends on the ratio between the gain in

firm value from automation and the high-skill wage divided by the number of products:

ĥAt =

(
κηGκ̃

t

V A
t − V N

t

vt/Nt

)1/(1−κ)

. (25)

Crucially as the number of products in the economy increases, the right-hand side of

this expression will change value drastically.
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First Phase. High-skill wages vt and aggregate profits are of the same order

(both are proportional to output). When the number of products Nt is low, wages,

including low-skill wages are low and therefore automated and non-automated firms

have similar profits. As a result aggregate profits are close to Ntπ
N
t so that πNt and

vt/Nt are of the same order (and grow at similar rates). Recalling that (7) gives

πAt − πNt =
(
1 + ϕwε−1t

)µ
πNt , we get that as long as wt is small relative to ϕ̃−1, then(

πAt − πNt
)
/ (vt/Nt) must be small too.19 With a positive discount rate, this implies

that
(
V A
t − V N

t

)
/ (vt/Nt) and therefore ĥAt must also be small (see Appendix 8.3.3 for

a proof). Hence the economy initially experiences little automation.

Therefore, for sufficiently low initial value of Nt the behavior of the economy is close

to that of a Romer model with a Cobb-Douglas production function between low-skill

and high-skill labor. Economic growth is driven by horizontal innovation and the skill

premium and the factor shares are nearly constant. Naturally, if Gt is not initially low,

it must depreciate during this period following equation (20). This corresponds to what

we label as the first phase of the economy.

Second Phase. As horizontal innovation continuously increases low-skill wages (for

low Nt, wt grows at the rate gNt / (σ − 1)) the approximation derived on the basis that

wt is small relative to ϕ̃−1 becomes progressively worse. The gain from automating from(
V A
t − V N

t

)
/ (vt/Nt) increases and ceases to be a low-number.20 Without the externality

in the automation technology (κ̃ = 0), it is then direct from (25) that the mass of high-

skill workers devoted to automation becomes significantly different from 0, so that the

Poisson rate of automation η
(
Nth

A
t

)κ
increases and so does the share of automated

products Gt. For κ̃ > 0, the depreciation in the share of automated products during the

first phase might gradually makes the automation technology less effective which can

delay or even potentially prevent the take-off of automation.21

In line with Proposition 1, both the increase in Gt but also the increase in the number

of products (now with Gt substantially higher than 0) lead to an increase in the skill

premium. We will label this time period where the share of automated products in the

economy increases sharply the second phase (the transition between phases is smooth

19More specifically one finds that
πAt −π

N
t

vt/Nt
= ψHP

t
((1+ϕwε−1

t )
µ−1)

1+Gt((1+ϕwε−1
t )

µ−1)
, which is small if ϕwε−1t is small

and increasing in wt(and therefore in Nt) for given Gt and HP
t .

20When Gt is low, we still have that Ntπ
N
t and vt are of the same order and as a result the ratio(

V At − V Nt
)
/ (vt/Nt) grows like

(
πAt − πNt

)
/πNt =

(
1 + ϕwε−1t

)µ − 1.
21Automation does still take off if either G0 and N0 are not too low or, for any values of N0, G0 > 0

whenever 1−κ− κ̃ > 0—see Appendix 8.3.4. Finally, if we were to assume instead that the automation
technology is given by min

{
ηGκ̃t , η

} (
Nth

A
t

)κ
, then automation would always take off.
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and therefore the exact limits are arbitrary). Arguably, this time period is the one where

our model differs the most from the rest of the literature.

Third Phase. With a share of automated products significantly different from 0,

aggregate profits and the profits of an automated firm multiplied by the number of prod-

ucts (Ntπ
A
t ) must be of the same order. Recalling that high-skill wages and aggregate

profits are both proportional to output, this ensures that the ratio
(
V A
t − V N

t

)
/ (vt/Nt)

remains bounded. As a result the normalized mass of high-skill workers in automation

research (Nth
A
t ) also stays bounded (see (25)). In line with Lemma 2 a bounded Pois-

son rate of automation ensures that the share of automated products stabilizes below

1. Therefore, the economy will experience a third phase where the share of automated

products is approximately constant. Following Proposition 1, both high-skill and low-

skill wages grow but high-skill wages grow at a higher rate. Though in Phase 3 the share

parameters of the nested CES function are constant, the model continues to differ from

a generic capital deepening model in that long-run growth is endogenized and depends

on its interaction with automation (in particular, see Proposition 4 below).

3.5 An illustration of the transitional dynamics

In order to illustrate the previous results and to further analyze the behavior of our

economy under various parametric assumptions, we now turn to numerical simulations.22

The following section will then relate our theoretical results to the historical experience of

the US economy. Table 1 presents our baseline parameters. Section 4 employs Bayesian

techniques to estimate the parameters, but the focus of this section is theoretical and we

simply choose “reasonable” parameters (see Appendix 7.2.4 for a systematic exploration

of the parameter space). As our goal is to characterize the evolution of an economy which

transitions from automation playing a small to a central role, we choose an initially low

level of automation (G0 = 0.001) and an initial mass of intermediate inputs small enough

to ensure that the real wage is initially low relative to the productivity of machines. This

ensures that the economy will start in the ‘first phase’ described above (with a higher

(N0, G0) the economy may directly start in the second or third phases).

Baseline Parameters. The time unit is 1 year. Total stock of labor is 1 and we

set L = 2/3 and β = 2/3 such that absent automation and if all high-skill workers were

in production the skill premium would be 1. The initial mass of products is N0 = 1 and

22We employ the so-called “relaxation” algorithm for solving systems of discretized differential equa-
tions (Trimborn, Koch and Steger, 2008). See Appendix 8.4 for details.
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Table 1: Baseline Parameter Specification

σ ε β H L θ η κ ϕ̃ ρ κ̃ γ

3 4 2/3 1/3 2/3 2 0.2 0.5 0.25 0.02 0 0.3

the productivity parameter for machines is ϕ̃ = 0.25, which ensures that at t = 0, the

cost advantage of automated firms is very small (their profits are 0.004% higher). We

set σ = 3 to capture an initial labor share close to 2/3. The elasticity of substitution

between machines and low-skill workers in automated firms is ε = 4. The innovation

parameters (γ, η, κ) are chosen such that GDP growth is close to 2% both initially and

asymptotically, and we first consider the case where there is no externality from the share

of automated products in the automation technology, κ̃ = 0—hereafter, we will refer to

this externality as the externality in automation technology (although there is also an

externality from the total mass of products). The parameters ρ and θ are chosen such

that the interest rate is around 6% (at the beginning and at the end of the transition).
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Figure 2: Transitional Dynamics for baseline parameters. Panel A shows growth rates for
GDP, low-skill wages (w) and high-skill wages (v), Panel B the incentive to auto-
mate,

(
V At − V Nt

)
/ (vt/Nt), and the skill premium, Panel C the total spending on

horizontal innovation and automation as well as the share of automated products
(G), and Panel D the wage share of GDP for total wages and low-skill wages.

Figure 2 plots the evolution of the economy. Based on the behavior of Gt (Panel C)
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we delimit Phase 1 as corresponding to the first 100 years and Phase 2 as the period

between year 100 and year 250.

Innovation. As previously derived and as shown in Panel C firms initially spend

very little on automation and the share of automated firms, Gt, stays initially very close

to 0. This occurs because with a low initial level of Nt, low-skill wages are low, so that the

gains from automation, V A
t −V N

t , are very low relative to the high-skill wage normalized

by the number of products (vt/Nt)—as shown in Panel B. With growing low-skill wages,

the incentive to automate picks up a bit before year 100. Then, the economy enters the

second phase as automation expenses sharply increase (up to 4% of GDP), leading to

an increase in the share of automated products Gt. Despite a high level of expenditures

in automation, the share of automated products eventually stabilizes in the third phase

below 1, as the constant arrival of new, non-automated products depreciates it.

As shown in Panel C, spending on horizontal innovation as a share of GDP declines

during Phase 2 and ends up being lower in Phase 3 than Phase 1. Intuitively, horizontal

innovation becomes less interesting because new (non-automated) products will have

to compete with increasingly productive automated firms and therefore get a smaller

initial market share. Though this is not a general feature of our model, such possibility

distinguishes our paper from the ‘Habbakuk hypothesis’ literature: high level of wages

may encourage some innovation (automation), but it may also discourage other forms

of innovation, leading to an ambiguous overall impact on growth.

Panel A shows that GDP growth is the highest in the middle of Phase 2 and roughly

the same in Phases 1 and 3: the rate of horizontal innovation is lower in Phase 3 but

this is compensated by the elasticity of GDP wrt. Nt being higher (at 1/ (σ − 1) instead

of 1/ [(σ − 1) (1− β)]). As a result, the phase of intense automation (when the share of

automated products increases) is associated with a temporary boost of growth.

Wages. In the first phase, and referring to figure 1, the skill-premium conditions

stays close to the straight dotted line with slope 1−β
β

L
HP associated with a Cobb-Douglas

production. Continuous horizontal innovation pushes the productivity condition towards

the North East so that both wages grow at around 2% (Panel A).

As rising low-skill wages trigger the second phase, the skill-premium condition pivots

counter-clockwise and bends upwards increasing the growth rate of high-skill wages to

almost 4% and suppressing the growth rate of low-skill wages to around 1%. (since

there are no financial constraints, the two types share a common consumption growth

rate throughout, see Appendix 7.2.1). For our specific parameter choice (satisfying the
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conditions of Proposition 1 B.ii)), increases in Gt have a negative impact on wt through-

out the transition, but it is sufficiently slow relative to the increase in Nt that low-skill

wages grow at a positive rate throughout—which section 3.7 demonstrates need not be

the case. It is precisely this movement of the skill-premium curve that an alternative

model with constant G (i.e. one where the fraction of tasks that can be performed

with machines is constant) or a capital deepening model could not reproduce, and con-

sequently such a model would not feature labor-saving innovation. In addition to the

effects of changing Gt and Nt, changes in the mass of high-skill workers in production,

HP
t , affect the skill premium, but these effects are quantitatively dominated. In the

third phase, the skill-premium condition no longer moves, but the continuous rise in the

productivity condition continuous to increase the skill-premium.

Capital and labor shares. Panel D of figure 2 plots the labor share and the low-

skill labor share. To understand their evolution, first note that GDP = Y −X+v(HD+

HA), as GDP includes R&D investments done by high-skill labor, but not intermediate

inputs, X. Since machines are not part of the capital stock in this baseline version of

the model (see Appendix 7.4 for an alternative specification), capital income corresponds

to aggregate profits. Due to a constant markup, these profits are a constant share of

output. During the first phase, X is low and v(HD +HA) are roughly a constant share

of output, implying a nearly constant capital share. With low-skill and high-skill wages

growing at the same rate, the low-skill share is also constant during this period.

With the advent of automation in Phase 2, the increased use of intermediate inputs

implies a decreasingGDP/Y and profits and thereby the capital share becomes a growing

share of GDP . Working contrary to this is the increase in innovation as only high-skill

workers work in innovation, but the net effect is an increase in the capital share. For

different parameter values, the drop in the labor share can be delayed relative to the

rise in the skill premium (see Appendix 7.2.2). As the growth rate of low-skill wages

starts declining and falls to a level permanently lower than that of GDP, the low-skill

labor share declines eventually to approach zero. The high-skill wage share, however,

asymptotically grows at the rate of GDP and stabilizes at a higher value than in Phases

1 and 2. The ratio of wealth to GDP also increases during Phase 2 and asymptotes a

constant in Phase 3 (see Appendix 7.2.1).

Elasticity of substitution. At the aggregate level, our model boils down to a

nested CES production function (see equation (3)), and Phase 2 corresponds to a period

where the share parameter of the composite which features substitutability between
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machines and low-skill labor, Gt, rises. This change in the share parameter is micro-

founded and receives a very natural interpretation, which is precisely the advantage

of a task framework. In contrast, the academic debate on income distribution often

focuses on the value of the elasticity of substitution between different factors. Here the

value of the aggregate elasticity of substitution does not play the central role. In fact, the

Morishima’s elasticity of substitution between low-skill labor and machines (or machines

and low-skill labor) actually declines in Phase 2 from a value close to ε to a value close

to 1 + β(σ − 1) (see Appendix 8.3.5).

Growth decomposition. Figure 3 performs a growth decomposition exercise for

low-skill and high-skill wages by separately computing the instantaneous contribution

of each type of innovation. We do so by performing the following thought experiment:

at a given instant t, for given allocation of factors, suppose that all innovations of a

given type fail. By how much would the growth rates of w and v change? This exer-

cise is complementary to the one performed in Figure 1 which focuses on the impact

of technological levels instead of innovations.23 In Phase 1, there is little automation,

so wage growth for both skill-groups is driven almost entirely by horizontal innovation.

In Phase 2, automation sets in. Low-skill labor is then continuously reallocated from

existing products which get automated, to new, not yet automated, products. The im-

mediate impact of automation on low-skill wages is negative, while horizontal innovation

has a positive impact, as it both increases the range of available products and decreases

the share of automated products. The figure also shows that automation plays an in-

creasing role in explaining the growth rate of high-skill wages, while the contribution

of horizontal innovation declines. This is because new products capture a smaller and

smaller share of the market and therefore do not contribute much to the demand for

high-skill labor. Consequently, automation is skill-biased while horizontal innovation is

unskilled-biased.24 We stress that this growth decomposition is for changes in the rate

23More specifically we can write wt = f(Nt, Gt, H
P
t ), using equations (10) and (11). Differentiating

with respect to time and using equation (28) gives:

gwt =

(
Nt
wt

∂f

∂N
− Gt
wt

∂f

∂G

)
γHD

t +
1

wt

∂f

∂G
ηGκ̃t (1−Gt)(ĥAt )κ +

1

wt

∂f

∂HP
ḢP
t .

Figure 3 plots the first two terms as the growth impact of expenses in horizontal innovation and au-
tomation, respectively. The third term ends up being negligible. We perform a similar decomposition
for vt.

24Proposition 1 shows analytically that automation is skilled-biased and that an increase in N at a
given G > 0 is also skilled-biased. Horizontal innovation corresponds to an increase in the number of
non-automated products, that is an increase in N but keeping GN constant. One can show analytically
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of automation and horizontal innovation at a given point in time. This should not be

interpreted as “automation being harmful” to low-skill workers in general. In fact, as we

demonstrate in Section 3.7, an increase in the effectiveness of the automation technol-

ogy, η, will have positive long-term consequences. A decomposition of gGDPt would look

similar to the decomposition of gvt : while growth is initially almost entirely driven by hor-

izontal innovation, automation becomes increasingly important in explaining growth.25
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Figure 3: Growth decomposition. Panel A: The growth rate of low-skill wages and the in-
stantaneous contribution from horizontal innovation and automation, respectively.
Panel B is analogous for high-skill wages. See text for details.

3.6 Comparison with the historical experience

We now relate the qualitative lessons of our model to historical experience. Although,

when undertaking our quantitative analysis in section 4, we will focus on the last 40

years, we believe that the forces at work in our model were relevant much before.

Secular increase in the relative skill demand. Our model predicts a continuous

increase in the skill premium from Phase 2. It is a well established fact that the college

premium (considered to be a good proxy for the skill premium over that time period)

has been steadily increasing in the United States since the 1980s. Moving back in time,

the skill premium experienced periods of decline (such as the 1970s) but these can be

accounted for by exogenous changes in the relative supply of skills which our models does

not capture. Factoring in the evolution on the supply side, Goldin and Katz (2008) show

that technological change has been skill-biased throughout the 20th century. Even before,

Katz and Margo (2014) argue that the relative demand for highly skilled workers (in

that horizontal innovation is unskilled-biased when w is high enough (which is obtained for ε <∞ and
N large enough), but might be skill biased for low N .

25This is about instantaneous growth, as shown in Proposition 2, long-run growth is ultimately
determined by the endogenous rate of horizontal innovation.
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professional, technical and managerial occupations) has increased steadily from perhaps

as early as 1820 to the present.

This contrasts our paper with most of the growth literature which features a balanced

growth path and therefore does not have permanently increasing labor inequality. For

instance, in Acemoglu (1998), low-skill and high-skill workers are imperfect substitutes in

production. Yet, since the low-skill augmenting technology and the high-skill augmenting

technology grow at the same rate asymptotically, the relative stocks of effective units of

low-skill and high-skill labor is constant, leading to a constant relative wage.

Furthermore, there is no simple one-to-one link between automation spending and

rising inequality in our model. Here, automation spending is higher in Phase 3 than

in Phase 2 (Panel C in figure 2), yet the growth in the skill premium is slower. Card

and DiNardo (2002) argue that inequality rising the most in the early to mid 1980s, and

technological change continuing since squares poorly with the predictions of a framework

based on skill-biased technological change. This, in fact, is in line with our model.26

Of course, the definition of who is ‘high’ skill and who is ‘low’ skill matters. Hence, the

mechanization of the 19th century, which replaced skilled artisans, or the computerization

of the last 30 years, did not aim at replacing the most unskilled workers. Therefore our

model provides a good account of the historical experience only if the definition of ‘high-

skill’ is restrictive. The next section, which introduces a group of middle-skill workers,

helps us account for such events.

Capital and labor shares. Our model also predicts a slow drop in the labor share

during most of Phase 2 (and a rise in the capital to income ratio). This is consistent with

Karabarbounis and Neiman (2013) who find a global reduction of 5 percentage points

in labor’s share of corporate gross value added over the past 35 years, and with Elsby,

Hobijn and Sahin (2013) who find similar results for the United States.

However, the capital share of income and the wealth to income ratio have followed a

U-curve in the 20th century (Piketty and Zucman, 2014 and Piketty, 2014). Although a

small temporary decline in the capital share at the beginning of Phase 2 can be accounted

for by the model (see Appendix 7.2.2), such large movements cannot. The early decline

in the capital share is at least partly due to the two World Wars, changes in the tax

system and the structural shift away from the agricultural sector, which this model does

not capture. The latter, could be captured with a nested structure with an elasticity

of substitution between broad sectors of less than 1. If these sectors differ in how easy

26Intuitively the elasticity of the skill-premium with respect to the skill-bias of technology is not
constant in our model, contrary to a CES framework with factor-augmenting technologies.
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they are to automate, then intense automation will happen sequentially. As this happens

spending shares in non-automated sectors would increase (as in Acemoglu and Guerrieri,

2008) securing a higher growth rate for low-skill wages. This would replicate the broad

features of an economy switching from agriculture, to manufacturing, and then services.27

3.7 Interaction between horizontal innovation and automation

We now investigate the interaction between horizontal innovation and automation by

changing the innovation parameters. This allows us to explore more fully the richness

of a model with endogenous technological change and to distinguish it from alternative

models. Appendix 7.2.4, carries out a more systematic comparative statics exercise.

Declining low-skill wages. Empirical evidence suggests that low-skill wages have

been stagnating and perhaps even declining in recent periods. Because our model fea-

tures a labor saving innovation, it can accommodate declining low-skill wages in Phase

2. This could not happen if the share of automated products were fixed, or in a capital

deepening model with perfectly elastic capital, and it is not the case in the previous DTC

literature either. In this model it happens when the skill-premium pivots sufficiently fast

counter-clockwise compared with the movement of the productivity condition in figure

1. We ensure this in figure 4 by setting κ̃ = 0.49, thereby introducing the externality

in automation.28 Initially Gt is small and the automation technology is quite unproduc-

tive. Hence, Phase 2 starts later, even though the ratio
(
V A
t − V N

t

)
/ (vt/Nt) has already

significantly risen (Panel B). Yet, Phase 2 is more intense once it gets started, partly

because of the sharp increase in the productivity of the automation technology (following

the increase in Gt) and partly because low-skill wages are higher. Intense automation

puts downward pressure on low-skill wages. At the same time, horizontal innovation

drops considerably, both because new firms are less competitive than their automated

counterparts, and because the high demand for high-skill workers in automation innova-

tions increases the cost of inventing a new product. This results in a short-lived decline

in low-skill wages. Indeed, the decline in wt (and increase in high-skill wage vt) lowers

the incentive to automate (Panel B), which in return reduces automation. This reflects

two general points: First, just as increases in wt encourage automation; reductions in

27In addition, at the product level, an elasticity of substitution lower than 1 between the low-
skill/machines aggregate and high-skill workers would secure a higher level for the labor share.

28We choose this value for κ̃ instead of 0.5, because in that case there is no horizontal innovation for
some time periods (that is (21) holds with a strict inequality). This is not an issue in principle but
simulating this case would require a different numerical approach.
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wt discourage it. Second, decreases in wages require two conditions to be met: First, it

must be technically possible for low-skill wages to decrease, which here can be done by

increases in Gt. Second, it must be privately optimal for agents to choose such a path for

Gt. Here this condition can be met by either of two assumptions: one, the externality

in automation (κ̃ > 0) and second the fact that innovation automation has to be paid

as an upfront cost instead of a fixed cost every period (and consequently low-skill wages

can drop for κ̃ = 0 — albeit for a small parameter set — see Appendix 7.2.3).
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Figure 4: Transitional Dynamics. Note: same as for Figure 2 but with an automation exter-
nality of κ̃ = 0.49.

Innovation parameters. Figure 5 shows the impact (relative to the baseline case)

of increasing productivity in the automation technology to η = 0.4 (from 0.2) and the

productivity in the horizontal innovation technology to γ = 0.32 (instead of 0.3). A

higher η initially has no impact during Phase 1, but it moves Phase 2 forward as investing

in automation technology is profitable for lower level of low-skill wages. Since automation

occurs sooner, the absolute level of low-skill wages drops relative to the baseline case

(Panel B), which leads to a fast increase in the skill premium. However, as a higher

η means that new firms automate faster, it encourages further horizontal innovation,

A faster rate of horizontal innovation implies that the skill premium keeps increasing
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relative to the baseline, but also that low-skill wages are eventually larger than in the

baseline case. Although not explicitly modeled here, this suggests that a policy which

would aim at helping low-skill workers by taxing automation might temporarily help low-

skill workers, but could have negative long-term consequences. A higher productivity for

horizontal innovation, γ, implies that GDP and low-skill wages initially grow faster than

in the baseline. Therefore Phase 2 starts sooner, which explains why the skill premium

jumps relative to the baseline case before increasing smoothly. The asymptotic results

can be derived formally (see Appendix 8.3.6), and we establish the following proposition.
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Figure 5: Deviations from baseline model for more productive horizontal innovation technol-
ogy (γ) and more productive automation technology (η).

Proposition 4. The asymptotic growth rates of GDP gGDP∞ and of low-skill wages gw∞

increase in the productivity of automation η and horizontal innovation γ. The asymptotic

share of automated products G∞ decreases in γ.

Growth and automation. For our simulation in Section 3.5, we chose parameters

for which the growth rates in Phases 1 and 3 were close, so that Phase 2 coincided with

an increase in GDP growth. This need not be the case, and growth in Phase 3 can be

either higher or lower than that of Phase 1. Figure 6 shows a case where Phase 3 growth

is substantially lower.29 As shown in Panel A, growth is a little higher at the beginning of

Phase 2 than in Phase 1 but then it continuously decreases in the second part of Phase 2

and is much lower in Phase 3. Intuitively this occurs because horizontal innovation drops

sufficiently during Phase 2 as new non-automated firms find it harder to compete with

already automated firms. The lack of an acceleration in GDP growth in recent decades

has often been advanced in opposition to the hypothesis that a technological revolution

29The parameters are identical to the baseline case except for: σ = 2.5, β = 0.55, η = 0.1, γ = 0.23
and N0 = 344.25, these parameters lower the growth rate of the economy particularly in the asymptotic
steady state because automation consumes more resources and is less effective as high-skill workers have
a larger factor share in production. N0 is higher so as to shorten Phase 1 in the graph.
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explains the recent increase in the skill-premium (Acemoglu, 2002a). Our model does

bear similarities with such a theory (although our technological revolution, automation,

can actually be quite progressive and slow); Figure 6 is therefore important in showing

that GDP growth need not accelerate. Intuitively, here, the increase in automation

research happens at the expense of horizontal innovation.

Conversely, making the automation technology more effective (say by reducing the

cost share of high-skill workers, β) could create the opposite pattern of a low initial

growth rate followed by a higher eventual growth rate. Such might correspond to the

transition through the industrial revolution: Before, the industrial revolution the econ-

omy is driven by relatively slow horizontal innovation and there is little incentive to

innovate. As wages gradually increase, the incentive to automate rises and the engine of

economic growth gradually switches from a relatively inefficient horizontal innovation to

a more rapid automation innovation with permanently higher growth as a consequence.
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Figure 6: Transitional dynamics with a low growth rate in Phase 2.

3.8 Discussion

Social planner’s problem. The social planner’s problem is studied in Appendix 8.5.

The optimal allocation is qualitatively similar to the equilibrium we described, so that

our results are not driven by the market structure we imposed. The social planner

correct for four market imperfections: a monopoly distortion, a positive externality in

horizontal innovation from the total number of products, a positive externality in the

automation technology from the total number of products (the term Nκ
t ) and a positive

externality in the automation technology from the share of automated products when
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κ̃ > 0 (which we referred so far as the “automation externality”). The optimal allocation

can be decentralized using lump-sum taxes and the appropriate subsidies to the use of

intermediates inputs, horizontal innovation and, if κ̃ > 0, automation.

Comparison with Acemoglu and Restrepo (2015). In ongoing work, Acemoglu

and Restrepo (2015) build a model with automation and the creation of new tasks.

Automation plays a similar role in both papers (although in their baseline version, there

is only one type of labor), but while in our model new tasks (new products) add up to

the stock of existing ones, in their model new tasks are more complex version of existing

ones. These new tasks are born non-automated (as in our paper) but with a higher

labor productivity (contrary to our paper) which allows them to replace their previous

automated vintage. With increasing labor productivity in successive vintages of tasks

and under the appropriate assumptions regarding the innovation technology, their model

features a stable steady state.30 The economy self-corrects: if a temporary shock leads

to more automation in the short-run, lower wages will reduce incentives to automate,

pulling the economy back to its steady state with balanced growth. Yet, their model

cannot explain the origin of such a shock and therefore cannot be used to account for

trends such as a secular rise in the skill premium. By contrast our model endogenously

explains why automation may become more prevalent as an economy develops.31

In the rest of the paper, we present two extensions of the baseline model: the first

one introduces an endogenous supply response in the skill distribution, and is used to

perform a quantitative exercise, the second one includes middle-skill workers and allows

the model to account for wage polarization. Besides, Appendix 7.3 presents an extension

where the production technology for machines and the consumption good differ, and

Appendix 7.4 presents an extension where machines are part of a capital stock.

30For this it is crucial that the higher productivity of more complex tasks applies only to labor and
not machines. In our model this would be as if in equation (2) there were a labor productivity coefficient
τ(i) in front of l(i) which increases exponentially with i.

31Although this is not the focus of our paper, our model also features elements of self-correction in
the presence of exogenous shocks. For instance, in the case with no automation externality (κ̃ = 0), a
positive exogenous shock on Gt will be followed by a period where automation is relatively less intense
(as the skill premium would have declined), so that eventually the asymptotic share of automated
products stays the same.
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4 Quantitative Exercise

In this section, we conduct a quantitative exercise to compare empirical trends for the

United States for the past 50 years with the predictions of our model using Bayesian

techniques. As argued in Goldin and Katz (2008), during this period the relative supply

of skilled workers increased dramatically so we let workers switch between skill-types in

response to changes in factor rewards.

4.1 An endogenous supply response in the skill distribution

Specifically, let there be a unit mass of heterogeneous individuals, indexed by j ∈ [0, 1]

each endowed with lH̄ units of low-skill labor and Γ (j) = H̄ (1+q)
q
j1/q units of high-skill

labor (the important assumption here is the existence of a fat tail of individuals with

low ability). The parameter q > 0 governs the shape of the ability distribution with

q →∞ implying equal distribution of skills and q <∞ implying a ranking of increasing

endowments of high-skill on [0, H̄(1 + q)/q]. Proposition 3 can be extended to this case

and in fact the steady state values (G∗, ĥA∗, gN∗, χ∗) are the same as in the model with

a fixed high-skill labor supply H̄. Proposition 2 also applies except that the asymptotic

growth rate of low-skill wages is higher (see Appendix 8.7):

gv∞ = gY∞ = ψgN∞ and gw∞ =
1 + q

1 + q + β(σ − 1)
gY∞. (26)

At all points in time there exists an indifferent worker (j̄t) where wt = (1 + q)/q(j̄t)
1/qvt,

with all j ≤ j̄t working as low-skill workers and all j > j̄t working as high-skill workers.

This introduces an endogenous supply response as the diverging wages for low- and

high-skill workers encourage shifts from low-skill to high-skill jobs, which then dampens

the relative decline in low-skill wages. Hence, besides securing themselves a higher

future wage growth, low-skill workers who switch to a high-skill occupation also benefit

the remaining low-skill workers. Since all changes in the stock of labor are driven by

demand-side effects, wages and employment move in the same direction.

4.2 Bayesian estimation

Because of data availability and to make our exercise easily comparable to the rest of the

literature, we focus on the last 50 years. In particular, this allows us to identify low-skill

workers with non-college educated workers and high-skill workers with college educated
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workers. We match the skill-premium and the ratio of skilled to non-skilled workers (both

calculated using the methodology of Acemoglu and Autor, 2011) as well as the growth

rate of real GDP/employment and the share of labor in total GDP (both taken from

the National Income and Products Accounts). We further associate the use of machines

with private equipment (real private non-residential equipment, “Table 2.2. Chain-type

Quantity Indexes” from NIPA). All time series start in 1963 when the skill-premium and

skill-ratio are first available and until 2007 to avoid the Great Recession. We match

the accumulated growth rate of private equipment by indexing both X and real private

equipment to 100 in 1963.32 We stress that our exercise is much more demanding than

previous attempts which feed in input time paths from the data, while we make them

endogenous. Both Katz and Murphy (1992) or Golden and Katz (2008) take as given

the time paths of labor inputs (endogenous here) and do not attempt to explain the skill

bias of technical change which here is constrained to result from economic incentives and

decisions. Similarly, Krusell et al. (2000) do not allow for technological change but take

the time paths of labor inputs and equipment as given.

Due to the relatively small sample size we use Bayesian techniques to estimate our

model, though little would change if we instead employed Maximum Likelihood proce-

dures (in fact since we choose a uniform prior the maximum likelihood point estimate

is equal to the mode of the Bayesian estimator). The model presented until now is not

inherently stochastic, and in order to bring it to the data, we add normally distributed

auto-correlated measurement errors. That is, we consider an economy where the un-

derlying structure is described deterministically by our model, but the econometrician

only observes variables with normally distributed auto-correlated measurement errors.

With a full parametrization of the model the parameters are not uniquely identified and

we restrict H̄ = 1 without loss of generality. Therefore, our deterministic model has 14

parameters including n0 and G0. Including two parameters (variance and correlation)

for each of the five measurement errors, this leaves us with 24 parameters.33 This gives

32The use of machines, X, has no natural units and we can therefore not match the level of X.
Alternatively, we could normalize X by GDP, but we do no think of equipment as the direct empirical
counter-part of X. First, equipment is a stock, whereas X is better thought of as a flow variable.
Second many aspects of automation might not be directly captured in equipment. Hence, equipment
is better thought of as a proxy for X that grows in proportion to X. Empirically, equipment/GDP is
about twice that of our predicted value of X/GDP .

33More specifically, for time period t = 1, ...T , let (Y t1 , ..., Y
t
M ) ∈ RM×T be a vector of M predicted

variables with time paths of Y tm = (Ym,s)
t
s=1 for m ∈ {1, ...,M} and Y t = (Y t1 , ..., Y

t
M ). Let the complete

set of parameters in the deterministic model be bP ∈ BP ⊂ RK . We can then write the predicted values
as Y Tm (bP ), for m = 1, ...M . We add normally distributed measurement errors with zero mean to get
the predicted values as Ŷ Tm = Y Tm + εTm, where εTm ∼ N(0,Σm) and Σm is the covariance matrix of the
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a joint distribution of the observed variables given parameters and, with a chosen prior,

standard Bayesian methods can be employed to find the posterior distribution (see Ap-

pendix 8.10 for a full description of the procedure as well as domain on the prior uniform

distribution). The domain of the prior is deliberately kept wide for parameters not easily

recovered from other studies such as the characteristics of the automation technology.

Table 2 shows the mode of the posterior distribution. The unconditional posterior

distribution of each parameter is shown in Figure 22 in Appendix 8.10, which demon-

strates that variance for the posterior unconditional distribution is generally small.

Table 2: The mode of the posterior distribution.

σ µ β l γ κ̃ θ η κ ρ ϕ q

Mode 4.17 0.66 0.76 0.91 0.20 0.29 2.09 0.27 0.72 0.058 8.60 0.82
n0 G0 ρ1 σ2

1 ρ2 σ2
2 ρ3 σ2

3 ρ4 σ2
4 ρ5 σ2

5

Mode 0.49 0.59 0.97 0.01 0.99 0.026 0.96 0.001 0.24 0.0004 0.97 0.051

Note: (σ2
i , ρi), i = 1, ..., 5 estimate refer to skill-premium, skill-ratio, labor share of GDP,

growth rate of GDP/employment, and Real Private Equipment, respectively.

Three parameter estimates are worth noting. First, the parameter of the automation

externality, κ̃, is centered around 0.29 implying a substantial automation externality, a

force for an accelerated Phase 2. Second, G0 is centered around 0.59 implying that Phase

2 was already well underway in the early 1960s. Finally, the estimate of β—the factor

share to machines/low-skill workers— of 0.76 implies substantial room for automation.

Figure 7 further shows the predicted path of the matched data series along with

their empirical counterparts at the mode of the posterior distribution. Panel A demon-

strates that the model matches the rise in the skill-premium from the late 1970s onwards

reasonably well, but misses the flat skill-premium in the period before. As argued in

Goldin and Katz (2008), the flat skill-premium in this period is best understood as the

consequence of a large increase in the stock of college-educated workers caused by other

factors than technological change (the Vietnam war and the increase in female college

enrollment). Correspondingly, our model, which only allows relative supply to respond

to relative factor rewards, fails to capture a substantial increase in the relative stock

measurement errors. The errors are independent across types, E[εT
′

m ε
T
n ] = 0, for m 6= n, but potentially

auto-correlated: the elements of Σm are such that the t, t′-element of Σm is given by σ2
mρ
|t−t′|
m , where

σ2
m > 0 and −1 < ρm < 1. Hence, σ2

m is the unconditional variance of a measurement error for variable
m and ρm is its auto-correlation. This gives a total of 2M stochastic parameters and we label the
combined set of these and bP as b ∈ B ⊂ R2M+K . This leads to a joint probability density for Ŷ T of
f(Ŷ T |b) = ΠM

m=1fm(Ŷ Tm |b) and with a uniform prior f(b|Ŷ T ) ∝ f(Ŷ T |b).
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Figure 7: Predicted and Empirical time paths

of skilled labor in the 1960s and early 1970s (Panel B). More importantly, the model

predicts a substantially higher drop in the labor share of GDP (14 versus 5 percentage

points empirically). The simple structure of the model forces any increase in the use

of machines to be reflected in a drop in the labor share. As discussed in Section 3.6,

a number of extensions would allow for more flexibility. The model matches the aver-

age growth rate of GDP/employment, but as a long-run growth model, is obviously not

capable of matching the short-run fluctuations around trend (Panel D).
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Panel E shows that the model captures the exponential growth in private equipment

very well—this is not an automatic consequence of matching the GDP/employment

growth rate as equipment has been growing at around 1 percentage point faster than

GDP since 1963.

Figure 8 plots the transitional dynamics from 1960 to 2060. Panel A shows that the

skill ratio and the skill premium are predicted to keep growing at nearly constant rates,

while the labor share is to stabilize at a slightly lower level than today. Panel B suggests

that the share of automated products today is not far from its steady state value.

5 Middle-Skill Workers and Wage Polarization

As mentioned in the introduction, a recent literature (e.g. Autor et. al., 2006 and

Autor and Dorn, 2013) argues that since the 1990s, wage polarization has taken place:

inequality has kept rising in the top half of the distribution, but it has narrowed for the

lower half. They conjecture that these “middle-skill”-workers are performing cognitive

routine tasks which are the most easily automated. Our model suggests a related,

but distinct explanation: automating the tasks performed by middle-skill workers is

not easier, but more difficult and therefore happened later (or alternatively, the easily

automatable low-skill tasks have already been automated). Hence, before 1990 and in

fact for most of the 20th century low-skill workers were in the process of being replaced

by machines as semi-automated factories, mechanical farming, household appliances etc

were increasingly used, whereas since the 1990s, computers are replacing middle-skill

workers. In fact, Figure 3 in Autor and Dorn (2013) shows that low-skill workers left

non-service occupations from the 70’s, which is consistent with the view that their tasks

in non-service occupations were automated before the middle-skill workers’ tasks. As

such our model can explain how a phase of wage polarization can follow one of a uniform

increase in wage inequality.

To make this precise, we introduce a mass M of middle-skill workers into the model.

These workers are sequentially ranked such that high-skill workers can perform all tasks,

middle-skill workers can perform middle-skill and low-skill tasks, and low-skill workers

can perform only low-skill tasks. All newly introduced intermediate products continue

to be non-automated, but there is an exogenous probability δ that they require low-skill

and high-skill tasks as described before, and a probability 1− δ that they require both

middle-skill and high-skill tasks in an analogous manner. We refer to the former type
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of products as “low-skill products” and the latter type as “middle-skill products”. This

gives the following production functions (for i ∈ [0, Nt]):

yL(i) =
[
l(i)

ε−1
ε + α(i) (ϕ̃Lx(i))

ε−1
ε

] εβ
ε−1

h(i)1−β,

yM(i) =
[
m(i)

ε−1
ε + α(i) (ϕ̃Mx(i))

ε−1
ε

] εβ
ε−1

h(i)1−β,

where yL(i) and yM(i) are the production of low-skill and middle-skill products, respec-

tively, and m(i) is the use of middle-skill workers by a firm of the latter type. ϕ̃L and

ϕ̃M are the productivity of machines that replace low-skill and middle-skill workers, re-

spectively. The mass of low-skill products is δN , the mass of middle-skill products is

(1 − δ)N (alternatively all products could be produced by all factors; this would make

the analysis substantially more complicated without altering the underlying argument).

The final good is still produced competitively by a CES aggregator of all intermediate

inputs, and all machines are produced one-for-one with the final good keeping a constant

price of 1. The shares of automated products, GL and GM will in general differ.

Both types of producers have access to an automation technology as before, but we al-

low the productivity to differ, such that automation happens with intensity ηLG
κ̃
L(NhAL)κ

for low-skill products and ηMG
κ̃
M(NhAM)κ for middle-skill products. The equilibrium is

defined analogously to section 3.3 and a proposition analogous to Proposition 3 exists.

We choose δ = 1/2 and set L = M = 1/3 and keep parameters as before except

that we choose ϕ̃M = 0.15 and ϕ̃L = 0.3, to focus on a situation where machines are

less productive in middle-skill products than in low-skill ones. The situation would be

similar had we chosen ϕ̃M = ϕ̃L, but ηM < ηL such that the automation technology for

middle-skill firms is less productive. Figure 9 describes the equilibrium in the presence

of a large externality in the automation technology (κ̃ = 0.5).

The overall picture is similar to that of Figure 4, but with distinct paths for low-skill

and middle-skill wages denoted w and u. One can now distinguish 4 phases. Phase 1

is analogous to Phase 1 in the previous case, and all wages grow at roughly the same

rate. From around year 200, low-skill wages become sufficiently high, that low-skill

product firms start investing in automation and GL starts growing. Yet, since machines

are less productive in middle-skill workers’ tasks, GM stays low until around year 300.

During this second phase, inequality increases uniformly, high-skill wages grow faster

than middle-skill wages which again grow faster than low-skill wages. Middle-skill wages

do not grow as fast as GDP because automation in low-skill products increases their
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market share at the expense of the middle-skill products. From around year 300, the

economy enters a third phase, where automation in middle-skill products is now intense.

As a result, the growth rate of middle-skill wages drops further, such that low-skill wages

actually grow faster than middle-skill wages (all along vt ≥ ut ≥ wt, so no group has

an incentive to be employed below its skill level).34 However, depending on parameters,

the polarization phase need not be as salient as here (for instance, there is barely any

polarization when there is no externality in automation, κ̃ = 0, but the other parameters

are kept identical, see Appendix 7.2.5 for this case).
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Figure 9: Transitional dynamics with middle-skill workers in the presence of an automation
externality (κ̃ = 0.5).

Finally, in a fourth Phase (from around year 450), GL and GM are close to their

steady state levels and the economy approaches the asymptotic steady state, with low-

skill and middle-skill wages growing positively but at a rate lower than that of the

economy. Proposition 2 can be extended to this case. High-skill wages and output all

grow at the same rate which depends on the growth rate of the number of products,

while low-skill and middle-skill wages grow at a lower rate such that:

gv∞ = gY∞ = ψgN∞ and gw∞ = gu∞ = gY∞/ (1 + β(σ − 1)) .

Our model shows how automation may affect more middle-skill workers than low-skill

workers, because the economic benefits of automating the former are greater despite a

worse automation technology. Yet, some papers argue that the technological opportuni-

ties for automation themselves are today lower for low-skill than for middle-skill workers.

34Empirically, the polarization looks more like a J curve than a U curve as the difference in growth
rates of wages between the bottom and the middle of the income distribution is modest. Here as well,
high-skill wages grow faster than both low-skill and middle-skill wages from the beginning of Phase 2.
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This is easy to reconcile with our model: assume that for both types of products, a com-

mon fixed share can never be automated (for instance because the associated tasks are

not routine enough). After the start of Phase 2, the share of low-skill workers hired in

products that can never be automated will be larger than the corresponding share for

middle-skill workers (since a higher share of low-skill products will already have been

automated), so that it will be on average easier to automate a middle-skill product than

a low-skill one. That is, middle-skill workers end up performing on average more routine

tasks that are currently being automated (as emphasized by the literature), but this is

only the case because the routine tasks that were performed by low-skill workers and

that could be automated have already been largely automated.

Naturally, the phase of intense automation of middle-skill products may occur sooner

than that of low-skill products: for instance if the supply of middle-skill workers is low

enough to generate a large middle-skill over low-skill wage ratio. In fact, Katz and

Margo (2014) suggest that the recent phase of polarization has a counterpart in the

19th century de-skilling of manufacturing as the tasks of (middle-skilled) artisans got

automated, as their wages were much higher than that of unskilled workers (maybe

because urbanization increased the supply of low-skill workers).

Automating some high-skill tasks. Alternatively, one may assume that middle-

skill and high-skill workers are identical and therefore use this framework to analyze the

case where some high-skill production tasks are automatable—in particular, if β is close

to (but smaller than) 1, such a model would capture the situation where all production

tasks except for headquarter services are automatable. Then, automation will affect in

turn both low-skill and high-skill products, with the order depending on the relative

wage of both and the relative effectiveness of the two automation technologies. One

crucial difference with the middle-skill case is that as some high-skill workers’ tasks

remain non-automatable (in production and in research), their wage in the long-run still

grows at the same rate as GDP so that the skill premium keeps rising.

6 Conclusion

In this paper, we introduced automation in a horizontal innovation growth model. We

showed that in such a framework, the economy will undertake a structural break. After

an initial phase with stable income inequality and stable factor shares, automation picks

up. During this second phase, the skill premium increases, low-skill wages stagnate and
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possibly decline, the labor share drops—all consistent with the US experience in the

past 50 years—and growth starts relying increasingly on automation. In a third phase,

the share of automated products stabilizes, but the economy still features a constant

shift of low-skill employment from recently automated firms to as of yet non-automated

firms. With a constant and finite aggregate elasticity of substitution between low-skill

workers and machines, low-skill wages grow in the long-run. Wage polarization can be

accounted for once the model is extended to include middle-skill workers. In addition

we saw that an intense phase of automation need not be associated with an increase in

economic growth and that a more productive automation technology increases low-skill

wages in the long-run.

The model shows that there is a long-run tendency for technical progress to displace

substitutable labor (this is a point made by Ray, 2014, in a critique of Piketty, 2014), but

this only occurs if the wages of the workers which can be substituted for are large relative

to the price of machines. This in turn can only happen under three scenarios: either

automation must itself increase the wages of these workers (the scale effect dominates the

substitution effect), or there is another source of technological progress (here, horizontal

innovation), or technological progress allows a reduction in the price of machines relative

to the consumption good (here, only present in Appendix 8.8). Importantly, when

machines are produced with a technology similar to the consumption good, automation

can only reduce wages temporarily: a prolonged drop in wages would end the incentives

to automate in the first place.

Fundamentally, the economy in our model undertakes an endogenous structural

change when low-skill wages become sufficiently high. This distinguishes our paper

from most of the literature, which seeks to explain changes in the distribution of income

inequality through exogenous changes: an exogenous increase in the stock of equipment

as per Krusell et al. (2000), a change in the relative supply of skills, as per Acemoglu

(1998), or the arrival of a general purpose technology as in the associated literature.

This makes our paper closer in spirit to the work of Buera and Kaboski (2012), who

argue that the increase in income inequality is linked to the increase in the demand for

high-skill intensive services, which results from non-homotheticity in consumption.

The present paper is only a first step towards a better understanding of the links

between automation, growth and income inequality. In future research, we will extend

it to consider policy implications. The simple sensitivity analysis on the automation

technology (section 3.7) suggests that capital taxation will have non-trivial implications
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in this context. Automation and technological development are also intrinsically linked

to the international economy. Our framework could be used to study the recent phe-

nomenon of “reshoring”, where US companies that had offshored their low-skill intensive

activities to China, now start repatriating their production to the US after having fur-

ther automated their production process. Finally, our framework could also be used

to study the impact of automation along the business cycle: Jaimovich and Siu (2012)

argue that the destruction of the “routine” jobs happens during recessions, which raises

the question of whether automation is responsible for the recent “jobless recovery”.
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Krusell, P., Ohanian, L., Ŕıos-Rull, J.-V., and Violante, G. (2000). Capital-Skill Com-

plementarity and Inequality: A Macroeconomic Analysis. Econometrica, 68(5):1029–

1053.

Lewis, E. (2011). Immigration, skill mix and capital skill complementarity. Quarterly

Journal of Economics, 126 (2):1029–1069.

Lloyd-Ellis, H. (1999). Endogenous Technological Change and Wage Inequality. Ameri-

can Economic Review, 89(1):47–77.

Nelson, R. and Phelps, E. (1966). Investment in Humans, Technological Diffusion, and

Economic Growth. American Economic Review, 56(1/2):69–75.

Nordhaus, W. (2007). Two Centuries of Productivity Growth in Computing. Journal of

Economic History, 67(1):128–159.

Peretto, P. and Seater, J. (2013). Factor-Eliminating Technical Change. Journal of

Monetary Economics, 60(4):459–473.

Piketty, T. (2014). Capital in the Twenty-First Century. Harvard University Press.

Piketty, T. and Zucman, G. (2014). Capital is Back: Wealth-Income Ratios in Rich

Countries 1700-2010. Quarterly Journal of Economics, 129(3):1255–1310.

47



Ray, D. (2014). Nit-Piketty: A comment on Thomas Piketty’s Capital in the Twenty

First Century. Working paper, New York University.

Romer, P. (1990). Endogenous Technological Change. Journal of Political Economy,

98(5):71–S102.

Sachs, J. and Kotlikoff, L. (2012). Smart machines and long-term misery. NBER wp

18629.

Spitz-Oener, A. (2006). Technical Change, Job Tasks, and Rising Educational Demands:

Looking outside the Wage Structure. Journal of Labor Economics, 24(2):235–270.

Trimborn, T., Koch, K.-J., and Steger, T. (2008). Multi-Dimensional Transitional Dy-

namics: A Simple Numerical Procedure. Macroeconomic Dynamics, 12(3):301–319.

Zeira, J. (1998). Workers, Machines, and Economic Growth. Quarterly Journal of

Economics, 113(4):1091–1117.

48



7 Main Appendix (For Online Publication)

7.1 Formal description of the normalized system of differential

equations

Here, we derive the system of differential equations satisfied by the normalized variables

(nt, Gt, ht, χt). The definition of nt immediately gives:

ṅt = − β

(1− β)(1 + β(σ − 1))
gNt nt. (27)

Rewriting (20) with ĥAt gives:

Ġt = ηGκ̃
t

(
ĥAt

)κ
(1−Gt)−Gtg

N
t . (28)

Then, plug (21) (with equality) and (19) into (18) and use the definition of ĥAt to get

rtvt = γNtπ
N
t + γ

1− κ
κ

vtĥ
A
t +

·
vt − gNt vt. (29)

Next, take the difference between (17) and (18) to obtain

rt
(
V A
t − V N

t

)
=

(
1− ωt

(
ϕ+ ω

1
µ

t

)−µ)
πAt +vth

A
t −ηGκ̃

tN
κ
t

(
hAt
)κ (

V A
t − V N

t

)
+

(
·
V
A

t −
·
V
N

t

)
,

using (19) and the definition of ĥAt allows to rewrite this equation as:

rtvt =
ηκGκ̃

tNt

(
ĥAt

)κ−1((
1− ωt

(
ϕ+ ω

1
µ

t

)−µ)
πAt − 1−κ

κ
vt
Nt
ĥAt

)

+
·
vt − vtκ̃

·
Gt
Gt
− vtgNt + vt (1− κ)

·
ĥ

A

t

ĥAt

.

Using (28) and (29) gives:

γNtωt

(
ϕ+ ω

1
µ

t

)−µ
πAt +γ

1− κ
κ

vtĥ
A
t =

ηκGκ̃
tNt

(
ĥAt

)κ−1
×
((

1− ωt
(
ϕ+ ω

1
µ

t

)µ)
πAt − 1−κ

κ
vt
Nt
ĥAt

)
−vtκ̃

(
ηGκ̃−1

(
ĥAt

)κ
(1−Gt)− gNt

)
+ vt (1− κ)

·
ĥ

A

t

ĥAt

.
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Rearranging terms, using the definition of v̂t and defining normalized profits π̂At ≡
N1−ψ
t πAt allows us to rewrite this equation as

˙̂
hAt =

γ
ĥAt
1−κ

(
ωt

(
ϕ+ ω

1
µ

t

)−µ
π̂At
v̂t

+ 1−κ
κ
ĥAt

)

−ηκGκ̃t (ĥAt )
κ

1−κ

(
1− ωt

(
ϕ+ ω

1
µ

t

)−µ)
π̂At
v̂t
,

(30)

+ ηGκ̃
t

(
ĥAt

)κ+1

+
κ̃

1− κ

(
ηGκ̃−1

t

(
ĥAt

)κ+1

(1−Gt)− gNt ĥAt
)

Rewriting (22) using the definition of ĉt, leads to

rt = ρ+ θ

·
ĉt
ĉt

+ θψgNt .

Combining this equation with (29), and using the definitions of χt, v̂t and π̂At leads to

χ̇t = χt

(
γωt

(
ϕ+ ω

1
µ

t

)−µ
π̂At
v̂t

+ γ
1− κ
κ

ĥAt − ρ− (θψ − ψ + 1) gNt

)
. (31)

Together equations (27), (28), (30) and (31) form a system of differential equations which

depends on ωt, π̂
A
t /v̂t and gNt . To determine π̂At /v̂t, recall that (as proved in the text),

profits are given by

π (w, v, α (i)) =
(σ − 1)σ−1

σσ
c (w, v, α (i))1−σ Y.

Using (4) and the definition of ωt, one gets:

πAt =
(σ − 1)σ−1

σσ

(
ββ (1− β)1−β

)σ−1(
ϕ+ ω

1
µ

t

)µ
v−ψ

−1

t Yt. (32)

Rearranging terms in (11) gives

v̂t =

(
σ − 1

σ

) 1
1−β

β
β

1−β (1− β)

(
G

(
ϕ+ ω

1
µ

t

)µ
+ (1−G)ωt

)ψ
. (33)

Using (8), one further gets:

Yt = σψv̂tH
P
t N

ψ
t . (34)
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Therefore, rewriting (32) with (33) and (34), one gets:

π̂At
v̂t

=

ψ

(
ϕ+ ω

1
µ

t

)µ
HP
t

G

(
ϕ+ ω

1
µ

t

)µ
+ (1−G)ωt

, (35)

which still requires finding HP
t . Using (4), (5), (6) and aggregating over all automated

firms, one gets the following expression for the total demand of machines:

Xt = βGtNtϕ

(
σ − 1

σ

)σ (
ββ (1− β)(1−β)

)σ−1 (
ω

1
µ + ϕ

)µ−1
v−ψ

−1

t Yt.

Using (33), this expression can be rewritten as:

Xt = βGt
σ − 1

σ

ϕ

(
ω

1
µ

t + ϕ

)µ−1
G

(
ϕ+ ω

1
µ

t

)µ
+ (1−G)ωt

Yt. (36)

This together with (34) implies that ĉt obeys

ĉt =

1− βσ − 1

σ

Gtϕ
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ω

1
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t + ϕ
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ϕ+ ω
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σψv̂tH
P
t .

Combining this equation with the definition of χt and (33), leads to

HP
t =

(
σ−1
σ

) 1
1−β ( 1

θ
−β)

×
(1−β)

1
θ β

β
1−β ( 1
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µ
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. (37)

Using the definition of HD
t and ĥAt , one can rewrite (16) for high-skill workers as:

gNt = γ
(
H −HP

t − (1−Gt) ĥ
A
t

)
. (38)
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Together (35), (37) and (38) determine π̂At /v̂t and gNt as a function of the original

variables nt, Gt, ĥ
A
t , χt and of ωt, which still needs to be determined. To do so, combine

(10) and (11), and use the definitions of nt and ωt to obtain an implicit definition of ωt:

ωt = nt


(
σ−1
σ
β
) 1

1−β HP
t

L

(
Gt

(
ϕ+ ω

1
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1
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t + ϕ

)µ
+ (1−Gt)ωt

)ψ−1


β(1−σ)
1+β(σ−1)

. (39)

Therefore eventually the system of differential equations satisfied by nt, Gt, ĥ
A
t , χt is

defined by (27), (28), (30) and (31), with π̂At /v̂t, H
P
t , gNt and ωt given by (35), (37), (38)

and (39).

7.2 Complements on simulation

7.2.1 Wealth and consumption
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Figure 10: Consumption and wealth for baseline parameters. Panel A shows yearly growth
rates for consumption, Panel B log consumption of high-skill workers and low-skill
workers (per capita), Panel C the share of assets held by low-skill workers and
Panel D the wealth to GDP ratio.
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Figure 10 shows the evolution of wealth and consumption for the baseline parameters

both in the aggregate and for each skill group. Panel A shows that consumption growth

follows a pattern very similar to that of GDP growth (displayed in Figure 2.A), which

is in line with a stable ratio of total R&D expenses over GDP across the three phases

(Figure 2.D). In the absence of any financial constraints, low-skill and high-skill con-

sumption must grow at the same rate, with high-skill workers consuming more since

they have a higher income (Panel B). Since low-skill labor income becomes a negligible

share of GDP , while the high-skill labor share increases, a constant consumption ratio

can only be achieved if high-skill workers borrow from low-skill workers in the long-run.

This is illustrated in Panel C, which shows the share of assets held by low-skill workers,

under the assumption that initially assets holdings per capita are identical for low-skill

and high-skill workers (so that low-skill workers hold 2/3 of the assets in year 0, since

with these parameters H/L = 1/2). Initially, low-skill and high-skill income grow at

a constant rate so that the share of assets held by low-skill workers is stable; but, in

anticipation of a lower growth rate for low-skill wages than for high-skill wages, low-skill

workers start saving more and more, and the share of assets they hold increases. This

share eventually reaches more than 100%, meaning that the high-skill workers net worth

becomes negative. As claimed in the text, Panel D shows that since profits become a

higher share of GDP (an effect which dominates a temporary increase in the interest

rate in Phase 2), the wealth to GDP ratio increases in phase 2, such that its steady

state value is nearly 3 times higher than its original value.

The accumulation of asset holdings by low-skill workers predicted by the model seems

counter-factual, it results from our assumptions of infinitely lived agents with identical

discount rates and no financial constraints. Reversing these unrealistic assumptions

would change the evolution of the consumption side of the economy but should not alter

the main results which are about the production side.

7.2.2 A delayed decline in the labor share

Empirically, the drop in the labor share is a more recent phenomenon than the increase

in the skill premium. In Figure 11, we choose parameters such that this happens.

The automation technology is more productive η = 0.4; the automation technology

is less concave κ = 0.9 (so that a higher incentive to automate is required to get a

significant share of high-skill workers in automation innovation); and all other parameters

are identical to the baseline case. In this case, more high-skill workers get allocated to
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automation during Phase 2: as shown in Panel C automation expenditures represent a

much larger share of GDP during Phase 2 than they do in the baseline case. The mass of

high-skill workers engaged in production declines during Phase 2. This results first in a

sharper increase in the skill premium (the skill premium condition moves further to the

left). In addition, the drop in the labor share is delayed since innovation spending are

part of GDP while capital income is a constant share of output Y . The growth rates of

low-skill and high-skill wages start diverging significantly from around year 135 and by

year 150, the high-skill wage growth rate is 2pp higher than the low-skill wage growth

rate, while the total labor share only start declining from around year 150 and in fact

increases slightly before.
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Figure 11: Transitional dynamics with a delayed drop in capital share

7.2.3 Negative growth for low-skill wages without the automation external-

ity

Figure 12 shows the transitional dynamics for a case without the automation external-

ity but where low-skill wages slightly decline for a short time period (our numerical

investigation suggests that larger declines in the absence of an automation externality

need to be associated with periods where horizontal innovation completely ceases). The

associated parameters are given in Table 3.
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Table 3: Baseline Parameter Specification

σ ε β H L θ η κ ϕ̃ ρ κ̃ γ

3 73 0.72 0.35 0.65 2 0.2 0.97 0.25 0.022 0 0.28

The crucial parameter change is an increase in κ, such that the automation technology

is less concave. This delays Phase 2, which is then more intense and leads to a sharp

increase in high-skill wages, reducing considerably horizontal innovation (note that in the

period where low-skill wages decline the share of high-skill workers hired in production

increases slightly, which has a positive contribution on low-skill wages’ growth rates).
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Figure 12: Transitional dynamics with temporarily declining low-skill wages without an au-
tomation externality.

7.2.4 Systematic comparative statics

In this section we carry a systematic comparative exercise with respect to the parameters

of the model, namely σ, ε, β, ρ, θ, ϕ̃, η, κ, κ̃,γ,H/L (we keep H + L = 1), N0, G0. We

show the evolution of the growth rate of high-skill and low-skill wages and the share of

automated products for the baseline parameters and two other values for one parameter,

keeping all the other ones fixed. In all cases, the broad structure of the transitional

dynamics in three phases is maintained.

Figures 13.A,B,C show that a higher elasticity of substitution across products σ

reduces the growth rate of the economy (the elasticity of output with respect to the

number of products is lower), which leads to a delayed transition. The asymptotic

growth rate of low-skill wages is a smaller fraction of that of high-skill wages (following

Proposition 2), since automated products are a better substitute for non-automated

ones. Figures 13.D,E,F show that the elasticity of substitution between machines and

low-skill workers in automated firms, ε, plays a limited role (as long as the assumption
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µ < 1 is kept), a higher elasticity reduces the growth of low-skill wages and increases

that of high-skill wages during Phase 2. Figures 13.G,H,I show that a lower factor share

in production for high-skill workers (a higherβ) increases the growth rate of the economy

(high-skill wages are lower which favors innovation). As a result Phase 2 occurs sooner.

In addition, following Proposition 2, the asymptotic growth rate of low-skill wages is a

lower fraction of that of high-skill wages (the cost advantage of automated firms being

larger).
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Figure 13: Comparative statics with respect to the elasticity of substitution across
products (σ), the elasticity of substitution between machines and low-skill
workers in automated firms (ε) and the factor share of low-skill workers
and machines in production (β).

Figures 14.A,B,C show that a higher discount rate ρ reduces the growth rate of the

economy, which slightly postpones Phase 2. At the time of Phase 2, the growth rate of

low-skill wages is not affected much by the discount rate: on one hand, since low-skill

wages are lower Phase 2 is postponed, which favor low-skill wages’ growth, but on the

other hand, horizontal innovation is lower which negatively affects low-skill wages. A

lower elasticity of intertemporal substitution (a higher θ) has a similar effect on the

economy’s growth rate (Figures 14.D,E,F). Figures 14.G,H,I show that the productivity

of machines (ϕ̃) only affects the timing of Phase 2 (Phase 2 occurs sooner when machines
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are more productive).

The comparative statics with respect to the automation technology shown in Figures

15.A,B,C follow the pattern described in the text. A less concave automation technology

(higherκ) delays Phase 2 and reduces the economy’s growth rate.
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Figure 14: Comparative statics with respect to the discount rate (ρ), the inverse elasticity
of intertemporal substitution (θ) and the productivity of machines (ϕ̃)

It particularly affects the growth rate of low-skill wages in Phase 2 (as the increase in

automation expenses comes more at the expense of horizontal innovation)—see Figures

15.D,E,F. The role of the automation externality has already been discussed in the text,

Figures 15.G,H,I reveal that for a mid-level of the automation externality (κ̃ = 0.25),

the economy looks closer to the economy without the automation externality than to

the economy with a large automation externality.

Figures 16.A,B,C show the impact of the horizontal innovation parameter γ, which

was already discussed in the text. Figures 16.D,E,F show that a higher ratio H/L nat-

urally leads to a higher growth rate, which implies that Phase 2 occurs sooner. Figures

17.A,B,C show that a higher initial number of products simply advance the entire evo-

lution of the economy. Figures 17.D,E,F show that a higher initial value for the share of

automated products barely affects the evolution of the economy, the share of automated

products initially drops quickly as there is little automation to start with.
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Figure 15: Comparative statics with respect to the automation productivity (η), the concav-
ity of the automation technology (κ) and the automation externality (κ̃)
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Figure 16: Comparative statics with respect to the horizontal innovation productivity (η)
and the skill ration (H/L)
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Figure 17: Comparative statics with respect to the initial number of products N0 and the
initial share of automated products G0.

7.2.5 Case with middle-skill workers but not externality in the automation

technology

Figure 18 shows the transitional dynamics in the presence of middle-skill workers for the

same parameters as in Figure 9 except that there is no externality in automation (κ̃ = 0).

The two figures are similar. Automation occurs sooner both for low-skill and middle-skill

products (as the automation technology is better), and therefore more gradually. As a

result, the growth rates of low-skill wages in Phase 2 and middle-skill wages in Phase

3 do not drop as much, such that Phase 3 barely features polarization (gut gets very

slightly below gwt but the difference between the two growth rates is very small).
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Figure 18: Transitional dynamics with middle-skill workers without an automation external-
ity (κ̃ = 0).
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7.3 Alternative production technology for machines

The assumption of identical production technologies for consumption and machines im-

poses a constant real price of machines once they are introduced. As shown in Nordhaus

(2007) the price of computing power has dropped dramatically over the past 50 years

and the declining real price of computers/capital is central to the theories of Autor and

Dorn (2013) and Karabarbounis and Neiman (2013). As explained in section 2, it is

possible to interpret automation as a decline of the price of a specific equipment from

infinity (the machine does not exist) to 1. Yet, our assumption that once a machine is

invented, its price is constant, is crucial for deriving the general conditions under which

the real wages of low-skill workers must increase asymptotically in Proposition 2. We

generalize this in what follows.

Let there be two final good sectors, both perfectly competitive employing CES pro-

duction technology with identical elasticity of substitution, σ. The output of sector 1,

Y , is used for consumption. The output of sector 2, X, is used for machines. The two

final good sectors use distinct versions of the same set of intermediate inputs, where we

denote the use of intermediate inputs as y1(i) and y2(i), respectively, with i ∈ [0, N ].

The two versions of intermediate input i are produced by the same intermediate input

supplier using production technologies that differ only in the weight on high-skill labor:

yk(i) =
[
lk(i)

ε−1
ε + α(i)(ϕ̃xk(i))

ε−1
ε

] εβk
ε−1

hk(i)
1−βk ,

where a subscript, k = 1, 2, refers to the sector where the input is used. Importantly, we

assume β2 ≥ β1, such that the production of machines relies more heavily on machines

as inputs than the production of the consumption good. Continuing to normalize the

price of final good Y to 1, such that the real price of machines is pxt , and allowing

for the natural extensions of market clearing conditions, we can derive the following

generalization of Proposition 2 (where ψk = (σ − 1)−1(1− βk)−1).

Proposition 5. Consider three processes [Nt]
∞
t=0, [Gt]

∞
t=0 and [HP

t ]∞t=0 where (Nt, Gt, H
P
t ) ∈

(0,∞)× [0, 1]× (0, H] for all t. Assume that Gt, g
N
t and HP

t all admit strictly positive

limits, then:

gp
x

∞ = −ψ2 (β2 − β1) gN∞

gGDP∞ =

[
ψ1 + ψ1

β1 (β2 − β1)
1− β2

]
gN∞, (40)
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and if G∞ < 1 then the asymptotic growth rate of wt is35

gw∞ =
1

1 + β1(σ − 1)

1− β2 + β1 (β2 − β1)
(
1− ψ−11

)
1− β2 + β1 (β2 − β1)

gGDP∞ . (41)

Proof. See Appendix 8.6.

Proposition 5 naturally reduces to Proposition 2 for the special case of β2 = β1.

When β2 > β1, the productivity of machine production increases faster than that of the

production of Y , implying a gradual decline in the real price of machines. For given gN∞,

a faster growth in the supply of machines increases the (positive) growth in the relative

price of low-skill workers compared with machines, w/px, but simultaneously, it reduces

the real price of machines, px. The combination of these two effects always implies

that low-skill workers capture a lower fraction of the growth in Y . Low-skill wages

are more likely to fall asymptotically for higher values of the elasticity of substitution

between products, σ, as this implies a more rapid substitution away from non-automated

products.

7.4 Machines as a capital stock

We assumed so far that machines were an intermediate input that depreciates immedi-

ately. In practice, “machines” often take the form of equipment capital, software, etc.

which are durable (although their depreciation rate is typically higher than that of struc-

tures and housing). We now assume that intermediate inputs producers rent machines

from a capital stock. Capital increases with investment and depreciates at a fixed rate,

and the investment good is produced with the same technology as the consumption good.

Appendix 8.9 derives the equilibrium, here we simply report the results.

Propositions 3 and 2 still holds—with the same sufficient condition (23)—but the

system of differential equations must now involve three control variables and three state

variables. Moreover, the asymptotic steady state values for the growth rate of the number

of products
(
gN
)∗

—and therefore the growth rate of the economy, and the growth rate

of low-skill wages—the share of automated products G∗, and the normalized mass of

high-skill workers in automation ĥA∗ are the same as in the baseline case.

35If Gt tends towards 1 sufficiently fast such that limt→∞(1−Gt)N
ψ2(1−µ1)

ε−1
ε

t is finite, then gw∞ =
1
ε

(
1− (β2−β1)(ε−1)

(1−β2+β1)

)
gGDP∞ ≥ gp

x

∞ whether ε is finite or not. It is clear that there always exists an ε

sufficiently high for the real wage of low-skill workers to decline asymptotically.
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Figure 19 shows the transitional dynamics when machines are a capital stock. We

choose G0 = 0.02, a depreciation rate ∆ = 0.1, an initial capital stock K0 = 5.25× 10−4

(chosen such that the initial interest rate is the same as in a world with no automation),

all the other parameters are identical to the baseline case. The transitional dynamics

look similar to the baseline case, but the central variable which determines whether

automation is intensive or not, is now the ratio of low-skill wages to the gross rental rate

of capital (therefore Phase 2 occurs sooner). In addition, as shown in Panel D, since the

expenditures on machines now correspond to capital income, the decline in the labor

share tends to be more pronounced in this case, and high-skill workers’ income need not

become a larger share of GDP.
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Figure 19: Transitional dynamics when machines are a capital stock.
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8 Secondary Appendix (For Online Publication)

8.1 Relationship between wages and N and G

8.1.1 Imperfect substitute case: ε <∞.

We first focus on the imperfect substitute case. Rewrite (10) as

v

w
=

1− β
β

L

HP

G (1 + ϕwε−1)
µ

+ (1−G)

G (1 + ϕwε−1)µ−1 + (1−G)
. (42)

Since 0 < µ < 1, (10) establishes v as a function of G,HP and w (but not N) such that

v is increasing in w, v/w > (1− β) /β × L/HP for G > 0, and v is increasing in G and

decreasing in HP . The productivity condition similarly establishes v as a function of

N,G and w (but not HP ), v is decreasing in w and increasing in N and G. It is then

immediate that v, w are jointly uniquely determined by (10) and (11) for given N,G and

HP , both increase in N , and v increases in G (in addition, since (11) traces an iso-cost

curve in the input prices plan, the productivity condition curve is convex). We now

analyze how w changes with G (for given N and HP ).

To do so, we combine both equations to get:

w =
σ−1
σ
β
(
HP

L

)(1−β)
N

1
σ−1

(
G (1 + ϕwε−1)

µ−1
+ (1−G)

)1−β
×
(
G (1 + ϕwε−1)

µ
+ (1−G)

) 1
σ−1
−(1−β)

, (43)

(which is the same as equation (39) with different notations). For given N and HP , (43)

defines w as an implicit function of G, W (G). Further:

W (0) =
σ − 1

σ
β

(
HP

L

)(1−β)

N
1

σ−1 so that W (1) = W (0)
(
1 + ϕwε−1

) µ
σ−1
−(1−β)

,

therefore W (1) > W (0) if and only if µ
σ−1 − (1− β) (that is β

1−β > ε− 1) as claimed in

the text.

Define ψ ≡ 1/ ((1− β) [σ − 1]) and differentiate (43) to obtain

W ′ (G) =
(1− β)wW num

W den
,
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with

W den (w,G) =
1− β G(1+ϕwε−1)

µ

G(1+ϕwε−1)µ+(1−G)
ϕwε−1

1+ϕwε−1 + (1− β) (ε− 1)

×
(

(1−µ)G(1+ϕwε−1)
µ−1

G(1+ϕwε−1)µ−1+(1−G)
+

µG(1+ϕwε−1)
µ

G(1+ϕwε−1)µ+(1−G)

)
ϕwε−1

1+ϕwε−1

,

and

W num (w,G) =
(1 + ϕwε−1)

µ−1 − 1

G (1 + ϕwε−1)µ−1 + (1−G)
+ (ψ − 1)

(
(1 + ϕwε−1)

µ − 1
)

G (1 + ϕwε−1)µ + (1−G)
.

W den is always strictly positive, therefore W ′ has the sign of W num. W num < 0 if ψ ≤ 1

since (1 + ϕwε−1)
µ−1

< 1 and (1 + ϕwε−1)
µ
> 1, therefore for (1− β) (σ − 1) ≥ 1, w is

decreasing in G.

Case where 1 < ψ ≤ µ−1. Assume that this is the case. Note that

W num (w, 1) =
(1 + ϕwε−1)

µ−1 − 1

(1 + ϕwε−1)µ−1
+ (ψ − 1)

(
(1 + ϕwε−1)

µ − 1
)

(1 + ϕwε−1)µ
,

so that

W num (w, 1) ∼
w→0

(ψµ− 1)ϕwε−1 if ψ 6= µ−1, (44)

W num (w, 1) ∼
w→0
−(1− µ)

2

(
ϕwε−1

)2
if ψ = µ−1,

and we have W num (w, 1) < 0 for w low enough. In addition

dW num (w, 1)

dw
= −

(
1− µψ + (1− µ)ϕwε−1

) (
1 + ϕwε−1

)−µ−1
ϕ (ε− 1)wε−2 < 0, (45)

since 1−µ > 0 and 1−µψ ≥ 0. Therefore we always have W num (w, 1) < 0, in particular

this means that W num (W (1) , 1) < 0, so that W is a decreasing function of G for G

close to 1.

Suppose that W is not everywhere decreasing in G, then there must exist Gpeak such

that W num
(
W
(
Gpeak

)
, Gpeak

)
= 0. This implies that

Gpeak =
−ψ−1ϕwε−1 (1 + ϕwε−1)

µ−1
+
(
(1 + ϕwε−1)

µ − 1
)(

1− (1 + ϕwε−1)µ−1
)

((1 + ϕwε−1)µ − 1)
,
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Defining

T (w) ≡ w1− ε−1
σ−1

((
1 + ϕwε−1

)µ − 1
)1−β (

1−
(
1 + ϕwε−1

)µ−1) 1−ψ−1

σ−1 (
1 + ϕwε−1

) 1−µ
σ−1 ,

and Gpeak into (43), we obtain that W num (W (G) , G) = 0 requires:

T (w) =
σ − 1

σ
β

(
HP

L

)(1−β) (
ψ−1

)1−β (
1− ψ−1

) 1
σ−1
−(1−β)

(ϕN)
1

σ−1 .

We are now going to show that T (w) is a monotone function of w. Since ψ > 1, and

µ < 1, then T is increasing in w whenever ε−1
σ−1 < 1 (that is ε ≤ σ). Assume now that

ε > σ, we can derive:

d lnT (w)

d lnw
=

1− ε−1
σ−1 + (1− β)µ (ε− 1)

(1+ϕwε−1)
µ

(1+ϕwε−1)µ−1
ϕwε−1

1+ϕwε−1 + 1−ψ−1

σ−1 (1− µ)

× (ε− 1)
(1+ϕwε−1)

µ−1

1−(1+ϕwε−1)µ−1
ϕwε−1

1+ϕwε−1 + 1−µ
σ−1 (ε− 1) ϕwε−1

1+ϕwε−1

.

Rearranging terms we can derive:

d lnT (w)

d lnw
=


(1− β) (ε− 1)

(
(1 + µϕwε−1) (1 + ϕwε−1)

−µ − 1
)

ϕwε−1

1+ϕwε−1

+
(
ε−1
σ−1 − 1

) (
1− (1 + ϕwε−1)

−µ
)2

+ (1− β)
(

1− (1 + ϕwε−1)
−µ
)

(1 + ϕwε−1)
1−µ ϕwε−1

1+ϕwε−1

(
1− (1 + ϕwε−1)µ−1

)
((1 + ϕwε−1)µ − 1)

.

In this expression, the denominator is positive, the second term and the third term

in the numerator are also positive. To determine the sign of the first term note that

the function q (x) ≡ (1 + x)−µ (1 + µx) is increasing for x ≥ 0 whenever µ ∈ (0, 1) as

q′ (x) = (1− µ)µx (1 + x)−µ−1, therefore since q (0) = 1, the first term in the numerator

is also positive. As a result T (w) is a monotone function, which means that there is

only one value of w consistent with W ′ (Gpeak
)

= 0. As a result, W ′ changes sign at

most once.

Therefore if W (G) is not decreasing everywhere, it must be increasing for G = 0.

We can derive

W num (w, 0) =
(
1 + ϕwε−1

)µ−1
+ (ψ − 1)

(
1 + ϕwε−1

)µ − ψ.

65



Note that

W num (w, 0) ∼
w→0

(µψ − 1)ϕwε−1 if ψ 6= µ−1 (46)

W num (w, 0) ∼
w→0

(1− µ)
(ϕwε−1)

2

2
if ψ = µ−1.

Therefore, if w is low enough, W num (w, 0) < 0 if ψ < µ−1 (but it is positive if ψ = µ−1).

In addition, we have

dW num (w, 0)

dw
=
(
ψµ− 1 + (ψ − 1)µϕwε−1

)
ϕwε−2

(
1 + ϕwε−1

)µ−2
, (47)

When ψµ = 1, dWnum(w,0)
dw

> 0, so that W ′ (0) > 0, which implies that W is an

inversely u-shaped function of G (initially increasing and then decreasing).

When ψ < µ−1, dWnum(w,0)
dw

< 0 for w <
(

1−ψµ
µϕ(ψ−1)

) 1
ε−1

and positive otherwise, in

addition W num (w, 0) < 0 for w close to 0 and W num (w, 0) is positive for w large enough

(as ψ > 1). This implies that W num (w, 0) is negative for w below a threshold value

and positive if w is greater than that threshold. Therefore W ′ (0) is negative if W (0)

is below a threshold value and positive otherwise, since W (0) monotonically increases

with N , the same statement holds replacing W (0) by N . Therefore we get that when N

is low enough W is everywhere decreasing in G, while for N high enough W is inversely

u-shaped.

Case where ψ > µ−1. The reasoning on the possibility for a solution toW num (W (G) , G) =

0 still applies, therefore W ′ (G) can change sign at most once, since W (1) > W (0) in

this case, we know that W must be increasing on some interval. (46) and (47) imply

that when ψ > µ−1, W num (w, 0) is always positive. (44) and (45) imply that W ′ (1) is

negative if and only if W (1) is large enough (which is equivalent to N large enough).

8.1.2 Perfect substitute case:ε =∞

In the perfect substitute case, there are three possibilities: i) either w < ϕ̃−1 in which

case automated firms only use low-skill workers and low-skill wages are given by

w =
σ − 1

σ
β

(
HP

L

)(1−β)

N
1

σ−1 , (48)
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with a skill premium obeying v
w

= 1−β
β

L
HP ; ii) or w = ϕ̃−1 and automated firms use

machines but also possibly workers, in which case high-skill wages can be obtained from

(11) which is now written as:

σ

σ − 1

N
1

1−σ

ββ (1− β)1−β
ϕ̃−βv1−β = 1;

iii) or finally, w > ϕ̃−1 and all automated firms use machines only, in that case, we get

that (43) is replaced by

w =
σ − 1

σ
β

(
HP

L

)(1−β)

N
1

σ−1 (1−G)1−β
(
G (ϕ̃w)β(σ−1) + 1−G

) 1
σ−1
−(1−β)

, (49)

and the skill premium obeys:

v

w
=

1− β
β

L

HP

G+ (1−G) (wϕ̃)−β(σ−1)

(1−G) (wϕ̃)−β(σ−1)
.

It is direct to show that (49) defines w uniquely as a function of N,G and HP ,

with w increasing in N and in HP . In addition, w as defined by (49) follows the

pattern of Proposition 1 ii) in terms of comparative statics with respect to G, with

w = σ−1
σ
β
(
HP

L

)(1−β)
N

1
σ−1 for G = 0 and w = 0 for G = 1 (this is for w as defined by

(49) and not for the equilibrium w).

Considering that (49) only applies when w > ϕ̃−1 and looking at the three different

cases together; we obtain that w is initially increasing inN (up until σ−1
σ
β
(
HP

L

)(1−β)
N

1
σ−1 =

ϕ̃−1), it is then constant equal to ϕ̃−1 (up until σ−1
σ
β
(
HP

L

)(1−β)
N

1
σ−1 = ϕ̃−1/ (1−G)1−β)

and increasing thereafter (if G = 1 then this last part does not exist and w stays at ϕ̃−1).

Similarly, for low N (that is σ−1
σ
β
(
HP

L

)(1−β)
N

1
σ−1 ≤ ϕ̃−1), w is independent of G.

Then the pattern of ii) follows with w either decreasing or inversely u-shaped in G except

that w will be constant over an interval of the type [Gcons, 1] for some Gcons ∈ [0, 1).

High-skill wages are always increasing in N and G.
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8.2 Proofs of the asymptotic results

8.2.1 Proof of Proposition 2

To see that wt is bounded from below, assume that liminfwt=0. Then using that HP
t and

Gt admit positive limits, (10) implies that liminfvt = 0. Plugging this further in (11)

gives liminfNt = 0, which is impossible since gNt admits a positive limit. Therefore, wt

must be bounded below, so that (11) gives gv∞ = ψgN∞. Further, using that HP
t admits

a limit and (8) gives the growth rate of Yt. We now derive the asymptotic growth rate

of wt. To do so we consider in turn the case where ε <∞, and the case where ε =∞.

Case with ε <∞. We use equation (43) which gives wt as a function of Nt, Gt and

HP
t . Note that assuming that wtis bounded above leads to a contradiction, therefore

limwt =∞.

Assume first that G∞ < 1, then, since limwt =∞, (43) implies

wt ∼

((
σ − 1

σ
β

) 1
1−β

(1−G∞)
HP
∞
L

(G∞ϕ
µ)ψ−1

) 1
1+β(σ−1)

N
ψ

1+β(σ−1)

t ,

where for xt and yt (possibly with no limits), xt ∼ yt signifies xt/yt → 1. This delivers

Part A).

Consider now the case where G∞ = 1. Note that (43) gives:

wt ∼

((
σ − 1

σ
β

) 1
1−β HP

∞
L
ϕµ(ψ−1)

) 1
ε

N
ψ
ε
t

(
ϕµ−1 + (1−Gt)w

(ε−1)(1−µ)
t

) 1
ε
. (50)

Following the assumption of Part B in Proposition 2, we assume that lim (1−Gt)N
ψ
ε
(ε−1)(1−µ)

t

exists and is finite. Suppose first that lim sup (1−Gt)w
(ε−1)(1−µ)
t =∞, then there must

exist a sequence of t’s, denoted tn for which:

wtn ∼

((
σ − 1

σ
β

) 1
1−β HP

∞
L

(ϕµ)ψ−1
) 1

1+β(σ−1) (
(1−Gtn)Nψ

tn

) 1
1+β(σ−1)

.
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Yet, this implies

(1−Gtn)w
(ε−1)(1−µ)
tn ∼

((
σ−1
σ
β
) 1

1−β HP
∞
L

(ϕµ)ψ−1
) (ε−1)(1−µ)

1+β(σ−1)

×
(

(1−Gtn)N
ψ(ε−1)(1−µ)

ε
tn

) ε
1+β(σ−1)

,

the left-hand side is assumed to be unbounded, while the right-hand side is bounded:

there is a contradiction. Therefore, lim sup (1−Gt)w
(ε−1)(1−µ)
t <∞.

Consider now the possibility that lim (1−Gt)w
(ε−1)(1−µ)
t = 0, then (50) implies

wt ∼

((
σ − 1

σ
β

) 1
1−β HP

∞
L
ϕµψ−1

) 1
ε

N
ψ
ε
t ,

which delivers that gwt exists and is given by ψ
ε
gNt = 1

ε
gYt .

Alternatively, lim sup (1−Gt)w
(ε−1)(1−µ)
t is finite but strictly positive (given by λ1).

In this case, there exists a sequence of t′s, denoted tm such that

wtm ∼

((
σ − 1

σ
β

) 1
1−β HP

∞
L
ϕµ(ψ−1)

(
ϕµ−1 + λ1

)) 1
ε

N
ψ
ε
tm . (51)

This leads to

λ1 ∼

((
σ − 1

σ
β

) 1
1−β HP

∞
L
ϕµ(ψ−1)

(
ϕµ−1 + λ1

)) (ε−1)(1−µ)
ε

(1−Gtm)N
ψ
ε
(ε−1)(1−µ)

tm ,

which is only possible if lim (1−Gt)N
ψ
ε
(ε−1)(1−µ)

t > 0. We denote such a limit by λ.

Then (50) leads to

(
wεtN

−ψ
t

)
∼
(
σ − 1

σ
β

) 1
1−β HP

∞
L
ϕµ(ψ−1)

(
ϕµ−1 + λ

(
N−ψt wεt

) (ε−1)(1−µ)
ε

)
,

which defines uniquely the limit of wεtN
−ψ
t . Therefore gwt admits a limit, which here too

is given by gwt = ψ
ε
gNt . This completes the poof of part B).

To prove footnote 7, assume now that, lim (1−Gt)N
ψ
ε
(ε−1)(1−µ)

t = ∞. Consider

further the case where lim inf (1−Gt)w
(ε−1)(1−µ)
t = λ2 < ∞, then there is a sequence

of t’s denoted tµ for which (51) applies with tµ replacing tm and λ2 replacing λ1. Then
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following the same steps as above, we get that lim inf (1−Gt)N
ψ
ε
(ε−1)(1−µ)

t is finite,

which is a direct contradiction. Therefore, we must have lim (1−Gt)w
(ε−1)(1−µ)
t = ∞.

In which case, (50) directly implies

wt ∼

((
σ − 1

σ
β

) 1
1−β HP

∞
L
ϕµ(ψ−1)

) 1
1+β(σ−1) (

(1−Gt)N
ψ
t

) 1
1+β(σ−1)

.

Assume that the growth rate of (1−Gt)N
ψ
ε
(ε−1)(1−µ)

t admits a limit gλ (so that 0 ≤
gλ ≤ ψ

ε
(ε− 1) (1− µ) gN∞), then gwt must also admit a limit, and we have

gwt =
1

1 + β (σ − 1)

(
gλ +

(
1− (ε− 1)

ε
(1− µ)

)
ψgNt

)
,

which directly leads to 1
ε
gGDP∞ ≤ gw∞ ≤ 1

1+β(σ−1)g
GDP
∞ .

Case with ε =∞. Low skill wages are now defined as described in Appendix 8.1.2.

First consider the case where G∞ < 1, then Part A) immediately follows. Assume now

that G∞ = 1 and that lim (1−Gt)N
ψ
t exists and is finite. Note first that (48) implies

that wt must be bounded weakly above ϕ̃ in the long-run. As a result, (49) leads to

wt ∼

((
σ − 1

σ
βϕ̃β(1−ψ

−1)
) 1

1−β HP
∞
L

) 1
1+β(σ−1) (

(1−Gt)N
ψ
t

) 1
1+β(σ−1)

if wt > ϕ̃.

Since lim (1−Gt)N
ψ
t exists and is finite, wt also admits a finite limit. In particular, if

lim (1−Gt)N
ψ
t = 0, then w∞ = ϕ̃.

Skill premium. An increase in N increases w, which from lemma 1 implies that the

skill premium v/w increases as long as G > 0. Consider the case where w decreases with

G, then since v increases with G, the skill premium must increase with G. Consider

now the case where w increases with G, then from equation (10), v/w must increase

both through the direct impact of G and through the indirect impact coming from the

increase in w.

8.2.2 Proof of Lemma 2

Note that GtNt is the mass of automated firms and let ν1,t > 0 be the intensity at

which non-automated firms are automated at time t and 0 ≤ ν2,t < 1 be the fraction

of new products introduced at time t that are initially automated. Then ˙(GtNt) =
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ν1,t(1 − Gt)Nt + ν2,tṄt such that Ġt = ν1,t(1 − Gt) − (Gt − ν2,t)gNt . First assume that

G∞ = 1, then if ν1,t < ν̄1 < ∞ and ν2,t < ν̄2 < 1, we get that Ġt must be negative for

sufficiently large t, which contradicts the assumption that G∞ = 1. Similarly if G∞ = 0,

then having ν1,t > ν for all t, gives that Ġt must be positive for sufficiently large t, which

also implies a contradiction. Hence a limit must have 0 < G∞ < 1.

8.3 Proofs and analytical results for the baseline dynamic model

8.3.1 Proof of Proposition 3

We look for a steady state with positive long-run growth for the system defined by

(27), (28), (30) and (31), and we denote such a (potential) steady state n∗, G∗, ĥA∗, χ∗

(more generally we denote all variables at steady state with a ∗).36 Following (27), we

immediately get that n∗ = 0. Equation (39), implies that ω∗ = 0 (recall that µ ∈ (0, 1)).

As a result, using (35), (31) implies that in steady state,

ĥA∗ =
κ

γ (1− κ)

(
ρ+ ((θ − 1)ψ + 1) gN∗

)
(52)

which uniquely defines defines ĥA∗ as a linear and increasing function of gN∗ (recall that

θ ≥ 1). Note that if gN∗ > 0, then ĥA∗ > 0. Using (28), we get that G∗ obeys:

G∗ =
η (G∗)κ̃

(
ĥA∗
)κ

η (G∗)κ̃
(
ĥA∗
)κ

+ gN∗
. (53)

For G∗ > 0, this equation, combined with (52), defines G∗ uniquely as an increasing

function of gN∗, and, with
(
gN
)∗
> 0, G∗ < 1 (when κ̃ > 0, G∗ = 0 is also a solution,

but, here, we are focusing on a steady state with a strictly positive G∗). Note that (38)

also uniquely defines HP∗ as a function of gN∗:

HP∗ = H − gN∗

γ
− (1−G∗) ĥA∗. (54)

36Note that if gNt = 0, the economy does not obey this system of equations but that it is also impossible
to achieve positive long-run growth, as production is bounded by the production of an economy which
has Gt = 1.
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Using ω∗ = 0, (35) and (53) allows to rewrite (30) in steady state as:

ηκ (G∗)κ̃−1
(
ĥA∗
)κ

1− κ
ψHP∗ =

γ

κ

(
ĥA∗
)2

+ ηGκ̃
t

(
ĥA∗
)κ+1

. (55)

Since G∗, ĥA∗ and HP∗ are functions of gN∗, one can rewrite (55) as an equation deter-

mining gN∗. A steady state with positive growth-rate is a solution to

f
(
gN∗
)
≡ 1− κ

κ

γG∗ĥA∗

ψHP∗

(
1

κη (G∗)κ̃

(
ĥA∗
)1−κ

+
1

γ

)
= 1, (56)

with gN∗ > 0. Indeed, (37) simply determines χ∗ as:

χ∗ =

(
σ

σ − 1

) 1
1−β (1−θβ)

(
1− β σ−1

σ

)θ (
HP∗)θ

(1− β) β
β

1−β (1−θ) (G∗ϕµ)ψ(1−θ)
, (57)

which achieves the characterization of a steady state for the system of differential equa-

tions defined by (27), (28), (30) and (31).

In order to establish the sufficiency of equation (23) for positive growth. Note that

as gN∗ → 0, then equations (52), (53) and (54) imply that

f (0) =
ρ

ψH

(
1

ηκκ (1− κ)1−κ

(
ρ

γ

)1−κ

+
1

γ

)
.

In addition, g
N∗

γ
+(1−G∗) ĥA∗ is always greater than gN∗

γ
, therefore for a sufficiently large

gN∗ (smaller than γH), HP∗ is arbitrarily small, while for the same value G∗ and ĥA∗

are bounded below and above. This establishes that for gN∗ large enough, f
(
gN∗
)
> 1.

Therefore a sufficient condition for the existence of at least one steady state with positive

growth and positive G∗ is that f (0) < 1 (such that f
(
gN∗
)

= 1 has a solution), which

is equivalent to condition (23).

8.3.2 Uniqueness of the steady state

Generally the steady state is not unique. Nonetheless, consider the special case in which

κ̃ = 0. Then f can be rewritten as

f
(
gN∗
)

=
1− κ
κ

γG∗ĥA∗

ψHP∗

(
1

κη

(
ĥA∗
)1−κ

+
1

γ

)
, (58)
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note that HP∗ is decreasing in gN∗ and ĥA∗ is increasing in gN∗, so a sufficient condition

for f to be increasing in gN∗ is that G∗ĥA∗ is also increasing in gN∗. With κ̃ = 0, using

(52), (53), we get:

G∗ĥA∗ =
η
(

κ
γ(1−κ)

)κ+1 (
ρ+ ((θ − 1)ψ + 1) gN∗

)κ+1

η
(

κ
γ(1−κ)

)κ
(ρ+ ((θ − 1)ψ + 1) gN∗)κ + gN∗

.

Therefore

d
(
G∗ĥA∗

)
dgN∗

=

η( κ
γ(1−κ))

κ+1
(ρ+((θ−1)ψ+1)gN∗)

κ

(η( κ
γ(1−κ))

κ
(ρ+((θ−1)ψ+1)gN∗)κ+gN∗)

2

×

(
η
(

κ
γ(1−κ)

)κ
((θ − 1)ψ + 1)

(
ρ+ ((θ − 1)ψ + 1) gN∗

)κ
−ρ+ gN∗κ ((θ − 1)ψ + 1)

) .

Since gN∗ > 0, we get that
d(G∗ĥA∗)
dgN∗

> 0 (so that the steady state is unique) if
(1−κ)κγκ

ηκκ
ρ1−κ < (θ − 1)ψ + 1. This condition is likely to be met for reasonable pa-

rameter values as long as the automation technology is not too concave: ρ is a small

number, θ ≥ 1 and γ and η being innovation productivity parameters should be of the

same order (it is indeed met for our baseline parameters).

8.3.3 Transitional dynamics and the first phase

Combining (24) and (25), we can write:

Nth
A
t =

(
κηGκ̃

t

(ˆ ∞
t

exp

(
−
ˆ τ

t

rudu

)(
Nt

vt

(
πAτ − πNτ

)
dτ − 1− κ

κ

Nt

Nτ

vτ
vt

(
Nτh

A
τ

))
dτ

)) 1
1−κ

.

Using (8) and that aggregate profits Πt = Nt

(
Gtπ

A
t + (1−Gt) π

N
t

)
are a share 1/σ of

output, we can rewrite this equation as:

ĥAt =

(
κηGκ̃

t

(ˆ ∞
t

exp

(
−
ˆ τ

t

rudu

)(
ψHP

t

πAτ − πNτ
GtπAt + (1−Gt) πNt

dτ − 1− κ
κ

Nt

Nτ

vτ
vt
ĥAτ

)
dτ

)) 1
1−κ

.

(59)
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Recalling (7), we can write:

ĥAt =

κηGκ̃
t

ˆ ∞
t

 ψHP
t

(1+ϕwε−1
τ )

µ
−1

Gt(1+ϕwε−1
t )

µ
+1

exp
(´ τ

t

(
gπ

N

u − ru
)
du
)

−1−κ
κ

exp
(´ τ

t

(
gvu − gNu − ru

)
du
)
ĥAτ

 dτ


1

1−κ

.

Consider a fixed t̂ > 0. Then for an arbitrarily large T , if w0 is sufficiently small

relative to ϕ̃−1, we will have that wt is small relative to ϕ̃−1 over
(
0, t̂+ T

)
. For any

τ ∈
(
0, t̂+ T

)
, we have that

(1+ϕwε−1
τ )

µ
−1

Gt(1+ϕwε−1
t )

µ
+1

= µϕwε−1τ + o (ϕwε−1τ ). The notation o (z)

denotes negligible relative to z (that is f (z) = o (z), if lim
z→0

f (z) /z = 0) and O (z) will

denote of the same order or negligible in front of z (f (z) = O (z) if lim sup
z→0

|f (z) /z| <

∞). Then for any t ∈
(
0, t̂
)

(
ĥAt

)1−κ
≤ κηGκ̃

t

 ´ t̂+Tt
ψHP

t (µϕwε−1τ + o (ϕwε−1τ )) exp
(´ τ

t

(
gπ

N

u − ru
)
du
)
dτ

+
´∞
t̂+T

ψHP
t

(1+ϕwε−1
τ )

µ
−1

Gt(1+ϕwε−1
t )

µ
+1

exp
(´ τ

t

(
gπ

N

u − ru
)
du
)
dτ

 .

Further, we know that ru = ρ + θgCu with θ ≥ 1. In addition Cu = Yu − Xu, with Xu

the aggregate spending on machines (initially negligible and later on a share of output

bounded away from 1) and πNu initially grows like Yu/Nu (and from then on will grow

slower), therefore we have that ru − gπ
N

u > ρ. Hence one can write:(
ĥAt

)1−κ
≤ κηGκ̃

t

(ˆ t̂+T

t

µψHP
t ϕw

ε−1
τ exp

(ˆ τ

t

(
gπ

N

u − ru
)
du

)
dτ + o

(
ϕwε−1

t̂+T

)
+ o

(
e−ρ(T+t̂−t)

))

Since ru − gπ
N

u > ρ, there exists a φ > 0, such that

ˆ t̂+T

t

exp

(ˆ τ

t

(
gπ

N

u − ru
)
du

)
dτ ≤

ˆ t̂+T

t

e−(ρ+φ)(τ−t)dτ

≤ 1

ρ+ φ

(
1− e−(ρ+φ)(t̂+T−t)

)
.

This allows us to rewrite:

(
ĥAt

)1−κ
≤ κηGκ̃

t

(
µψHP

t ϕw
ε−1
t̂+T

ρ
+ o

(
ϕwε−1

t̂+T

)
+ o

(
e−ρT

))
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Therefore, since T is large and ϕwε−1
t̂+T

is small, then ĥAt must be small too. In fact, we

get that ĥAt = O

((
ϕwε−1

t̂+T

) 1
1−κ
)

+ o
(
e−ρT

)
.

For any t ∈
(
0, t̂
)
, we can then rewrite (31) as

χ̇t
χt

= γψHP − ρ− (θψ − ψ + 1) gNt +O

((
ϕwε−1

t̂+T

) 1
1−κ
)

+ o
(
e−ρT

)
. (60)

Using (36) we obtain

Ct = Yt −Xt =
(

1 +O
(
Gtϕw

(ε−1)
t

))
Yt.

Next (5) and the corresponding equation for high-skill labor demand in production imply:

LNA

LA
=

(1−Gt)
(
1 + ϕwε−1t

)−µ−1
Gt

and
HP,NA

HP,A
=

(1−Gt)
(
1 + ϕwε−1t

)−µ
Gt

.

Using (3), we can then write

Yt = N
1

σ−1Lβ
(
HP
t

)1−β ×
Gt

[
1 +O

(
ϕwε−1

)
+

(
O
(
ϕw

(ε−1)
t

)
ϕ

1
ε
Yt
L

) ε−1
ε

] εβ
ε−1

σ−1
σ (

1 +O
(
ϕwε−1t

))
+ 1−G+O

(
ϕwε−1t

)
σ
σ−1

Note that we have wt = O (Yt/L) therefore ϕ
1
εYt/L = O

(
ϕ

1
εwt

)
. Therefore

Yt =
(
1 +O

(
ϕwε−1t

))
N

1
σ−1Lβ

(
HP
t

)1−β
.

From this, using (8), one obtains that high-skill wages obey:

vt =
(
1 +O

(
ϕwε−1t

)) σ − 1

σ
(1− β)N

1
σ−1

t Lβ
(
HP
t

)−β
,

while for low-skill wages, we get

wt =
(
1 +O

(
ϕwε−1t

)) σ − 1

σ
βN

1
σ−1

t Lβ−1
(
HP
t

)1−β
. (61)
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Therefore using the definition of χt, we obtain that

χt =
(

1 +O
(
ϕw

(ε−1)
t

))
σψLβ(θ−1)

(
HP
t

)(1−β)θ+β
N

(1−θ)β
(σ−1)(1−β)
t .

Differentiating and plugging into (60) and using (38), we get (recalling (61) so that

d ln
(

1 +O
(
ϕw

(ε−1)
t

))
/dt will be of order O

(
ϕw

(ε−1)
t

)
as well).

((1− β) θ + β)

·
HP
t

HP
t

= γψHP
t −ρ−

(
θ − 1

σ − 1
+ 1

)
γ
(
H −HP

t

)
+O

((
ϕwε−1

t̂+T

) 1
1−κ
)

+o
(
e−ρT

)
,

(62)

we dropped terms in ϕwε−1t since there will negligible in front of
(
ϕwε−1

t̂+T

) 1
1−κ

. The exact

counterpart of this system admits a BGP with HP
t constant, and as in the Romer (1990),

there is no transitional dynamics. Therefore, here, we must have over the interval
(
0, t̂
)

HP
t =

(
θ−1
σ−1 + 1

)
H + ρ

γ

ψ + θ−1
σ−1 + 1

+O

((
ϕwε−1

t̂+T

) 1
1−κ
)

+ o
(
e−ρT

)
and gNt =

γHψ − ρ
ψ + θ−1

σ−1 + 1
+O

((
ϕwε−1

t̂+T

) 1
1−κ
)

+ o
(
e−ρT

)
which is positive under assumption (23). We then have that for Nt low, (20) can be

solved as Gt = G0 exp

(
− γHψ−ρ
ψ+ θ−1

σ−1
+1
t

)
+O

((
ϕwε−1

t̂+T

) 1
1−κ
)

+o
(
e−ρT

)
. This characterizes

the solution during Phase 1.

8.3.4 Transition from the first to the second phase

κ̃ = 0, Phase 1 cannot last forever as at some point, Nt and therefore wt will become

large. Since, the Poisson rate is η
(
ĥAt

)κ
= Θ

(
ϕwε−1t

) κ
1−κ , where Θ (z) denotes of the

same order as z. This implies that Gt must start growing at a positive rate and that we

enter the second phase.

When κ̃ > 0 (and G0 6= 0, otherwise automation is impossible), however, whether the

Poisson rate of automation becomes negligible or not depends on a horse race between the

drop in the share of automated products (and therefore the efficiency of the automation

technology) and the rise in the low-skill wages (which, through horizontal innovation can

become arbitrarily large). We look for a sufficient condition under which the Poisson

rate will take off.
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First assume that Gtw
β(σ−1)
t does not tend towards 0. Then from (59) we obtain

that:

ĥAt = ĥAt
(
Gκ̃−1
t

) 1
1−κ =⇒ ηGκ̃

t

(
ĥAt

)κ
= Θ

(
G

κ̃−κ
1−κ
t

)
(63)

Since κ̃ ≤ κ, we obtain that the Poisson rate of automation diverges: a contradiction.

Assume now that Gtw
β(σ−1)
t does tend towards 0. This ensures that wt = Θ

(
N

1
σ−1

t

)
.

Moreover,
πAt −πNt

GtπAt +(1−Gt)πNt
= Θ

(
w
β(σ−1)
t

)
. Then using this in (59), we obtain

ĥAt = Θ
(
Gκ̃
tw

β(σ−1)
t

) 1
1−κ

.

Note that ĥAt must remain bounded otherwise high-skill labor market clearing is violated.

Therefore, we must haveGκ̃
tw

β(σ−1)
t bounded (which implies thatGtw

β(σ−1)
t tends towards

0). Therefore the Poisson rate obeys:

ηGκ̃
t

(
ĥAt

)κ
= Θ

(
G

κ̃
1−κ
t N

βκ
1−κ
t

)
Plugging this in (28) we get:

·
Gt = Θ

(
G

κ̃
1−κ
t N

βκ
1−κ
t

)
− gNt Gt

To obtain that the share Gt is going towards 0, it must first be that G
κ̃

1−κ
t N

βκ
1−κ
t declines

at the same rate or faster than Gt.

Consider first the case where, G
κ̃

1−κ
t N

βκ
1−κ
t and Gt are of the same order. In that case,

we must have:

Gt = Θ

(
N

βκ
1−κ−κ̃
t

)
This cannot go towards 0 if 1−κ− κ̃ > 0. In addition, recall that this reasoning assumed

that Gκ̃
tw

β(σ−1)
t remains bounded. We have

Gκ̃
tw

β(σ−1)
t = Θ

(
N

β(1−κ)(1−κ̃)
1−κ−κ̃

t

)
,

which is indeed declining if 1− κ− κ̃ < 0.

Alternatively, if G
κ̃

1−κ
t N

βκ
1−κ
t goes towards 0 faster than Gt then Gt will be declining
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at the rate gNt , so that we have Gt = Θ
(
N−1t

)
. This then implies

G
κ̃

1−κ
t N

βκ
1−κ
t /Gt = Θ

(
N

βκ+1−κ−κ̃
1−κ

t

)
.

As soon as 1− κ− κ̃ > 0 then this cannot go towards 0.

Therefore 1− κ− κ̃ > 0 is a sufficient condition which ensures that the Poisson rate

of automation must take off.

8.3.5 Morishima elasticities of substitution

Given a production function which uses low-skill and high-skill labor, the Morishima

elasticity of substitution between the two inputs is defined as

εML,H ≡
∂

∂ ln v
ln
cw
cv
,

where c is the associated cost function. In our model we can similarly define an elasticity

of substitution starting from the aggregate cost function:

c (v, w, px) =
σN

1
1−σ v1−β

(σ − 1) ββ (1− β)1−β
(
G
(
ϕp1−εx + w1−ε)µ + (1−G)wβ(1−σ)

) 1
1−σ . (64)

Note that this cost function simply extends equation (11) to the case where machines’

price is given by px. Differentiating (64) with respect to high-skill and low-skill wages

one gets:

cw
cv

=
βv
(
G (ϕp1−εx + w1−ε)

µ−1
w−ε + (1−G)wβ(1−σ)−1

)
(1− β) (G (ϕp1−εx + w1−ε)µ + (1−G)wβ(1−σ))

.

It is then direct to obtain the elasticity of substitution between low-skill and high-skill

labor:

εML,H = 1.

With three factors, the elasticity of substitution need not be symmetric and indeed we

obtain that the elasticity between high-skill and low-skill labor is given by:
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εMH,L ≡
∂

∂ lnw
ln
cv
cw

= 1 +
β(σ − 1)ϕp1−εx G (ϕp1−εx + w1−ε)

µ−1

(G (ϕp1−εx + w1−ε)µ + (1−G)wβ(1−σ))

+
(1− µ) (ε− 1)G (ϕp1−εx + w1−ε)

µ−1
w−ε

G (ϕp1−εx + w1−ε)µ−1w−ε + (1−G)wβ(1−σ)−1
ϕp1−εx

ϕp1−εx + w1−ε

> 1.

Note that when w is small with respect to px, then εMH,L is close to 1. This occurs when

N is small (since px = 1), that is during the first phase. On the contrary when w is large

(which is the case asymptotically), then as long as G is bounded above 0, we get that

εMH,L is close to 1 + β(σ − 1). Therefore the elasticity of substitution between high-skill

and low-skill labor will have increased between Phase 3 and Phase 1.

Similarly we can derive

cpx
cv

=
βvG (ϕp1−εx + w1−ε)

µ−1
p−εx

(1− β) (G (ϕp1−εx + w1−ε)µ + (1−G)wβ(1−σ))
.

This gives that εMX,H = 1, while the elasticity of substitution between high-skill and

machines obeys:

εMH,X ≡ ∂

∂ ln px
ln
cv
cpx

= 1 + β(σ − 1)
ϕp1−εx

ϕp1−εx + w1−ε
(1−G)wβ(1−σ)

G (ϕp1−εx + w1−ε)µ + (1−G)wβ(1−σ)
+

w1−ε

ϕp1−εx + w1−ε (ε− 1)

> 1

From this it is easy to derive that, as long as G is bonded below, εMH,X is close to

ε when w is small relative to px, while it is close to 1 when w is large. Therefore, as

the transition unfolds the elasticity of substitution between high-skill and machines will

have decreased and at some point will become lower than that between high-skill labor

and low-skill labor.

Finally, we compute

cw
cpx

=
G (ϕp1−εx + w1−ε)

µ−1
w−ε + (1−G)wβ(1−σ)−1

G (ϕp1−εx + w1−ε)µ−1 p−εx
,
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from which we get that the Morishima elasticity between machines and low-skill labor

is symmetric, so that

εML,X = εMX,L = ε−(1− µ) (ε− 1)
ϕp1−εx

ϕp1−εx + w1−ε
(1−G)wβ(1−σ)−1

G (ϕp1−εx + w1−ε)µ−1w−ε + (1−G)wβ(1−σ)−1
.

Looking at the limits (under the assumption thatG is bonded below), we obtain εMX,L|w=0 =

ε and εMX,L|w=∞ = 1 + β (σ − 1). Therefore the elasticity of substitution between ma-

chines and low-skill labor (and that between low-skill labor and machines) will have

decreased during the second phase.

8.3.6 Comparative statics

In this section, we prove Proposition 4. The proposition is established when the steady

state is unique but it extends to the case of the steady states with the highest and lowest

growth rates when there is multiplicity. Recall that the steady state is characterized as

the solution to an equation f
(
gN∗
)

= 1 through (56), where G∗, ĥA∗ and HP∗ can all

be written as functions of gN∗ and parameters. Moreover, when there is a single steady

state (as well as for the steady states with the highest and the lowest growth rates in

case of multiplicity), f must be increasing in the neighborhood of gN∗.

Comparative static with respect to γ. (52) implies that ĥA∗ is inversely propor-

tional to γ (for given gN∗). Formally, we have:

∂ĥA∗

∂γ
= − ĥ

A∗

γ
. (65)

Differentiating (53) and using (65) leads to:

∂G∗

∂γ
=

−κgN∗G∗

γ
(
η (G∗)κ̃

(
ĥA∗
)κ

+ (1− κ̃) gN∗
) , (66)

so that for a given gN∗, G∗ is also decreasing in γ. Using (54), (65) and (66), we get:

∂HP∗

∂γ
=

1

γ

 gN∗

γ
+ (1−G∗) (1− κ) ĥA∗

+
(1−κ̃)κĥA∗G∗(gN∗)

2

(η(G∗)κ̃(ĥA∗)
κ
)(η(G∗)κ̃(ĥA∗)

κ
+(1−κ̃)gN∗)

 > 0
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so that HP∗ is increasing in γ. Note that f , defined in (56), can be rewritten as

f
(
gN∗
)

=
1− κ
κ

1

ψHP∗

(G∗)1−κ̃
(
ĥA∗
)1−κ (

γĥA∗
)

κη
+G∗ĥA∗

 ,

which shows that f is decreasing in γ for a given gN∗ (HP∗ is increasing, G∗ and ĥA∗

are decreasing, and γĥA∗ is constant). Since f is increasing in gN∗ at the equilibrium

value, (56) implies that gN∗ increases in γ. Moreover, following (53), G∗ is decreasing in

gN∗ and in γ for a given gN∗, this implies that G∗ decreases in γ (taking into account

changes in gN∗).

Comparative static with respect to η. For given gN∗, (52) implies that ĥA∗ does

not depend on η. Differentiating (53), we get:

∂ lnG∗

∂ ln η
=

gN∗

η (G∗)κ̃
(
ĥA∗
)κ

+ (1− κ̃) gN∗
, (67)

so for given gN∗, G∗ increases in η. (54) implies then that

∂ lnHP∗

∂ ln η
=
G∗ĥA∗

HP∗
gN∗

η (G∗)κ̃
(
ĥA∗
)κ

+ (1− κ̃) gN∗
.

Using this equation together with (67) and (56), we obtain:

∂ ln f

∂ ln η
=


gN∗

η(G∗)κ̃(ĥA∗)
κ
+(1−κ̃)gN∗

(
1− G∗ĥA∗

HP∗ − κ̃
1

κη(G∗)κ̃ (ĥA∗)
1−κ

1

κη(G∗)κ̃ (ĥA∗)
1−κ

+ 1
γ

)
−

1

κη(G∗)κ̃ (ĥA∗)
1−κ

1

κη(G∗)κ̃ (ĥA∗)
1−κ

+ 1
γ

 .

Using (52), we can rewrite this as:

∂ ln f

∂ ln η
=


− 1

η(G∗)κ̃(ĥA∗)
κ
+(1−κ̃)gN∗

×

gN∗G∗ĥA∗

HP∗ + ρ+((θ−1)ψ+κ)gN∗

γ(1−κ)
(

1

ηLκG
κ̃
L

(ĥL∞)
1−κ

+ 1
γ

)

 ,

so that f is decreasing in η. This implies that gN∗ must be increasing in η. Since ĥA∗
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only depends on η through gN∗, we also get that ĥA∗ increases in η. The impact on G∗

is ambiguous because G∗ increases in η for a given gN∗ but it is also decreasing in gN∗.

8.4 Simulation technique

In the following we describe the simulation techniques employed for the baseline model

presented in 2. The approach for the extensions follow straightforwardly. Let xt ≡
(nt, Gt, ĥ

A
t , χt, ωt) and note that equation (39) defines ω implicitly. We can therefore

write equations (27), (28), (30) and (31) as a system of autonomous differential equations

(ṅt, Ġt,
˙̂
hAt , χ̇t) = F (xt) with initial conditions on state variables as (n0, G0) and an

auxiliary equation of ωt = ϑ(xt).

For the numerical solution, we specify a (small) time period of dt > 0 and a (large)

number of time periods T . Using this we approximate the four differential equations by

(T − 1)× 4 errors as:

st = (
nt+1 − nt

dt
,
Gt+1 −Gt

dt
,
ĥAt+1 − ĥAt

dt
,
χt+1 − χt

dt
)− F ((xt + xt+1)/2), t = {1, ...T − 1}

with T corresponding errors for ωt :

sωt = ωt − ϑ(xt), t = {1, ..., T}.

As shown in Appendix 8.3.1 for a set of parameter values, the system admits an

asymptotic steady state. We assume that the system has reached this asymptotic steady

state by time T and restrict ĥAT and χT accordingly. Together with the initial conditions

(n1 = nstart and G1 = Gstart) this leads to a vector of errors:

sT ≡ (n1 − nstart, G1 −Gstart, ĥAT − ĥA∗, χT − χ∗)′.

Letting x = {xt}Tt=1, we then stack errors to get a vector, S(x), of length 5T and solve

the following problem:

x̂ = argminxS(x)′WS(x),

for a 5T × 5T diagonal weighting matrix, W , and the T × 5 matrix x. For dt → 0

and T → ∞ S(x)′WS(x) → 0. For the simulations we set dt = 2 and T = 2000.

We accept the solution when S(x̂)′WS(x̂) < 10(−7), but the value is typically less than
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10(−20). The choice of weighting matrix matters somewhat for the speed of convergence,

but is inconsequential for the final result. With the solution {x̂t, ω̂t}Tt=1 in hand it is

straightforward to find remaining predicted values.

8.5 Social planner problem

This section presents the solution to the social planner problem. After having set-up the

problem, we derive the optimal allocation, emphasizing in particular the different inef-

ficiencies in our competitive equilibrium. Then, we show the optimal allocation for our

baseline parameters. Finally, we derive how the optimal allocation can be decentralized.

8.5.1 Characterizing the optimal allocation

We introduce the following notations: NA
t (respectively NN

t ) denotes the mass of auto-

mated (respectively non-automated) firms, LAt (respectively LNt ) is the mass of low-skill

workers hired in automated (respectively non-automated) firms, and HP,A
t (respectively

HP,N
t ) is the mass of high-skill workers hired in production in automated (respectively

non-automated) firms. The social planner problem can then be written as (we write the

Lagrange multipliers next to each constraint):

max

ˆ ∞
0

e−ρt
C1−θ
t

1− θ

such that

λ̃t : Ct +Xt = F
(
LAt , H

P,A
t , Xt, L

N
t , H

P,N
t , NA

t , N
N
t

)
,

with

F ≡


(
NA
t

) 1
σ

((
ϕ̃LX

ε−1
ε

t +
(
LAt
) ε−1

ε

) ε
ε−1

β (
HP,A
t

)1−β)σ−1
σ

+
(
NN
t

) 1
σ

((
LNt
)β (

HP,N
t

)1−β)σ−1
σ


σ
σ−1

,

w̃t : LAt + LNt = L,

ṽt : HP,A
t +HP,N

t +HA
t +HD

t = H,

ζ̃t :
·
N
N

t = γ
(
NA
t +NN

t

)
HD
t − η

(
NA
t

)κ̃ (
NN
t +NA

t

)κ−κ̃ (
HA
t

)κ (
NN
t

)1−κ
,

ξ̃t :
·
N
A

t = η
(
NA
t

)κ̃ (
NN
t +NA

t

)κ−κ̃ (
HA
t

)κ (
NN
t

)1−κ
,
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HD
t ≥ 0.

The first order condition with respect to Ct gives

C−θt = λ̃t

To denote the ratio of the Lagrange parameter of each constraint with respect to λ̃t

(that is the shadow value expressed in units of final good at time t), we remove the tilde

(hence wt ≡ w̃t/λ̃t is the shadow wage of low-skill workers).

The first order conditions with respect to Xt implies that

∂F

∂Xt

= 1, (68)

so that the shadow price of a machine must be equal to 1. First order conditions with

respect to LAt , LNt , HP,A
t , HP,N

t lead to

wt =
∂F

∂LAt
=

∂F

∂LNt
and vt =

∂F

∂HP,A
t

=
∂F

∂HP,N
t

, (69)

so that labor inputs are paid their marginal product in aggregate production. This is

not the case in the competitive equilibrium, where labor inputs are paid their marginal

product in the production of intermediates, while intermediates themselves are priced

with a mark-up as they are provided by a monopolist. It is easy to show that for a given

HP
t , the optimal provision of machines and allocation of high-skill and low-skill workers

across firms can be obtained if the purchase of all intermediate inputs is subsidized by

at rate 1/σ (a lump-sum tax finances the subsidy).

The first-order conditions with respect to NN
t and NA

t are given by:

ρζ̃t −
·

ζ̃t =
λ̃t

∂F
∂NN

t
+ ζ̃tγH

D
t +

(
ξ̃t − ζ̃t

)
η
(
HA
t

)κ (
NN
t

)−κ
×
(
NA
t

)κ̃ (
(1− κ̃)NN

t + (1− κ)NA
t

) (
NN
t +NA

t

)κ−κ̃−1 , (70)

ρξ̃t −
·

ξ̃t =
λ̃t

∂F
∂NA

t
+ ζ̃tγH

D
t +

(
ξ̃t − ζ̃t

)
η
(
HA
t

)κ
×
(
NN
t

)1−κ (
NA
t

)κ̃−1 (
κ̃NN

t + κNA
t

) (
NN
t +NA

t

)κ−κ̃−1 . (71)

Interestingly, ∂Ft
∂NN

t
and ∂F

∂NA
t

correspond to the profits realized by a non-automated and

an automated firm respectively in the equilibrium once the subsidy to the use of inter-
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mediates is implemented. Therefore we denote

πNt =
∂Ft
∂NN

t

and πAt =
∂Ft
∂NA

t

Further the (shadow) interest rate is given by rt = ρ + θ
·
Ct
Ct

= ρ −
·
λt
λt

. Using that

HA
t = (1−Gt)Nth

A
t , we can rewrite (70) and (71) as:

rtζt = πNt + ζtg
N
t + (ξt − ζt) η (Gt)

κ̃Nκ
t

(
hAt
)κ

((1− κ̃) (1−Gt) + (1− κ)Gt) +
·
ζt, (72)

rtξt = πAt + ζtg
N
t + (ξt − ζt) η (Gt)

κ̃Nκ
t

(
hAt
)κ

(1−Gt)

(
κ̃

(1−Gt)

Gt

+ κ

)
+
·
ξt. (73)

These expressions parallel equations (17) and (18) in the paper. The rental social value

of a non-automated firm (rtζt) consists of the current value of one intermediate (which

equals the profits when the optimal subsidy to the use of intermediates inputs is in

place), its positive impact on the horizontal innovation technology (the productivity of

which is γNt), its positive impact on the automation technology (which results from

the direct externality embedded in the automation technology from the number of firms

diminished by the additional externality coming from the share of automated products),

the expected increase in its value if it becomes automated minus the cost of the resources

required (the difference between these two terms is positive since the automation technol-

ogy is concave) and the change in its value. The rental social value of an automated firms

(rtξt) is the sum of the profits, its impact on horizontal innovation (through the same

externality as non-automated firm), its impact on the automation technology (which

results from two externalities as both the number of firms and the share of automated

products improve the automation technology), and the change in its value.

The first order condition with respect to HD
t gives (together with the condition that

HD
t ≥ 0):

vt ≥ ζtγNt, (74)

with equality when HD
t > 0. This equation is the counterpart of (21) in the equilibrium

case, it stipulates that when horizontal innovation takes place the social value of a non-

automated intermediate equals the cost of creating one. The first-order condition with

respect to HA
t gives:

vt = (ξt − ζt)κη (Gt)
κ̃Nκ

t

(
hAt
)κ−1

. (75)
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This equation is the counterpart of (19) in the equilibrium case. Everything else given,

ξt − ζt increases with πAt − πNt , which increases with wt, therefore this equation shows

that automation increases with low-skill wages (everything else given), just as in the

equilibrium case.

8.5.2 System of differential equations and steady state

After having introduced the same variables as in the equilibrium case, one can follow

the same steps and derive a system of differential equation in
(
nt, Gt, ĥ

A
t , χt

)
which

characterizes the solution (when there is positive growth). Equations (27) and (28) still

hold, while equations (30) and (31) are replaced with

·

ĥ

A

t =

γĥAt
1−κ

(
ωt

(
ϕ+ ω

1
µ

t

)−µ
π̂At
v̂t

+ 1−κ+(κ−κ̃)(1−Gt)
κ

ĥAt

)

−ηκGκ̃t
1−κ

(
ĥt
A
)κ(

1− ωt
(
ϕ+ ω

1
µ

t

)−µ)
π̂At
v̂t

+ ηGκ̃
t

(
ĥt
A
)κ+1

+ 1−κ̃
1−κg

N
t ĥ

A
t

, (76)

·
χt = χt

(
γωt

(
ϕ+ ω

1
µ

t

)−µ
π̂At
v̂t

+ γ
1− κ+ (κ− κ̃) (1−Gt)

κ
ĥAt − ρ− (θ − 1)ψgNt

)
.

gNt is still given by (38),
π̂At
v̂t

, HP
t and ωt are now given by

π̂At
v̂t

=

ψ

(
ϕL + ω

1
µ

t

)µ
HP
t

Gt

(
ϕ+ ω

1
µ

t

)µ
+ (1−Gt)ωt

,

HP
t =

(1− β)
1
θ β

β
1−β ( 1

θ
−1)χ

1
θ
t

(
Gt

(
ϕ+ ω

1
µ

t

)µ
+ (1−Gt)ωt

)ψ( 1
θ
−1)+1

Gt

(
(1− β)ϕ+ ω

1
µ

t

)(
ϕ+ ω

1
µ

t

)µ−1
+ (1−Gt)ωt

,

ωt = nt


β

1
1−β H

P
t

L

(
Gt

(
ϕ+ ω

1
µ

t

)µ−1
ω

1−µ
µ

t + (1−Gt)

)
×
(
Gt

(
ϕ+ ω

1
µ

t

)µ
+ (1−Gt)ωt

)ψ−1


β(1−σ)
1+β(σ−1)

,

which replace (35), (37) and (39).
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One can then solve for a steady state of this system with G∗ > 0 (and
(
gN
)∗
> 0 so

that n∗ = 0). (53) and (54) still apply, but (52) is replaced with

ĥA∗ =
κ

γ

ρ+ (θ − 1)ψgN∗

1− κ+ (1−G∗) (κ− κ̃)
, (77)

and (56) with

f sp
(
gN∗
)
≡ ρ+ (θ − 1)ψgN∗

ψHP∗


(
ĥA∗
)1−κ

ηκ (G∗)κ̃−1
+

1

γ

 ,

which is obtained by fixing
·

ĥ

A

t = 0 in (76) using (53) and (77). For gN∗ large enough

(but finite—and, in particular smaller than γH), HP∗ is arbitrarily small, while for the

same value G∗ and ĥA∗ are bounded below and above. As before, this establishes that

for gN∗ large enough f sp
(
gN∗
)
> 1. Furthermore f sp (0) = f (0), therefore condition 23

is also a sufficient condition for the existence of a steady state with positive growth and

G∗ > 0 for the system of differential equations.

8.5.3 Decentralizing the optimal allocation

We have already seen that the “static” optimal allocation given HP
t is identical to the

equilibrium allocation once a subsidy to the use of intermediates 1/σ is in place. The

“dynamic” part of the problem consists of the allocation of high-skill workers across the

two types of innovation and production. Therefore, we postulate that a social planner

can decentralize the optimal allocation using the subsidy to the use of intermediate

inputs and subsidies (or taxes) for high-skill workers hired in automation
(
sAt
)

and in

horizontal innovation
(
sHt
)
. Let us consider such an equilibrium and introduce the

notations ΩA
t ≡ 1− sAt and ΩH

t similarly defined. In this situation, the law of motion for

the private value of an automated firm, V A
t , is still given by (17), for a non-automated

firm it obeys:

rtV
N
t = πNt − ΩA

t vtht + η (Gt)
κ̃Nκ

t

(
hAt
)κ (

V A
t − V N

t

)
+
·
V
N

t , (78)

instead of (18), the first-order condition for automation is given by:

κη (Gt)
κ̃Nκ

t

(
hAt
)κ−1 (

V A
t − V L

t

)
= ΩA

t vt, (79)
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instead of (19), while the free entry condition, when gNt > 0, is given by

γNtV
N
t = ΩH

t vt, (80)

instead of (21). For ΩA
t and ΩH

t to decentralize the optimal allocation it must be that

these 4 equations hold together with (72), (73), (74) and (75).

Using (74) and (80), we then get that ΩH
t must satisfy

ΩH
t ζt = V N

t , (81)

similarly, using (75) and (79), we get

ΩA
t (ξt − ζt) = V A

t − V L
t . (82)

Plugging (81) and (82) in (78), we get that

rtζt =
πNt
ΩH
t

− ΩA
t

ΩH
t

vtht + η (Gt)
κ̃Nκ

t

(
hAt
)κ ΩA

t

ΩH
t

(ξt − ζt) +

·
Ω
H

t

ΩH
t

ζt +
·
ζt. (83)

Similarly, using (82) and the difference between (17) and (78) gives:

rt (ξt − ζt) =
πAt − πNt

ΩA
t

+ vtht − η (Gt)
κ̃Nκ

t

(
hAt
)κ

(ξt − ζt) +

·
Ω
A

t

ΩA
t

(ξt − ζt) +
·
ξt −

·
ζt. (84)

Combining (83) with (72), using (75) and (74) and the definition of ΩA
t and ΩH

t , we get:

·
s
H

t =
γπ̂Nt
v̂t
sHt −

(
1− sHt

)
gNt

+
γĥAt
κ

((
1− sAt

)
(1− κ) +

(
1− sHt

)
(κ̃ (1−Gt) + κGt − 1)

) . (85)

Similarly combining (84) with the difference between (73) and (72) and using (74)

gives:

·
s
A

t

(
ĥAt

)1−κ
ηGκ̃

t

= κ
π̂At − π̂Nt

v̂t
sAt − κ̃

(
1− sAt

)
ĥAt

1−Gt

Gt

. (86)

Therefore, in steady state, we have

sA∞ =
κ̃ĥA∞ (1−G∞)

κψHP
∞ + κ̃ĥA∞ (1−G∞)

≥ 0.
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Note from (86) that the share of automated products, sAt , must always be non-negative,

otherwise it cannot converge to a positive value, therefore sAt ≥ 0 everywhere (and in

fact > 0 if κ̃ 6= 0). Furthermore, if κ̃ = 0, sAt = 0 everywhere, the only externality

in automation comes from the total number of products, therefore the equilibrium fea-

tures the optimal amount of automation investment (when the monopoly distortion is

corrected and the optimal subsidy to horizontal innovation is implemented).

(85) gives the steady state value of the subsidy to horizontal innovation as:

sH∞ = 1−
γĥA∞ (1− κ)

(
1− sA∞

)
κgN∞ + γĥA∞ (1− κ̃ (1−G∞)− κG∞)

.

In addition, knowing that sAt > 0, imposes that sHt > 0—as sHt < 0 would lead to
·
s
H

t < 0.

8.5.4 Transitional dynamics for the social planner case

Figure 20 plots the transitional dynamics for the optimal allocation in our baseline case

(which features κ̃ = 0) and in the case where κ̃ = 0 analyzed in Figure 4. As shown

in Panel A and C, the economy also goes through three phases as a higher (shadow)

low-skill wage leads to more automation over time and a transition from a small share

to a high share of automated products. Relative to Figure 2.A and Figure 4.A, the

overall dynamics look quite similar but the growth rates are higher in the social planner

case, and the transition to phase 2 now happens roughly at the same time with and

without the automation externality, while in the equilibrium it is considerably delayed

in the presence of the externality (as, effectively, the productivity of the automation

technology is initially very low). In both cases, the social planner maintains a positive

subsidy to horizontal innovation. When κ̃ = 0 (without the automation externality), the

subsidy to automation is 0, while when κ̃ > 0 there is a positive subsidy to automation,

which is the largest in Phase 1. This subsidy explains why Phase 2 now starts at around

the same time.
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Figure 20: Transitional Dynamics in the Social Planner Case. Panel A and B, baseline case.
Panel C and D, with κ̃ = 0.5

8.6 Alternative model with automation at the entry-stage

To highlight that the evolution of the economy through three phases does not depend on

our assumption that new products are born non-automated, we present in this section a

model where, instead, we assume that automation can only take place at the entry stage.

That is, when a new firm is born, it can hire hAt workers to automate it, in which case

it is successful with probability min
(
η
(
Nth

A
t

)κ
, 1
)

(we abstract from the automation

externality for simplicity). Ex-ante a firm does not know whether it will succeed or not,

therefore, the free-entry condition can now be written as

vt ≥ γNtVt,

where

Vt = min
(
η
(
Nth

A
t

)κ
, 1
)
V A
t +

(
1−min

(
η
(
Nth

A
t

)κ
, 1
))
V N
t − vthAt .

is the expected value of a new firm. Since we used similar functional forms we have that

hAt obeys (19) unless κη
1
κNt

(
V A
t − V L

t

)
> vt, in which case Nth

A
t = η−

1
κ . Afterward a
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firm never becomes automated so that the law of motion for the value of an automated

and a non-automated firms both follow (17). In addition, the law of motion for Gt is

now given by
·
Gt = gNt

(
η
(
Nth

A
t

)κ −Gt

)
.

The resolution of the model follows the same steps as in the baseline case, and under

the appropriate condition on the discount rate, there exists an asymptotic steady state

with gNt > 0.

An important difference is that G∗ may be equal to 1 since all new products may

choose to be automated in steady state. In fact, one can derive that ĥA∗ = min
(
η−

1
κ , κ

1−κ
1
γ

)
.

Therefore G∗ < 1, if and only if η
(

κ
1−κ

1
γ

)κ
< 1. When G∗ < 1, we will have that

G∞ = G∗ < 1, so that, following Proposition 2,

gw∞ =
1

1 + β (σ − 1)
gv∞.

On the contrary, if G∗ = 1, then G∞ = 1, and following Proposition 2, we get that

gw∞ =
gv∞
ε

.

Figure 21 draws the transitional dynamics for the same parameters as in the baseline

case (even though the automation technology parameters have a different meaning here).

These parameters satisfy η
(

κ
1−κ

1
γ

)κ
< 1, and the figure shows that the economy goes

through three phases as in our baseline model.
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Figure 21: Transitional Dynamics for an alternative model where automation only happens
at entry. Baseline parameters.
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8.7 Supply response in the skill distribution

The supply of low-skill and high-skill labor are now endogenous. This does not affect

(11) which still holds. (10) also holds with Lt replacing L and knowing that HP
t obeys

(16) but with Ht instead of H in the right-hand side. Because workers are ordered such

that a worker with a higher index j supplies relatively more high-skill labor, then at all

point in times there exists a threshold jt such that workers j ∈
(
0, jt

)
supply low-skill

labor and workers j ∈
(
jt, 1

)
supply high-skill labor. As a result, we get that the total

mass of low-skill labor is:

Lt = lHjt, (87)

and the mass of high-skill labor is

Ht = H

(
1− j

1+q
q

t

)
≤ H. (88)

The cut-off jt obeys lHwt = Γ
(
jt
)
vt, that is

jt =

(
q

1 + q

lwt
vt

)q
. (89)

jt decreases as the skill premium increases and q measures the elasticity of jt with respect

to the skill premium.

8.7.1 Asymptotic growth rates

We consider processes
(
Nt, Gt, H

P
t

)
such that gNt , Gt and HP

t admit strictly positive

limits. Plugging (89) and (87) in (10), we get:

vt
wt

= l

(
1− β
β

H

HP
t

(
q

1 + q

)q Gt + (1−Gt)
(
1 + ϕwε−1t

)−µ
Gt

(
1 + ϕwε−1t

)−1
+ (1−Gt)

(
1 + ϕwε−1t

)−µ
) 1

1+q

, (90)

which together with (11) determines vt and wt for given
(
Nt, Gt, H

P
t

)
. From then on

the reasoning follows that of Appendix 8.2.1. First, we derive that w∞ > 0, such that

gv∞ = gGDP∞ = ψgN∞, and that we must have gw∞ < gv∞, such that j∞ = 0. Second, we

study the asymptotic behavior of wt both when ε <∞ and when ε =∞.
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Case with ε <∞. Plugging (90) in (11) gives wt in function of Nt, Gt and HP
t :

wt =

σ−1
σ
β

1+βq
1+q

(
(1− β)1+q

q

) (1−β)q
1+q 1

l1−β

(
HP
t

H

) 1−β
1+q

N
1

σ−1

×
(
Gt(1+ϕwε−1

t )
µ−1

+(1−Gt)
) 1−β

1+q

(Gt(ϕwε−1+1)µ+(1−Gt))
1

1−σ+
1−β
1+q

, (91)

which replaces (43). It is direct that when G∞ < 1, we obtain (26). In this case, we

further have

gj∞ = q (gw∞ − gv∞) = − qβ (σ − 1)

1 + q + β (σ − 1)
gGDP∞ . (92)

Case with ε =∞. In this case, (91) becomes

wt =

σ−1
σ
β
(

1+q
q

)(1−β)q (
HP
t

lH

)1−β
N

1
σ−1 (1−Gt)

1−β
1+q

×
(
Gt (ϕ̃w)β(σ−1) + (1−Gt)

) 1
σ−1
− 1−β

1+q
, if wt > ϕ̃−1,

wt =
σ − 1

σ
β

(
1 + q

q

)(1−β)q (
HP
t

lH

)1−β

N
1

σ−1 , if wt < ϕ̃−1.

Once again, following the steps of Appendix 8.2.1, we get that if G∞ < 1, (26) applies

(and accordingly we also get (92)).

8.7.2 Dynamic system

It is convenient to redefine nt ≡ N
−β

(1−β)
(1+q)

1+q+β(σ−1)

t , we can then write the entire dynamic

system as a system of differential equations in
(
nt, Gt, ĥ

A
t , χt

)
with two auxiliary vari-

ables ωt and jt. Equations (27) is now given by

·
nt = − β

1− β
1 + q

1 + q + β (σ − 1)
gNt nt,

(28), (30), (31), (35), (37) still apply and equation (38) as well provided that H is

replaced by Ht given by (88). ωt is implicitly defined by:

ωt = nt


(
σ−1
σ

) 1+q
1−β β

1+βq
1−β

(
(1− β)1+q

q

)q
HP
t

l1+qH

(
Gt

(
1 + ϕω

− 1
µ

t

)µ−1
+ (1−Gt)

)

×
(
Gt

(
ϕ+ ω

1
µ

t

)µ
+ (1−Gt)ωt

)ψ(1+q)−1


β(1−σ)

1+q+β(σ−1)

,

93



which replaces (39) and is a rewriting of (91) and jt is given by

j =

ωt q

1 + q

β

1− β

Gt

(
1 + ϕω

− 1
µ

t

)µ−1
+ 1−Gt

Gt

(
ϕ+ ω

1
µ

t

)µ
+ (1−Gt)ωt

HP
t

H


q

1+q

which is derived using (89) and (90).

The steady state for this system involves n∗ = ω∗ = 0 and therefore j∗ = 0. As a

result H∗ = H, so that the steady state values of
(
gN∗, G∗, ĥA∗, χ∗

)
are identical to the

baseline case with H replacing H.

8.8 Alternative production technology for machines

We now assume that the high-skill factor share in inputs production is higher for ma-

chines production than it is for the production of the final good. The analysis follows

similar steps as in the baseline model. The cost function (4) now becomes

ck (α (i)) = β−βκk (1− βk)−(1−βk)
(
w1−ε + ϕ (px)1−ε α (i)

) βk
1−ε v1−βk , (93)

for k ∈ {1, 2} indexing, respectively, the production of final good and machines.

As before aggregating (93) and the price normalization gives a “productivity” condi-

tion, which replaces (11).

(
G
(
w1−ε + ϕ (px)1−ε

)µ1
+ (1−G)wβ1(1−σ)

) 1
1−σ

v1−β1 =
σ − 1

σ
ββ11 (1− β1)1−β1N

1
σ−1 ,

(94)

where we generalize the definition of µ: µk ≡ βk(σ−1)
ε−1 . Following the same methodology

for the production of machines, we get

(
G
(
w1−ε + ϕ (px)1−ε

)µ2
+ (1−G)wβ2(1−σ)

) 1
1−σ

v1−β2 =
σ − 1

σ
ββ22 (1− β2)1−β2N

1
σ−1px.

(95)
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Taking the ratio between these two expressions, we get

(
G

((
w
px

)1−ε
+ ϕ

)µ2
+ (1−G)

(
w
px

)β2(1−σ)) 1
1−σ

vβ1−β2(
G

((
w
px

)1−ε
+ ϕ

)µ1
+ (1−G)

(
w
px

)β1(1−σ)) 1
1−σ

=
ββ22 (1− β2)1−β2 (px)1−β2+β1

ββ11 (1− β1)1−β1
.

(96)

The share of revenues accruing to machines in the production of intermediate input

i for the usage-k (i.e for use in the final sector or the machines sector) is given by

νk,x (α (i)) =
σ − 1

σ
α (i) βk

ϕ (px)1−ε

w1−ε + ϕ (px)1−ε
, (97)

aggregating over all intermediates inputs and denoting Rk (α (i)) the revenues generated

through usage k by a firm of type α (i), we get that the total expenses in machines are

given by

pxX = NG (R1(1)ν1,x(1) +R2(1)ν2,x(1)) . (98)

The zero profit condition in the machines sector gives

pxX = N (GR2 (1) + (1−G)R2 (0)) . (99)

Revenues themselves are given by

R1 (α (i)) =

(
σ − 1

σ

)σ−1
c1 (α (i))1−σ Y and R2 (α (i)) =

(
σ − 1

σ

)σ−1
c2 (α (i))1−σ pxX,

(100)

so that (7) still holds but separately for revenues occurring from each activity and with

µk replacing µ. Combining (7), (97), (98) and (99), we get(
G
(

1− σ−1
σ
β2

ϕ(px)1−ε

w1−ε+ϕ(px)1−ε

)
+ (1−G)

(
1 + ϕ

(
w
px

)ε−1)−µ2)
R2(1)
R1(1)

= Gσ−1
σ
β1

ϕ(px)1−ε

w1−ε+ϕ(px)1−ε

, (101)

which determines the revenues ratio as a function of input prices solely.

To derive low-skill wages, we compute the share of revenues accruing to low-skill
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labor in the production of intermediate input i for the usage-k as:

νk,l (α (i)) =
σ − 1

σ
βk

(
1 + α (i)ϕ

(
w

px

)ε−1)−1
,

so that total low-skill income can be written as:

wL = N (GR1(1)ν1,l(1) + (1−G)R1(0)ν1,l(0) +GR2(1)ν2,l(1) + (1−G)R2(0)ν2,l(0)) .

(102)

The share of revenues going to high-skill workers is given by νk,h = σ−1
σ

(1− βk) both in

automated and non-automated firms. As a result

vHP = N (ν1,h (GR1(1) + (1−G)R1(0)) + ν2,h (GR2(1) + (1−G)R2(0))) , (103)

Take the ratio between (102) and (103), and use (7) to obtain:

wL

vHP
=


β1

(
G

(
1 + ϕ

(
w
px

)ε−1)−1
+ (1−G)

(
1 + ϕ

(
w
px

)ε−1)−µ1)

+β2
R2(1)
R1(1)

(
G

(
1 + ϕ

(
w
px

)ε−1)−1
+ (1−G)

(
1 + ϕ

(
w
px

)ε−1)−µ2)


(1− β1)

(
G+ (1−G)

(
1 + ϕ

(
w
px

)ε−1)−µ1)

+ (1− β2) R2(1)
R1(1)

(
G+ (1−G)

(
1 + ϕ

(
w
px

)ε−1)−µ2)


(104)

Together (94), (96), (101) and (104) determine w, v, px and R (2) /R (1) given N,G

and HP . The equations for the dynamic part are similar to the baseline model. We now

prove Proposition 5 and the associated footnote.

8.8.1 Asymptotic behavior for ε < 1

As the supply of machines is going up and there is imperfect substitutability in produc-

tion between machines and low-skill labor, any equilibrium must feature w∞/p
x
∞ = ∞

even if w∞ <∞. Applying this to (96), we get

(pxt )
1−β2+β1 ∼ ββ11 (1− β1)1−β1

ββ22 (1− β2)1−β2
ϕ
µ2−µ1
1−σ vβ1−β2t . (105)
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Further plugging this last relationship in (94), we get:

vt ∼
(
σ−1
σ

)1+ β1
1−β2 ϕψ2µ1ββ11 (1− β1)1−β1

(
β

β2
1−β2
2 (1− β2)

)β1
G
ψ1

(
1+

β1(β2−β1)
(1−β2)

)
t N

ψ1

(
1+

β1(β2−β1)
(1−β2)

)
t

, (106)

where for xt and yt (possibly with no limits), xt ∼ yt signifies xt/yt → 1. Hence

gv∞ = ψ1

(
1 +

β1 (β2 − β1)
(1− β2)

)
gN∞. (107)

Through (101), the revenues of the machines sector and the final good sector are of the

same order, which implies that Y , pxX and v grow at the same rate. Therefore

gGDP∞ = gY∞ = gv∞ = ψ1

(
1 +

β1 (β2 − β1)
(1− β2)

)
gN∞.

In fact (101) gives
R2,t (1)

R1,t(1)
∼

σ−1
σ
β1

1− σ−1
σ
β2
. (108)

Using (105) and (106), one further gets:

pxt ∼
ββ11 (1− β1)1−β1(

ββ22 (1− β2)1−β2
) 1−β1

1−β2

ϕ
ψ2µ1

(β1−β2)
β1

(
σ

σ − 1

)β2−β1
1−β2

G
−ψ2(β2−β1)
t N

−ψ2(β2−β1)
t ,

therefore

gpx∞ = −ψ2 (β2 − β1) gN∞ < 0, (109)

since β2 > β1. Using that w∞/p
x
∞ =∞ and (108) in (104) leads to:

wt

(
wt
pxt

)ε−1
∼

vtH
P
t


β1

(
Gt + (1−Gt)

(
ϕ
(
wt
pxt

)ε−1)1−µ1
)

+β2
σ−1
σ
β1

1−σ−1
σ
β2

(
Gt + (1−Gt)

(
ϕ
(
wt
pxt

)ε−1)1−µ2
)


ϕGtL
(

1− β1 + (1− β2)
σ−1
σ
β1

1−σ−1
σ
β2

) . (110)
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Since β2 > β1, then (1−Gt)
(
wt
pxt

)(ε−1)(1−µ1)
dominates (1−Gt)

(
wt
pxt

)(ε−1)(1−µ2)
asymp-

totically regardless of the value ofG∞ (in other words, we can always ignore (1−Gt)
(
wt
pxt

)(ε−1)(1−µ2)
in our analysis).

The reasoning then follows that of Appendix 8.2.1. If G∞ < 1, then (110) implies

w
1+β1(σ−1)
t ∼ (pxt )

(σ−1)β1 vHPβ1 (1−Gt)

ϕµ1GtL
(

1− β1 + (1− β2)
σ−1
σ
β1

1−σ−1
σ
β2

) , (111)

which, together with (107) and (109) gives (41).

Alternatively assume that G∞ = 1 and that lim (1−Gt)N
ψ2(1−µ1) ε−1

ε
t exists and is

finite. Suppose first that lim sup (1−Gt)
(
wt
pxt

)(ε−1)(1−µ1)
=∞, then there must be a sub-

sequence where (111) is satisfied, which with (107) and (109) leads to a contradiction

with the assumption that lim (1−Gt)N
ψ2(1−µ) ε−1

ε
t exists and is finite.

If lim (1−G)
(
wt
px

)(ε−1)(1−µ1)
= 0, then (110) gives

wεt ∼
(pxt )

ε−1 vtH
P
t

(
β1 + β2

σ−1
σ
β1

1−σ−1
σ
β2

)
ϕL
(

1− β1 + (1− β2)
σ−1
σ
β1

1−σ−1
σ
β2

) ,
which implies with (107) and (109) that:

gw∞ =
1

ε

(
1− (β2 − β1) (ε− 1)

(1− β2 + β1)

)
gGDP∞ . (112)

Finally, if lim sup (1−Gt)w
(ε−1)(1−µ)
t is finite but strictly positive, then as in Ap-

pendix 8.2.1, one can show that this requires that lim (1−Gt)N
ψ2
ε
(ε−1)(1−µ1)

t > 0, from

which we can derive that (112) also holds in that case. This proves Proposition 5 and

the associated footnote in the imperfect substitutes case.

8.8.2 Perfect substitutes case

In the perfect substitutes case, (94) becomes:

(
Gϕ̃β1(σ−1) (px)β1(1−σ) + (1−G)wβ1(1−σ)

) 1
1−σ

v1−β1

= σ−1
σ
ββ11 (1− β1)1−β1N

1
σ−1 for w > px/ϕ̃

, (113)
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wβ1v1−β1 =
σ − 1

σ
ββ11 (1− β1)1−β1N

1
σ−1 for w < px; (114)

(96) becomes

(
Gϕ̃β2(σ−1) (px)β2(1−σ) + (1−G)wβ2(1−σ)

) 1
1−σ

vβ1−β2(
Gϕ̃β1(σ−1) (px)β1(1−σ) + (1−G)wβ1(1−σ)

) 1
1−σ

=
ββ22 (1− β2)1−β2px

ββ11 (1− β1)1−β1
for w > px/ϕ̃,

(115)

px =
ββ11 (1− β1)1−β1

ββ22 (1− β2)1−β2
wβ2−β1vβ1−β2 for w < px/ϕ̃; (116)

(101) becomes(
G

(
1− σ − 1

σ
β2

)
+ (1−G) ϕ̃β2(1−σ)

(
w

px

)β2(1−σ)) R2 (1)

R1(1)
= G

σ − 1

σ
β1 for w > px/ϕ̃,

(117)

with R2 (1) = 0 for w < px/ϕ̃; and (104) becomes

wL

vHP
= (1−G)

β1

(
ϕ̃ w
px

)β1(1−σ)
+ β2

R2(1)
R1(1)

(
ϕ̃ w
px

)β2(1−σ)
(1− β1)

(
G+ (1−G)

(
ϕ̃ w
px

)β1(1−σ))
+ (1− β2) R2(1)

R1(1)

(
G+ (1−G)

(
ϕ̃ w
px

)β2(1−σ))


for w > px/ϕ̃,

(118)
wL

vHP
=

β1
1− β1

for w < px/ϕ̃. (119)

Together (114), (116) and (119) show that we must have wt ≥ pxt
ϕ̃

for t large enough,

which delivers (107) and (109).

Assume that G∞ < 1, then (118) gives (111) from which we get that (41) is satisfied.

Now consider the case where G∞ = 1 and lim (1−Gt)N
ψ2
t exists and is finite. Then

(118) and (117) imply

wt ∼ (1−Gt) vt

(
ϕ̃
wt
pxt

)β1(1−σ) (β1 + β2
σ−1
σ
β1

1−σ−1
σ
β2

(
ϕ̃wt
pxt

)−(β2−β1)(σ−1))
1− β1 + (1− β2)

σ−1
σ
β1

1−σ−1
σ
β2

HP
t

L
for w > px/ϕ̃.
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We can then derive that ϕ̃wt
pxt

must have a finite (and positive) limit, so that

gw∞ = gp
x

∞ = − β2 − β1
1− β2 + β1

gGDP∞ .

This proves Proposition 5 and its associated footnote in the perfect substitutes case.

8.9 Machines as a capital stock

The solution follows similar steps to the baseline case. We denote by r̃t the gross rental

rate of machines and by ∆ their depreciation rate, such that:

r̃t = rt + ∆. (120)

The unit cost of intermediate input i is now given by

c (w, v, r̃, α (i)) = β−β (1− β)−(1−β)
(
w1−ε + ϕr̃1−ε

) β
1−ε v1−β. (121)

instead of (4). We can then derive a productivity condition:

(
G
(
ϕr̃1−ε + w1−ε)µ + (1−G)wβ(1−σ)

) 1
1−σ v1−β =

σ − 1

σ
ββ (1− β)1−β N

1
σ−1 , (122)

a skill premium condition:

v

w
=

1− β
β

L

HP

G+ (1−G)
(

1 + ϕ
(
w
r̃

)ε−1)−µ
G
(

1 + ϕ
(
w
r̃

)ε−1)−1
+ (1−G)

(
1 + ϕ

(
w
r̃

)ε−1)−µ , (123)

and, taking the ratio of revenues going to high-skill workers in production over revenues

going to machines owners, a relationship linking the gross rental rate of capital and

high-skill wages:

v

r̃
=

1− β
β

K

HP

G
(
ϕ+

(
w
r̃

)1−ε)µ
+ (1−G)

(
w
r̃

)β(1−σ)
Gϕ
(
ϕ+

(
w
r̃

)1−ε)µ−1 . (124)
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In addition, we still have (8) and the Euler equation (22), while the capital accumulation

equation is given by
·
Kt = Yt − Ct −∆Kt. (125)

8.9.1 Proposition 2

It is direct to see that together these equations imply that if gNt , Gt, H
P
t admit strictly

positive limits, we must have

gv∞ = gK∞ = gY∞ = gC∞ = ψgN∞,

from which, the Euler equation (22) gives that

r̃∞ = ρ+ θψgN∞ + ∆.

Therefore, using (122) and (124), one recovers Proposition 2 in this case.

8.9.2 Transitional dynamics

The transitional dynamics can now be expressed as a system of differential equations

in xt ≡
(
nt, Gt, K̂t, ĥ

A
t , v̂t, ĉt

)
where K̂t = N−ψt —so that there is one additional state

variable and one additional control variable. Moreover, we redefine ωt ≡
(
w
r̃

) 1
β(1−σ) . First

(27), and (28) obviously still hold. The ratio of profits is naturally now given by

π (wt, vt, 0)

π (wt, vt, 1)
=
π̂Nt
π̂At

=

(
1 + ϕ

(
wt
r̃t

)ε−1)−µ
= ωt

(
ϕ+ ω

1
µ

t

)−µ
, (126)

in addition, (17), (18), (19) and (21) still hold, so that we still get (30). Using (18), (19),

(21), (120) and (126), we get:

·
v̂t = v̂t

(
r̃t −∆− (ψ − 1) gNt − γωt

(
ϕ+ ω

1
µ

t

)−µ
π̂At
v̂t
− γ 1− κ

κ
ĥAt

)
. (127)

The Euler equation (22) and the capital accumulation equation (125) can be rewritten

as
·
ĉt =

ĉt
θ

(
r̃t −∆− ρ− θψgNt

)
, (128)
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·

K̂t = σψHP
t v̂t − ĉt −

(
∆ + ψgNt

)
K̂t (129)

where we used (120) and (34). Together (27), (28), (30), (127), (128) and (129) give a

system of differential equations which depend on gNt , r̃t, π̂
A
t /v̂t and ωt.

gNt is still given by (38) as a function
(
xt, ωt, H

P
t

)
, (122) implies

r̃t = v̂
− 1−β

β

t

(
σ − 1

σ

) 1
β

β (1− β)
1−β
β

(
Gt

(
ϕ+ ω

1
µ

t

)µ
+ (1−Gt)ωt

) 1
β(σ−1)

, (130)

which gives r̃t as a function of (xt, ωt). We still have (32), which combined with (121)

gives

πAt =
(σ − 1)σ−1

σσ

(
ββ (1− β)1−β

)σ−1(
ω

1
µ

t + ϕ

)µ
r̃β(1−σ)v−ψ

−1

Yt. (131)

Combining (34) with (131) and (130) gives (35) again as a function of
(
xt, ωt, H

P
t

)
. To

get HP
t as a function of (xt, ωt), rewrite (124):

HP
t =

1− β
β

r̃tK̂t

v̂t

Gt

(
ϕ+ ω

1
µ

t

)µ
+ (1−Gt)ωt

Gtϕ

(
ϕ+ ω

1
µ

t

)µ−1 . (132)

Finally, combining (123) with (124) gives an equation which implicitly defines ωt:

ωt = nt


LGtϕ

(
ϕ+ ω

1
µ

t

)µ−1
K̂t

(
G

(
1 + ϕω

− 1
µ

t

)µ−1
+ (1−G)

)


β(σ−1)
1+β(σ−1)

This finishes the description of the system of differential equations that the equilibrium

must satisfy.

8.9.3 steady state.

As before, we can look for a steady state of this system with G∗ > 0 and gN∗ > 0. Then,

we must have n∗ = ω∗ = 0, and (53), (54) and (55) still hold. (128) implies

r̃∗ = ∆ + ρ+ θψgN∗, (133)
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while (127) gives

r̃∗ = ∆ + (ψ − 1) gN∗ + γ
1− κ
κ

ĥA∗.

Combining these two equations delivers (52). Therefore, the steady state values of

G∗, ĥA∗ and gN∗ are the same as in the baseline case. It is then direct to use (133) to

obtain r̃∗, from which we get v̂∗ using (130), K̂∗ thanks to (132) and finally ĉ∗ with

(129).

8.10 Bayesian estimation

We employ Bayesian estimation methods. We are interested in the posterior distribution

of the parameter vector b:

f(b|Ŷ T ) =
f(Ŷ T |b)π(b)´

b′∈B f(Ŷ T |b′)dπ(b′)
,

where the domain of the uniform prior is given by table 4 below.

Table 4: Prior distribution on parameters: uniformly distributed on [min,max].

σ µ β l γ κ̃ θ η κ ρ ϕ q n0 G0

min 3 1/2 0.1 0.5 0.15 0.01 1.5 0.2 0.01 0.015 5 0.2 0.1 0.1
max 6 0.99 0.95 1 0.5 0.99 2.5 0.5 0.99 0.07 15 0.99 10 0.8

A uniform prior guarantees that

f(b|Ŷ T ) ∝ f(Ŷ T |b).

The pdf does not have a closed-form solution and we employ Monte Carlo simulation

methods. We are particularly interested in the mode of f(b|Ŷ T ) and the unconditional

posterior distributions of f(bi, Ŷ
T ) for each parameter bi.

8.10.1 The mode

We employ the fmincon interior-point algorithm in Matlab to findmaxbf(Ŷ T (b, x̂(bP ))|b),
where x̂(bP ) is the solution to the system of differential equations and the dependence

of Ŷ T on both b and x∗ is made explicit (recall that bP is the subset of the parameter

vector, b, concerning the deterministic model). We employ an algebraic gradient, by
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noting that except for numerical and discretization errors, the solution of differential

equations to the system described above, x∗, is defined as:

S(x∗, b) =
−→
0 ,

such that:

dx∗ = −[DxS(x∗, b)]−1DbS(x∗, b)db,

which—along with analytical expressions for the derivatives of Ŷ T and f—give an an-

alytical expression for the gradient Dbf . We use a finite-difference Hessian. We start

the algorithm at 20 points drawn from the uniform distribution on B. We include

a covariance estimate for the mode/MLE estimator, by writing the MLE maximization

problem as maxblogf(Ŷ T |b) = maxbΣ
M
m=1Σ

T
t=1logf(Ŷt|Ŷ t−1, b), and noting that the max-

imum likelihood estimator is defined as ΣM
m=1Σ

T
t=1

∂
∂b
logf(Ŷ t|Ŷ t−1, bMLE) = 0. Standard

asymptotics then imply that

√
MT

(
b0 − bMLE

) d→ N(0, H−1IH−1),

where I = 1
TM

∑
m

∑
t
∂logf t(Ŷt|Ŷ t−1,bMLE)

∂b
∂logf t(Ŷt|Ŷ t−1,bMLE)′

∂b
andH = 1

TM

∑
k

∑
t
∂2logf t(Ŷt|Ŷ t−1,bMLE)

∂b∂b′
.

We use the covariance estimate of the maximum likelihood estimator for the weighting

function in Bayesian estimation.

8.10.2 The unconditional posterior

Let Bi be the domain for the parameter bi. For such a parameter bi we split the domain

up into N non-overlapping intervals, Bi,n such that Bi =
⋃N
n=1 Bi,n. For parameter bi

and interval n let 1i,n(b) be an indicator function for whether bi is in interval Bi,n. We

are interested in:

ˆ
bi∈Bi,n,b−i∈B−i

f(b|Ŷ T )db =

ˆ
b∈B

f(b|Ŷ T )1i,n(b)db.

By the law of large numbers we can then draw M values of bm from a uniform distribution

which spans B and use:

1

M

∑
f(bm|Ŷ T )1i,n(bm)→

ˆ
b∈B

f(b|Ŷ T )1i,n(b)db.
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As shown by Geweke (1989) a more efficient approach is to sample from an importance

sampling density, g(b) and use:

1

M

∑ f(bm|Ŷ T )

g(bm)
1i,n(bm)→

ˆ
b∈B

f(b|Ŷ T )

g(bm)
1i,n(b)g(bm)db =

ˆ
b∈B

f(b|Ŷ T )1i,n(b)db.

We specify g(b) as a mixture density between a uniform distribution on B and a

multivariate normal with the mode (MLE) and a diagonal covariance matrix with a

variance of twice that of the covariance estimate of the maximum likelihood estimator.

If a draw b does not conform to the conditions of Proposition 3 and does not have a

unique asymptotic steady state the value is set at f(b|Ŷ T ) = 0 (though this does not

matter in practice). The weight on the uniform distribution is 0.25. The inclusion of a

uniform ensures that f(b)/g(b) is close to zero when b is far away from the mode. Figure

22 gives the the unconditional posterior distributions of the model parameters.
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Figure 22: The unconditional posterior distributions of the model parameters, bP .
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