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Abstract

Do higher wages induce more automation innovation? We identify automa-

tion patents in machinery. We show that a higher automation intensity predicts

a decline in routine tasks across US sectors. Then, we estimate how innovating

firms respond to changes in their downstream firms’ low- and high-skill wages. We

compute these wages by combining macroeconomic data on 41 countries with inno-

vating firms’ global market exposure. Higher low-skill wages increase automation

innovation (but not other machinery innovation) with an elasticity of 2-5. Fi-

nally, we show that the German Hartz labor market reforms reduced automation

innovations by foreign firms more exposed to Germany.
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1 Introduction

Do higher wages lead to more labor-saving innovation? And if so, by how much? Eco-

nomic theory posits that firms innovate more in automation technology when labor

costs rise. This mechanism is key for the long-term consequences of policies such as

the minimum wage and is at the heart of a growing theoretical literature on the role

of automation in economic growth (e.g. Acemoglu and Restrepo, 2018, Hémous and

Olsen, 2022). However, empirical evidence for induced automation innovation is lacking.

Current research faces two challenges: identifying automation innovations and finding

exogenous variation in labor costs.

Accordingly, our paper makes two contributions: First, we develop a new classifica-

tion of automation innovations using patent data. Second, we isolate exogenous variation

in labor costs from the perspective of the innovating firms and provide the first evidence

on induced automation innovation at the firm-level. We find that a 1% increase in low-

skill wages induces between 2 and 5% more automation innovations. Two policy shocks,

changes in the minimum wage and Germany’s Hartz reforms, display comparable effects.

Our classification aims to identify automation innovations that allow for the replace-

ment of workers with equipment in some tasks. We focus on patents in machinery

(machine tools, handling machines, textile and paper machines, etc.), which account for

around 18% of all patents. To classify patents, we follow a two-step procedure: First, we

use the text of European patents to identify technology categories in machinery (IPC and

CPC codes) associated with automation. Second, we use these technology categories to

classify the universe of machinery patents. This procedure leverages that the combined

wording of many patents improves the signal of automation characteristics and allows

us to classify patents for which we do not have the text. The resulting classification is

transparent, uses highly disaggregated technology categories, and covers a wide range

of automation technologies. As a validation exercise, we map our patents to sectors of

use and reproduce the cross-sectoral analysis of Autor, Levy and Murnane (2003). We

find that in the United States, sectors that use more automation-intensive equipment

experience a relative decline in routine tasks and the labor share, and a relative increase

in the skill ratio.

We then proceed to our main empirical analysis which studies how automation inno-
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vations respond to changes in wages. We exploit plausibly exogenous variation in labor

costs from the perspective of the innovating firms using a shift-share design. Automation

innovators are often equipment manufacturers that sell their machines to downstream

firms in different countries. Thus, the incentives of automation producers to innovate

depend on the labor costs paid by their downstream firms. To proxy for these labor

costs, we compute weighted averages of low- and high-skill labor costs using data on

innovating firms’ international exposure and country-level labor costs.

We implement this empirical strategy as follows. We rely on the PATSTAT database,

which contains close to the universe of patents. We link patents to firms and apply our

classification of automation and non-automation patents in machinery. To proxy for

firms’ international exposure, we use the geographic distribution of their machinery

patents pre-sample. We combine these exposure weights with macroeconomic data from

41 countries. Given our focus on international innovation, we restrict attention to patents

applied for in at least two countries. Our sample covers the period 1997-2011 and includes

3,236 firms, accounting for 53.5% of global automation innovations in machinery. We

run Poisson regressions with a 2-year lag between patent applications and labor costs,

and we include firm, industry-year, and country-year fixed effects.

We find a substantial effect of wages on automation innovations. Increases in low-skill

labor costs (referred to as wages for simplicity) lead to more automation innovations with

an elasticity between 2 and 5. In line with the capital-skill complementarity hypothesis

(Krusell, Ohanian, Rios-Rull and Violante, 2000), increases in high-skill wages reduce

automation innovations by a similar amount. We draw on the recent shift-share literature

and interpret our results through the lens of Borusyak, Hull and Jaravel (2022). In

our context, identification can be obtained from conditionally randomly assigned wage

shocks. We leverage firm-level variation by including country-year fixed effects, which

enables us to control for domestic shocks to wages and innovation. Since we control

for high-skill wages, our regression coefficients must reflect the effect of foreign demand

shocks for automation equipment producers with unequal effects on low- and high-skill

wages. We then argue that these foreign demand shocks are most likely regulatory shocks

or labor supply shocks that allow us to identify a causal effect of wages on automation

innovations. Importantly, we find that non-automation machinery innovations by the

same firms, targeting the same sectors, do not respond to wage shocks.

We supplement this analysis by focusing on two cases where labor cost changes

arise directly from policy interventions. First, we build a measure of minimum wages
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for a subset of countries. We find a positive effect of minimum wages on automation

innovations. Second, we focus on a specific labor market shock, the Hartz reforms in

Germany. These were a series of labor market reforms implemented in 2003-2005. They

are credited with increasing labor supply and reducing labor costs, notably for low-skill

workers (Krause and Uhlig, 2012). Therefore, we predict that these reforms reduced

automation innovation. In a difference-in-difference exercise, we find that foreign firms

that are relatively more exposed to Germany innovated less in automation technologies

after the Hartz reforms. Finally, in a triple-difference exercise, we find that the reforms

also decreased automation innovations relative to non-automation innovations.

We are motivated by a theoretical literature on automation and endogenous growth

and contribute to three literatures: on induced automation, on induced innovation more

generally, and on the measurement of automation. The theoretical argument that higher

wages should lead to more labor-saving technology adoption (e.g. Zeira, 1998) and in-

novation is well-understood. In Hémous and Olsen (2022) and Acemoglu and Restrepo

(2018), wages affect the direction of innovation in the form of automation or the cre-

ation of new tasks. The quantitative behavior of these directed technical change models

depends crucially on the elasticity of innovation with respect to labor costs (Acemoglu,

2023). We estimate such an elasticity and provide empirical support for this literature.1

Despite this theoretical literature, existing empirical evidence on the effect of wages

on induced automation, adoption or innovation, remains limited.2 A few papers show

that labor market conditions affect adoption of labor-saving technologies in agriculture

(Hornbeck and Naidu, 2014, Clemens, Lewis and Postel, 2018, and Voth, Caprettini

and Trew, 2022), health care (Acemoglu and Finkelstein, 2008), and manufacturing

(Lewis, 2011 and Acemoglu and Restrepo, 2022). Lordan and Neumark (2018) find that

minimum wage increases displace workers in automatable jobs and Fan, Hu and Tang

(2021) find that they induce Chinese firms to adopt industrial robots. None of these

papers use firm-level variation in the manufacturing sector, as we do. More importantly,

we focus on innovation rather than adoption. This is an important distinction: adoption

generally refers to firms deciding whether to use an existing technology, while innovation

1Acemoglu (2023) uses estimates from our analysis to calibrate a directed technical change model.
2In contrast, there is an extensive empirical literature on the effects of technology on wages and

employment: see e.g., Autor et al. (2003), Autor and Dorn (2013) or Gaggl and Wright (2017) for IT,
Doms, Dunne and Troske (1997) for factory automation, Boustan, Choi and Clingingsmith (2022) for
CNC, Graetz and Michaels (2017) or Acemoglu and Restrepo (2020) for robots, Mann and Püttmann
(2021), Bessen, Goos, Salomons and van den Berge (2019) and Aghion, Antonin, Bunin and Jaravel
(2022) for broader measures of automation.

3



is a continuous process of creating new technologies. While a shock to adoption must

die out over time (when all firms have adopted a technology), a shock to innovation can

build on itself. As a result, i) adoption and innovation matter at different time horizons,

ii) knowledge spillovers play a different role for innovation than adoption and iii) the

growth literature mentioned above focuses on innovation.

The literature on induced automation innovation is sparser. Acemoglu and Restrepo

(2022) find a positive effect of aging on patenting in robotics and numerical control in

cross-country regressions, though they focus mainly on adoption. Our paper differs in

at least four ways: we build a broader measure of automation innovation in machin-

ery; we are interested in the effect of all wage variations, not only variations arising

from demographic trends; we consider policy-induced changes and, most importantly,

we use firm-level panel regressions instead of a country-level cross-sectional analysis. In

contemporaneous work, Danzer, Feuerbaum and Gaessler (2020) exploit an immigrant

settlement policy in Germany to show that increases in labor supply discourage automa-

tion innovation at the level of local labor markets, and San (2023) shows that a negative

shock to agricultural immigration from Mexico induced relatively more innovation re-

lated to labor-intensive crops.3 Neither of these papers exploit firm-level variation, nor

do they estimate the effect of labor cost changes on automation innovations.

In a broader context, an extensive literature shows that the direction of innovation

is endogenous (e.g. Acemoglu and Linn, 2004, for pharmaceuticals and Popp, 2002,

for energy-saving technologies). We build on Aghion, Dechezleprêtre, Hémous, Martin

and Van Reenen (2016), who show that an increase in gas prices leads firms in the

auto industry to engage more in clean and less in dirty innovations. We use a similar

shift-share design and also measure firms’ international exposure with patent weights.4

Finally, a recent literature has emerged that classifies patents as automation or not

(see, in particular, Mann and Püttmann, 2021, Webb, 2020, Kogan, Papanikolaou,

Schmidt and Seegmiller, 2022). We compare our approaches in detail. A key differ-

3Relatedly, Andersson, Karadja and Prawitz (2022) look at the effect of emigration to the US in the
19thcentury in Sweden and find that more exposed municipalities experienced an increase in innovation
(though they do not identify automation innovations). Bena and Simintzi (2019) show that firms with
better access to the Chinese labor market decrease their share of process innovations after the 1999
U.S.-China trade agreement. Process innovations and automation innovations are not the same: some
process innovations reduce costs other than labor (say, material cost) and many automation innovations
are product innovations (a new industrial robot is a product innovation for its maker).

4Other papers have used their methodology, including Noailly and Smeets (2015) on innovation in
electricity generation, Coelli, Moxnes and Ulltveit-Moe (2020) on the effect of trade policy on innovation
and Aghion, Bénabou, Martin and Roulet (forthcoming) on the role of environmental preferences and
competition in innovation in the auto industry.
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ence is that we classify readily available technology codes rather than patents directly,

so that our classification can be easily applied to other patent data by other researchers

without using patent text. This comes at the cost of potentially misclassifying indi-

vidual patents. Autor, Chin, Salomons and Seegmiller (forthcoming) go further and

map automation and augmenting patents to specific occupations, highlighting that the

same innovations can substitute for some occupations while augmenting others. Our

approach does not allow for the same level of granularity but our results are consistent

with theirs insofar as automation patents in machinery appear to substitute for low-skill

while complementing high-skill workers.

Section 2 develops our classification of automation technologies. Section 3 describes

the data and our empirical strategy. Section 4 presents the results of the main analysis

on the effect of wages on automation innovations. Section 5 discusses policy shocks.

Section 6 concludes. The Appendix provides an analytical model, additional robustness

checks, and details on our methodology.

2 Classifying Automation Patents

In this section, we develop our classification of automation patents and use it to build a

measure of automation at the industry level. We find that it predicts a decline in routine

tasks, in the relative demand for low-skill workers, and in the labor share.

2.1 Our approach to classifying patents

Our goal is to identify automation innovations in machinery: that is, innovations embed-

ded in equipment goods, such as machine tools or robots, which allow for the replacement

of workers in some tasks. Non-automation innovations, in contrast, may improve energy

efficiency, reduce the cost of producing certain machines or increase reliability.

We follow a well-established tradition in the empirical literature and use patent data

as a measure of innovative activity.5 We use two databases: the EP full-text database

from 2018, which contains the full text of patent applications at the European Patent

Office (EPO), and the World Patent Statistical Database (PATSTAT) from Autumn

2018, which contains the bibliographic information, but not the text, of close to the

universe of patents. In these datasets, the technological characteristics of patents are

5For our analysis, patent data present several advantages: they specify the countries where inventions
are protected, contain highly disaggregated technology codes and can be matched to firms.
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recorded in technology codes (notably CPC and IPC codes, hereafter C/IPC codes,

explained in footnote 8 below). Certain types of technologies, such as fossil fuel engines,

can be readily identified with existing groupings of C/IPC codes. No such grouping

exists for automation in machinery, and we use text analysis to create one.

We employ a dictionary method on patent data and proceed in five steps: i) We

define machinery “technology categories” based on C/IPC codes, ii) We use the existing

literature to identify automation-related keywords. iii) For each machinery technology

category, we compute the share of patents at the EPO containing one of our automa-

tion keywords. iv) We use this measure to classify machinery technology categories as

automation or not based on a cut-off. v) We classify worldwide patents as automation

if they belong to an automation technology category.

This strategy of first classifying technology categories and then patents has two ad-

vantages over classifying patents directly. First, it allows for the inclusion of patents

without text from PATSTAT so that we – and other researchers – can use our classifi-

cation on patents without text or future patents.6 Second, the C/IPC codes themselves

are informative about the characteristics of an innovation – including whether it relates

to automation. Patents are written in different styles and applicants can often describe

the same innovation with or without using our keywords. Conversely, if a patent uses

one of our keywords but does not belong to any C/IPC code where this is common,

the inclusion of that keyword is often uninformative about the nature of the innovation.

That is, the wording of a given patent is a weak signal of whether that patent corre-

sponds to automation, but the combined wording of many patents gives a strong signal

of whether a technology code corresponds to automation.7

2.2 Identifying machinery technology categories

Technological characteristics of patents are recorded in (generally, several) C/IPC codes.

The C/IPC codes form a hierarchical classification system.8 We start by defining the ag-

6To give an idea of the increase in the sample size, over the period 1997-2011 there are 549, 000 patent
families in machinery – defined below – with patent applications in at least two offices (a condition we
will impose in our main analysis). Among these only around 82, 000 have an EPO patent with a
description in English.

7Our strategy follows the World Intellectual Property Organization (WIPO), which offers a simple
tool on its website based on a similar principle: a search engine allows one to identify up to 5 IPC codes
most likely to correspond to a set of keywords in the text of the patents.

8The IPC is the International Patent Classification and the CPC the Cooperative Patent Classifi-
cation used by the USPTO and the EPO. The CPC is an extension of the IPC and contains around
250,000 codes in its most disaggregated form. The structure of the C/IPC classification is as follows:
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gregation level at which we classify patents, which we refer to as “technology categories”.

First, we define “technology categories” as the highly disaggregated 6-digit C/IPC codes

(e.g. B25J13). The co-occurrence of technology codes can also be informative about

the characteristics of a patent. To capture this, we include pairs of 4-digit C/IPC codes

in the definition of technology categories: for instance, a patent containing both codes

B25J (manipulators) and B23K (a type of machine tools) belong to the technology cat-

egory {B25J, B23K}. Finally, we include in the definition of technology categories the

co-occurrence of 4-digit C/IPC codes with the 3-digit codes G05 or G06 (e.g. B25J

with G05 or G06). The code G05 corresponds to “controlling; regulating” and G06 to

“computing; calculating; counting” and Aschhoff et al. (2010) use these combinations to

identify advanced manufacturing technologies.9 The 6-digit codes alone identify 83% of

our automation patents (see Appendix A.2.3).

Since, we are interested in automation in equipment, we restrict attention to C/IPC

codes that belong to a group of technology fields which we call “machinery”. Out of 34

technology fields (see Figure A.1), we focus on “machine tools”, “handling”, “textile and

paper machines”, and “other special machines” with some adjustments.10 We classify

pairs of 4-digit C/IPC codes or pairings of 4-digit C/IPC codes with G05 or G06 as

machinery if at least one 4-digit code belongs to that field. This leaves us with 983 6-

digit codes, 1100 pairs of 4-digit codes, and 25 groupings of 4-digit codes with G05/G06

which form the set of machinery technology categories. We then define a machinery

patent as a patent that belongs to one of the machinery technology categories.

2.3 Choosing automation keywords

Next, we choose keywords to identify automation technology categories within the set

of machinery technology categories. To tie our hands, we choose most of our keywords

from the automation technologies identified in Doms, Dunne and Troske (DDT, 1997)

and Acemoglu and Restrepo (AR, 2022), and supplement them with additional words

C/IPC “classes” have 3-digit codes (e.g. B25: “hand tools; portable power-driven tools; handles for
hand implements; workshop equipment and manipulators”), “subclasses” have 4-digit codes (e.g. B25J:
“manipulators; chambers provided with manipulation devices”), and main groups have 5 to 7 digit codes
(e.g. B25J13: “controls for manipulators”). In the following, we refer to classes, subclasses, and main
groups as 3-digit, 4-digit, and 6-digit codes respectively.

9To ensure that the set of patents available in ΩEPO is sufficiently representative of a technology
category, we restrict attention to categories containing at least 100 patents. We group 6-digit codes
with the same 4-digit code and less than 100 patents into common artificial 6-digit codes.

10We make a few minor adjustments such as excluding weapons and ammunition and adding tech-
nology codes referring to “programme-control system”. See Appendix A.2 for details.
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Table 1: Choice of automation keywords

Keywords Comments Source

Automat* Automation, automatization or automat* at least 5 times. Own or Doms, Dunne and
Or automat* or autonomous with secondary words, warehouse, operator,
arm, convey*, handling, inspect*, knitting, manipulat*, regulat*, sensor,
storage, store, vehicle system, weaving, or welding) in the same sentence
at least twice.

Troske (DDT) or Acemoglu and
Restrepo (AR).

Robot* Not surgical or medical. DDT and AR
Numerical Control CNC or numeric* control* or NC in the same sentence as secondary

words.
DDT and AR

Computer-aided design Computer-aided/-assisted/-supported in the same patent as DDT
and manufacturing secondary words, also CAD or CAM and not "content addressable mem-

ory" in same sentence as secondary words.
Flexible manufacturing DDT
Programmable logic control "Programmable logic control" or (PLC and not (powerline or "power

line")).
DDT

3D printer "3D print*" or "additive manufacturing" or "additive layer manufactur-
ing".

Own

Labor Including laborious. Own

Secondary words Machine or manufacturing or equipment or apparatus or machining.

Notes: This table describes the keywords that we use to identify automation technologies. Keywords include i) natural adjacent words (i.e.
numerical control includes NC, numerically controlled and numeric control), ii) British/American spelling (i.e. labour/labor) and iii) hyphenated
adjectives (i.e. computer aided / computer-aided design). ”In the same sentence as secondary words” refers to at least one secondary word. We
added words in italics, the others come from AR or DDT. See Appendix A.2 for details.

as described below.11 Most of our keywords correspond to the co-occurrence of several

words in the same sentence or patent or the repetition of these words a sufficient number

of times. Table 1 lists our keywords.

We have eight categories of keywords. Five of them are automation technologies

in DDT or AR (robot*, numerical control, computer-aided design and manufacturing,

flexible manufacturing, and programmable logic control). Directly using some of these

keywords results in false positives. Therefore, we require that our keywords occur in

the same patent or in the same sentence as secondary words, such as machinery or

equipment, indicating that the text describes a machine. We also add “automation”

and “automatization”. The stem “automat*” gathers too many false positives such as

“automatic transmission”. We resolve this in two ways: we only count patents if the

frequency of automat* is at least 5 or automat* is combined with a list of words in the

same sentence at least twice. This list of words contains our secondary words and addi-

tional words which come from DDT or AR and often refer to tasks (such as manipulat*,

regulat* or inspect*). Finally, we add 3D printing, which was in its infancy when DDT

was written, and “labor”, which generally indicates that an innovation reduces labor

11Doms, Dunne and Troske (1997) measure automation using the Survey of Manufacturing Technology
(SMT) from 1988 and 1993 conducted by the US Census. The survey asked firms about their use of
specific automation and information technologies. Acemoglu and Restrepo (2022) include imports of
automation technology and associate specific HS-categories from Comtrade with automation technology.
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costs.12 The most important keywords are those associated with “automat*” (Appendix

A.2) and our main results are robust to only using these (Appendix A.6.2).

2.4 Identifying automation technology categories

We base our classification on the set of EPO patent applications in machinery from 1978

to 2018 with a description in English (267,997 patent applications) denoted ΩEPO. We

denote MTp the set of machinery technology categories associated with a patent p and Tp

its text.13 We define the function kany(Tp) which takes value 1 if any of the automation

keywords is present in the text and 0 otherwise. For each machinery technology category

t, we define the prevalence of automation keywords s(t) as the share of patents containing

at least one of our keywords:

s (t) =

∑
p∈ΩEPO

1t∈MTpk
any(Tp)∑

p∈ΩEPO
1t∈MTp

.

We similarly define the prevalence of each keyword category. We show that these mea-

sures are positively correlated for the main keywords, give examples of the prevalence

measures in some C/IPC codes, and present additional statistics in Appendix A.2. We

manually checked the C/IPC codes extensively and sampled patents from each category

to ensure that the process delivered reasonable results.

We define automation technology categories as those with a prevalence measure above

a threshold. Figure 1 shows the histogram of the prevalence of automation keywords

for C/IPC 6-digit codes in machinery. The distribution is skewed: most C/IPC codes

have a low prevalence of automation keywords but a few codes have a very high value.

We choose thresholds at the 90th and 95th percentiles of the distribution of the 6-digit

code distribution (within machinery), which are given by 0.40 and 0.48, respectively.14

Therefore a technology category t belongs to the set of auto90 categories T 90 if s(t) > 0.40

and to the set of auto95 category T 95 if s(t) > 0.48. In Appendix A.2.4, we show that the

technology categories with a high prevalence of automation keywords remain the same

throughout the period considered. In particular, the correlation between the prevalence

measures computed for the first half of the sample and the second half is 0.85.

12“Labor” differs from the other keywords in that it does not refer to a technology. We checked that
our results are robust to removing that keyword from the whole procedure.

13We use all C/IPC codes of the patent family associated with the EPO patent application p. See
Section 2.5 for the definition of the patent family.

14Choosing different thresholds is easy and we investigate how robust our results are in Section 4.5.
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Figure 1: Prevalence of automation keywords for C/IPC 6-digit codes in machinery.

2.5 Defining automation patents

We now proceed to classify automation patents. To do so, we use PATSTAT, which

contains bibliographic information for almost the universe of patents. PATSTAT also

allows us to identify patent families, a set of patent applications in different national or

international patent offices representing the same innovation. For each patent family,

we know the date of the first application (used as the year of an innovation), the corre-

sponding patent offices, the identity of the applicants and the inventors, the number of

citations received, and, importantly the C/IPC codes associated with the innovation.

We then define a patent family p in the PATSTAT dataset ΩPATSTAT as an automa-

tion innovation if it belongs to at least one automation technology category. From now

on, we refer to a patent family as a patent. That is, p is an auto95 patent if ∃tp ∈MTp

such that tp ∈ T 95, and similarly for an auto90 patent. Appendix A.2 provides additional

statistics and gives examples of automation patents.

2.6 Comparison with other measures in the literature

A recent literature has emerged that uses patent data to identify automation technolo-

gies. Our approach – classifying technology categories rather than patents directly and

using a dictionary method on the text of patents – is unique and we compare it here

with three alternatives: Mann and Püttmann (2021)’s, Kogan et al. (2022)’s and Autor
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et al. (forthcoming)’s.15

Mann and Püttmann (2021) manually classify a set of patents as automation or not

and then use machine-learning techniques to classify all patents. Relying on keywords

instead of a training set presents several advantages. First, manually labeling patents is

a difficult task that cannot be easily systematized and delegated. Second, patents are

technical descriptions of an innovation and do not always discuss its goal. Only a few

words within the text are informative, so that the training set needs to be large. Third,

our approach is more transparent, more easily replicable and modifiable, and leaves fewer

degrees of freedom as we choose most of our keywords from the literature.

We compare our classifications in detail in Appendix A.2.6. The measures are pos-

itively correlated, though ours is generally more conservative. We classify 9.4% of the

common set of machinery patents as auto95 while they classify 29.8% of them as au-

tomation. 70% of our auto95 patents are classified as automation patents by Mann and

Püttmann (to put this number in context, their algorithm has a 17% false negative error

rate on their training set). Focusing on outlier technologies, we find that Mann and

Püttmann classify a number of patents related to elevators and printing machines as

automation, which we do not. This is in line with their definition of automation as “a

device that carries out a process independently of human intervention”, while we seek

to identify innovations that replace workers in existing tasks.

In contemporaneous work, Kogan et al. (2022) and Autor et al. (forthcoming)

measure the distance between patent texts and the description of tasks in the Dictionary

of Occupation Titles database to identify labor-displacing innovations. This approach

has the advantages of matching innovations and the affected occupations and of being

completely hands-off.16 However, as Kogan et al. (2022) point out, it captures not only

automation innovations where workers are replaced by machines but also innovations

where incumbent workers with newly obsolete skills are replaced by new workers.

Compared to these alternatives, our approach has a few drawbacks: We rely on the

existence of a set of well-identified automation technologies (robots, CNC, etc.), which

is why we apply our method only to machinery patents. Heterogeneity within technol-

ogy categories will also lead us to misclassify individual patents that are “exceptions”

within their categories (i.e. non-automation patents in a category with many automation

15Bessen and Hunt (2007) directly use keywords to identify software patents. Webb (2020) similarly
identifies patents in robotics, software and AI using keywords before matching them to occupations
using machine-learning techniques.

16In addition, using another dataset that describes the output of occupations, Autor et al (forthcom-
ing) also run a parallel mapping between patents and the occupations that they augment.
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patents and vice versa). Finally, we do not provide a mapping between innovations and

occupations, and therefore cannot capture heterogeneous effects between workers and

innovation beyond the high-skill / low-skill dichotomy. At the same time, it is simpler

and has the advantage of providing a measure that can be readily used by anyone on

any patent data with C/IPC codes.

2.7 Trends in automation innovations

Figure 2 plots the evolution of automation patent families. To restrict attention on in-

novations of sufficient quality and make the data more comparable across countries, we

focus on patent families including patent applications in at least two countries, referred

to as biadic patents. Several studies (e.g. De Rassenfosse et al., 2013, and Deche-

zleprêtre, Ménière and Mohnen, 2017) have shown that biadic patents are of higher

quality than others.17 Panel (a) shows that machinery patents represent a sizable but

slowly decreasing share of all patents (18.6% on average over this time period) – though

the absolute number of machinery patents is increasing. Globally, among machinery

patents, the share of automation patents declined slightly between the mid1980s (9.4%

in 1985 for auto95) and the mid1990s (7.5% in 1994 for auto95) before increasing rapidly

(reaching 19.1% in 2015 for auto95). Appendix Figure A.2 reports the raw numbers of

auto90 and auto95 patents and their share out of total patents. Figure 2.b shows the

trends for auto95 by applicant nationality. In the 1980s Japan had the highest share of

automation patents in machinery, while Germany took that position from the 2000s.

2.8 Automation, routine tasks, skill composition and labor share

We now build a measure of automation at the sector level and relate it to changes in task

and skill composition and factor shares. We do this in part to validate our classification

of automation patents. We build on Autor et al. (2003) (hereafter ALM), who show

that computerization was associated with a decrease in routine tasks at the sector level

using U.S. data from 1960 to 1998. We report our main results here and details on the

data construction and additional results in Appendix A.3.

17We count applications and not-granted patents because certain patent offices, notably the Japanese,
only formally grants a patent if the applicant requests an examination which they often only do when
their rights are challenged. Further, biadic patents allow for better comparison across countries since
several small patents typically cover the same large innovation in certain offices like the JPO but only
one broad patent in others like the USPTO. To restrict attention to patent families of even higher
quality, we carry out robustness checks where we use patent citations.
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Figure 2: Share of automation patents in machinery and share of machinery patents for biadic
families

Notes: Panel (a) reports the share of auto95 and auto90 patents in machinery (left axis) and the share of machinery
patents in all patents (right axis) worldwide; Panel (b) reports the share of auto95 patents in machinery by applicants’
nationality. Patents with multiple C/IPC codes are only counted once.

As ALM, we run sector level regressions of the type:

∆Tjk = β0 + βC∆Cj + βautautj + εj. (1)

We focus here on the years 1980-1998. ∆Tjk represents the change in tasks of type k in

sector j. We take this measure directly from ALM, who define 5 types of tasks: nonrou-

tine analytic, nonroutine interactive, routine cognitive, routine manual, and nonroutine

manual. ∆Tjk is measured as 10 times the annual within-sector change in task input,

measured in percentiles of the 1960 task distribution. ∆Cj is ALM’s measure of the

change in computerization in sector j (available for the period 1984-1997). autj is our

patent-based measure of the use of automation technologies in sector j. Since patenting

is already a measure of knowledge flows, we do not first-difference this measure. We run

similar regressions with changes in the skill ratio, the labor share, and employment as

alternative outcome variables.

To build autj, we allocate patents in machinery to their sector of use, focusing on

USPTO granted patents. Autor, Dorn, Hanson, Pisano and Shu (2020) match USPTO

patents with firm-level data from Compustat, and provide detailed sectoral information
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Table 2: Sectors with the highest and lowest shares of automation patents

Sectors with highest share of automated patents Sectors with lowest share of automated patents
Industry Auto95 Industry Auto95

756 Automotive services and repair shops 0.110 801 Bowling alleys, billiard and pool parlors 0.042
206 Household appliances (e.g., radio, TV, equipment) 0.106 100 Meat products 0.046
470 Water supply and irrigation 0.098 101 Dairy products 0.046
271 Iron and steal foundaries 0.096 102 Canned and preserved fruits and vegetables 0.046
130 Tobacco manufactures 0.093 110 Grain mill products 0.046
212 Misc. plastic products 0.093 111 Bakery products 0.046

Notes: This table lists the sectors with the highest and lowest share of auto95 patents out of all patents in machinery in 1980-1998. The
industry codes and descriptions of the sectors correspond to the ind6090 industries described in ALM.

on corporate patents. Using their data, we create a weighted concordance table from

C/IPC 4-digit codes to 4-digit SIC industries that allows us to map patents to sectors

of invention. We then combine this information with the 1997 capital flow table from

the BEA to get the sector of use. The capital flow table is akin to an input-output table

but it reports the flows in investment goods instead of intermediate inputs. Sectors

that purchase a lot of capital from sectors innovating in machinery generally have high

exposure to both automation and non-automation patents (defined here as pauto90

patents, i.e. machinery patents excluding auto90 patents). The correlation between the

log counts of auto95 patents and pauto90 patents across sectors is 0.99 but the correlation

between the ratio of auto95 patents over capital purchases and ratio of pauto90 patents

over capital purchases drops to 0.76 (see Appendix Figure A.9).

For each sector of use j, we compute autj as the share of automation patents

(auto95 in our baseline) among machinery patents from 1980-1998. Our measure cap-

tures whether the machinery patents used in a given sector are particularly intensive in

automation technologies or not. We compute this statistic for the 133 sectors with ma-

chinery patents (our results are robust to excluding sectors with few machinery patents).

Appendix Table A.1 reports summary statistics on this measure and our dependent vari-

ables: on average, the auto95 share is 7.5%. There is significant variation in the share

of automation patents across industries with a coefficient of variation of 17%. Exposure

to automation is on average higher in manufacturing and we include a manufactur-

ing dummy in our regressions. Interestingly, our automation measure is only weakly

correlated with computerization, with a coefficient of 0.08 (and −0.16 when we weigh

industries by employment). Table 2 lists the sectors with the highest and lowest shares

of automation patents in machinery.18

Table 3 reports the results of regression (1) and Appendix Figure A.10 provides

18Some small sectors have the same share of automation patents because they map to the same C/IPC
4-digit codes. We cluster standard errors at the level of these 112 clusters of using industries.

14



Table 3: Effects of automation on tasks, skill composition, and the labor share

∆ Routine cognitive ∆ Routine manual ∆ High/low
skill workers

∆ Labor share
(NBER)

∆ Labor share
(BEA)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Share automation
(using industry)

−142.48∗∗∗ −142.98∗∗∗ −128.04∗∗∗−127.30∗∗∗ 3.80∗ 3.51∗ −1.30∗∗ −0.85∗∗ −3.65∗ −3.59∗

(37.37) (28.34) (38.85) (39.81) (2.16) (2.01) (0.65) (0.41) (1.94) (1.86)
Share automation
(inventing industry)

−22.09∗∗ −11.00 −0.21 −0.46 −0.21
(8.52) (8.03) (0.45) (0.29) (0.33)

∆ Computer use
(1984-1997)

−18.87∗∗∗ −20.51∗∗∗ −19.14∗∗∗ −21.81∗∗∗ 0.98∗∗∗ 0.92∗∗∗ 0.25∗ 0.27∗ 0.12 0.15
(6.54) (5.78) (7.29) (7.62) (0.26) (0.27) (0.13) (0.14) (0.31) (0.32)

Manufacturing −1.71∗ −2.17∗∗ −0.03 −0.25 0.02 0.02 −0.05∗ −0.06∗

(0.92) (0.86) (0.94) (0.93) (0.03) (0.03) (0.03) (0.03)

R2 0.29 0.38 0.21 0.23 0.21 0.20 0.18 0.27 0.22 0.23
Industries 133 126 133 126 133 126 56 56 60 60

Notes: This table shows the effect of automation technologies on tasks, skill composition, and the labor share. Each column is a separate
OLS regression of the change in an industry outcome between 1980 and 1998 on the share of automation patents in machinery in 1980-
1998, the annual percentage point change in industry computer use during 1984-1997, a dummy variable indicating the manufacturing
sector, and a constant. In columns 1–2 the dependent variable is the change in routine cognitive tasks and in columns 3–4 the change in
routine manual tasks, both measured as 10x the annual change in industry-level task input in centiles of the 1960 task distribution (see
ALM). In columns 5–6 the dependent variable is the change in the ratio of high-skill workers (college graduates) over low-skill workers
(others). In columns 7–8 and columns 9–10 the dependent variable is the change in the labor share in the NBER-CES manufacturing
industry database, and in 60 aggregated industries from the BEA, respectively. As described in the text, the two automation share
measures correspond to a different mapping between C/IPC codes and industries. Using industries allocates patents to their sector of
use while innovating industry – added in columns 2, 4, 6, 8, and 10 – allocates patents to their sector of invention. The regressions
are weighted by the mean industry share of total employment in FTEs in 1980 and 1998. Standard errors are clustered at the level of
industry groups that have the same automation share by construction and reported in parentheses. Significance levels at *10%, **5%,
***1%.

scatter plots. Columns (1) and (3) show a clear relationship: A 1 pp increase in the

automation share is associated with a 1.4 and 1.3 centiles decrease in routine cognitive

and manual tasks per decade, respectively. This effect is larger than that of comput-

erization (i.e. standardized beta coefficients are larger). At first sight, it may seem

surprising that our measure of automation in machinery predicts a decline in routine

cognitive tasks. However, ALM define routine cognitive tasks as the “adaptability to

situations requiring the precise attainment of set limits, tolerances or standards”. These

correspond to inspection and control tasks that our automation machines may eliminate

(Figure A.8 gives an example of such a machine). Metalworkers, for instance, are among

the occupations with the highest intensity of routine cognitive tasks.

In Column (5), we instead use the change in the skill ratio (college graduates over

all other workers) as the dependent variable. A 1 pp increase in the share of automation

patents is associated with an increase in the skill ratio equal to one-third of its average

increase over the 1980-1998 period. In Column (7), we use the change in the labor share

for manufacturing industries (using the NBER Manufacturing Database). Industries

with a high share of automation patents experience a decline in the labor share, consistent

with the theoretical literature on automation. A 1 pp increase in the automation share
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is associated with 1.3 pp decline in the labor share. Interestingly, computerization does

not have the same effect. We extend this analysis to non-manufacturing industries using

more aggregate data on the labor share for 60 industries from the BEA. We still find a

negative effect of automation (Column 9).

In even columns, we add a control for the share of automation patents invented by

the sector. To allocate patents to the inventing sector, we omit the capital flow table

step in the calculation of our automation variable. The coefficients on the automation

share in the using sector remain stable. Moreover, the automation share in the using

sector has a larger effect than the automation share in the inventing sector.19

Appendix A.3 contains additional robustness checks: We use biadic patents, auto90

patents, or an alternative concordance table between C/IPC codes and sectors from

Lybbert and Zolas (2014). In all cases, we find a negative effect of the automation

share on routine tasks, the skill ratio, and the labor share. We also look at the effect

of automation on employment changes. We find a negative effect within manufacturing

but no statistically significant effect for the economy as a whole.

To summarize, we have now classified machinery patents as automation or non-

automation. Mapping C/IPC codes to sectors, we build a measure of automation at

the sectoral level, which is more detailed than alternatives such as robotization. Doing

that, we find that sectors that use automation technologies more intensely experience a

decrease in routine tasks, an increase in the skill ratio, and a decline in the labor share.

3 Empirical Strategy and Data

We now move to our main empirical exercise and analyze the effect of labor cost shocks

on automation innovations. Section 3.1 presents our empirical strategy, Sections 3.2 and

3.3 explain how we build our dataset, Section 3.4 describes our estimation equation and

Section 3.5 shows summary statistics.

3.1 Empirical strategy

We motivate our empirical strategy with the business structure of the most prominent

automation innovators. These are large firms that sell their automation equipment

19The standardized coefficients are larger for the using sector than the inventing sector (except in
column (8)) as the s.d. for the share of automation patents in the using and inventing sectors are
respectively 1.3% and 6%.
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internationally to downstream firms. Automation equipment enables the replacement of

low-skill workers with machines. It can also complement high-skill workers who program,

operate, and maintain the machines. Therefore, the incentives for downstream producers

to adopt automation technology are determined by labor costs in their local market.

Higher low-skill labor costs for potential customers are associated with a larger market

for automation machine producers, which in turn, would induce innovators to conduct

more research on automation technologies.20,21 Appendix A.4 presents a simple model

that rationalizes this argument.

Empirically, we aim to estimate by how much an increase in low-skill labor costs

leads to an increase in automation innovations, and an increase in high-skill labor costs

to a decrease in automation innovations. We focus on labor costs because they are the

key factors that should affect automation innovations differently from non-automation

innovations. In contrast, the total wage bill of low-skill workers would include their

employment and a higher employment of low-skill workers may be associated with a

more intensive use of non-automation machinery as well.

Ideally, we would measure the expected future labor costs paid by the actual and

potential customers of automation innovators. This raises two issues. First, a measure

directly based on customers’ data would suffer from reverse causality, and we would need

an instrument. A natural candidate would be a shift-share instrument. In the absence

of direct data on the labor costs paid by innovators’ customers, we directly use such a

shift-share measure as a proxy. Our regression should therefore be seen as the reduced

form of this instrumental approach. Second, we cannot measure expectations, so we use

current labor cost shocks as a proxy for shocks on expected future costs – though in

Section 4.5 we explicitly build a model for expected wages using an AR process.

20Our conceptual argument is reflected in the business practices of large innovators. Siemens, the
biggest innovator in our sample, is a very international company with 14% of its revenue in Germany
in 2018. Its strongest growing division was the Digital Factory Division which provides a broad range
of automation technology to manufacturers across the globe. The annual report (Siemens, 2018) uses
a number of our keywords and describes how “The Digital Factory Division offers a comprehensive
product portfolio and system solutions for automation technologies used in manufacturing industries,
such as automation systems and software for factory automation, industrial controls and numerical
control systems, motors, drives and inverters and integrated automation systems for machine tools and
production machines...”. The report is centrally interested in how “Changes in customer demand [for
automation technology by downstream manufacturers] are strongly driven by macroeconomic cycles”. It
does not mention labor costs directly but uses euphemisms such as “increase competitiveness”, “enhance
efficiency”, “improve cost position” and “streamline production”. Siemens further discusses how such
macroeconomic trends affect its R&D decisions.

21If automation innovations are internal to the firm, then the argument follows if one interprets the
innovator’s customers as the downstream production sites of the same firm.
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More specifically, we measure the labor costs paid by the customer of an innovator

as a weighted average of country-level labor costs where the weights reflect the market

exposure of innovators. That is, we define the average low-skill wL,i,t and high-skill wH,i,t

labor costs faced by firm i’s customers as

wJ,i,t ≡
∑
c

κi,cwJ,c,t for J ∈ {L,H} , (2)

where wL,c,t (wH,c,t) are the low-skill (high-skill) labor costs in country c at time t and

κi,c is the fixed weight of country c for firm i.22 Similarly, we build controls for several

macroeconomic variables such as labor productivity, GDP per capita, or the size of the

manufacturing sector, which could also affect innovation.

With this shift-share measure, our identification strategy relies on how country-level

shocks affect firms differently. We discuss identification extensively in Section 4.3. We

now describe how we obtain country-level data (such as wL,c,t) and firm data (including

the weights κi,c).

3.2 Country-level data

We use data on 41 countries. Most of our data come from the 2013 release of the

World Input Output Tables (WIOD, Timmer et al. 2015), which contains information

on hourly labor costs from 1995 to 2009 across educational attainment groups.23 We

focus on labor costs in manufacturing since our keywords largely come from the SMT

(Survey of Manufacturing Technologies). Our results are robust to using labor costs in

the entire economy. Although our data cover all labor costs, we refer to them as wages

for simplicity. In the data, the low-skill workers are defined as having no high-school

diploma or equivalent, whereas the high-skill workers have at least a college degree.

Middle- and low-skill wages are highly correlated, and we can interpret our low-skill

wage variable as reflecting both.

22More precisely, innovation incentives depend on the costs for automatable tasks, but there are no
good international occupational or task-level labor costs data. Since low-skill workers’ tasks have been
more intensely automated, we use low-skill labor cost as a proxy for the cost of automatable tasks. This
proxy will be particularly good if labor markets are flexible across occupations within education groups
or if labor shocks affect low-skill workers similarly across occupations. Otherwise, a noisy measure
should result in a bias towards zero.

23The data cover 40 countries, including all major markets (US, Japan, all EU countries of 2009,
China, India, Brazil, Russia, etc.). We obtain similar data for Switzerland from the Swiss Federal
Statistical Office.
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We calculate labor productivity in manufacturing as value added divided by hours.

We gather exchange rate and GDP data from UNSTAT and compute the GDP gap

to control for business cycles. We deflate all nominal values with the local PPI for

manufacturing (indexed to 1995) and then convert everything into dollars using the

average exchange rate for 1995, the starting year of our regressions. Appendix A.5.1

provides further details and summary statistics.

United States

Germany

Japan

France

United
Kingdom

Italy

2.5

3

3.5

Lo
g 

lo
w

-s
ki

ll 
w

ag
e

1996 2000 2004 2008

(a)  Low-skill wages

United States

Germany

Japan

France

United
Kingdom

Italy

-.2

-.1

0

.1

.2

Lo
g 

lo
w

-s
ki

ll 
w

ag
e

1996 2000 2004 2008

(b)  Low-skill wages
residualized on country and year FE

United States

Germany

Japan

France

United
Kingdom

Italy

-.1

-.05

0

.05

.1

Lo
g 

in
ve

rs
e 

sk
ill

-p
re

m
iu

m

1996 2000 2004 2008

(c)  Inverse skill-premium
residualized on country and year FE

Year

Figure 3: Country-level trends in low-skill wages and the inverse skill premium.
Notes: Panel (a) reports raw log low-skill wages; Panel (b) log low-skill wages residualized on country and year fixed
effects; Panel (c) log inverse-skill premium residualized on country and year fixed effects.

Figure 3 uses the 6 countries with the largest average weights, and shows the log low-

skill wages, the log low-skill wages residualized on country and year fixed effects, and the

residualized log inverse skill premium. Trends vary markedly across countries providing

a significant amount of variation in the data: for instance, the US sees a relative decrease

in the inverse skill premium while Italy follows a non-monotonic pattern.24

3.3 Firm-level data

We now describe our firm-level data. To identify firms, we use Orbis Intellectual Prop-

erty, which matches global patent data to the companies in Orbis (details in Appendix

A.5.2). We then use PATSTAT to obtain all bibliographic information on firms’ patents,

including their C/IPC codes, which allows us to identify machinery and automation

24Appendix Figure A.12 shows more precisely the identifying variation taking into account the shift-
share structure of our measure following Borusyak, Hull and Jaravel (2022)’s methodology.
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patents. We use this to build our dependent variable: the count of automation patents

filed by a firm in a given year.

We use the firm’s patent filing history as a proxy for its market exposure to mea-

sure the weights κi,c. This method builds on that of Aghion et al. (2016, henceforth

ADHMV). Firms differ in their market exposure due to trade barriers, heterogeneous

customer tastes, or various historical accidents. A patent grants its holder the exclusive

right to commercially exploit an innovation in a specific country for a limited period.

Inventors must file a patent in each country where they wish to protect their technology.

Patenting is costly: a firm must hire lawyers, possibly translators, and pay filing costs.

Therefore, inventors only seek patent protection in a country if they are confident about

the potential market value of the technology (Eaton and Kortum, 1996). Indeed, empir-

ical evidence suggests that inventors do not patent widely and indiscriminately, with the

average invention being patented in only two countries (Dechezleprêtre et al., 2011).25

For each firm, we compute the fraction of its patents in machinery protected in each

country c for which we have wage data, κ̃i,c. We keep the weights fixed and compute them

during the pre-sample period 1971-1994 to ensure that they are weakly exogenous.26 We

restrict our attention to patent families with at least one citation (without self-citations)

to exclude the lowest quality patents. See Appendix A.5.3 for details notably on how

we treat European patents.

The raw patent count indicates whether a firm intends to sell its products in a market

but does not capture market size. A larger market attracts more firms, so the market

size per firm does not grow 1 for 1 with country size. To account for this, we weigh each

country c by GDP 0.35
0,c , where GDP0,c is the 5 year average GDP of country c at the end

of the pre-sample period.27 As a result, the weight of country c for firm i is:

κi,c =
κ̃i,cGDP

0.35
0,c∑

c′
κ̃i,c′GDP 0.35

0,c′
. (3)

25ADHMV verify that a method similar to ours accounts well for the sales distribution of major auto
manufacturers. Coelli, Moxnes and Ulltveit-Moe (2020) carry out a more systematic exercise and verify
that such a method accounts well for aggregate bilateral trade flows and firm exports across 8 country
groups in a representative panel of 15,000 firms from 7 European countries (regressing patent weights
on sales weights gives a coefficient of 0.89 with a s.e. of 0.008). In Appendix B.2, we also show that our
patent weights correlate well with trade flows.

26This approach aligns with our goal of identifying the exogenous effect of an increase in wages on
innovation. In reality, the exposure to different markets changes over time, in part in response to
changes in wages. Studying this response would be interesting but is beyond the scope of this paper.

27We use Eaton, Kortum and Kramarz (2011)’s study on French exports to compute the elasticity of
the average export by firm with respect to the GDP of the destination country and find 0.35.
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Following equation (2), we then combine the weights κi,c with the macro variables pre-

sented in section 3.2 to build macro variables, including wages, at the level of firms’

customers. We use 1971-1994 as a pre-sample period as PATSTAT’s coverage is signifi-

cantly better from the 1970s onward, and we prefer a long time period for our baseline

measure. Importantly, the weights are stable over time. We show that our results are

robust to alternative pre-sample periods and weighing schemes in Section 4.5.28

3.4 Estimation equation

We now describe how we estimate the effect of an increase in wages on automation

innovations. We have a panel of firms with patent data and firm-level wage variables.

Since our dependent variable is a count of patents, we use a Poisson specification. We

assume that firms’ innovation in automation follows:29

E (PATAut,i,t) (4)

= exp

(
βwL lnwL,i,t−2 + βwH lnwH,i,t−2 + βXXi,t−2 + βKa lnKAut,i,t−2 + βKo lnKother,i,t−2

+βSa lnSPILLAut,i,t−2 + βSo lnSPILLother,i,t−2 + δi + δj,t (+δc,t)

)
.

PATAut,i,t denotes the number of biadic automation patent families by firm i in industry

j and country c with first application filed in year t. Automation patent families are the

auto95 patents defined in Section 2. As mentioned in Section 2.7, we focus on biadic

patent families, in line with our empirical strategy which relies on firms’ exposure to

international markets.

wL,i,t and wH,i,t are the average low-skill and high-skill manufacturing labor costs

faced by the customers of firm i at time t defined in (2). Xi,t represents a vector

of macroeconomic controls: labor productivity in manufacturing or GDP per capita to

capture technology, human capital shocks, or demand shocks in the customers’ countries,

and the GDP gap for business cycles fluctuations.

We include controls for knowledge stocks at the firm and country level. KAut,i,t and

Kother,i,t denote the stocks of knowledge in automation and in all other technologies of

firm i at time t. We compute these knowledge stocks using the perpetual inventory

28We consider two alternative definitions of low-skill wages where weights are based on 1971-1989
or 1985-1994. For the firms in our baseline regression sample, the correlation between these two wage
variables is 0.91.

29For estimation, we use the ppmlhdfe command from Correia, Guimaraes and Zylkin (2020), which
allows us to run Poisson regression models with high-dimensional fixed effects.
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method. SPILLAut,i,t and SPILLother,i,t similarly denote the stocks of external knowl-

edge (spillovers) in automation and in other technologies to which firm i has access at

time t. We compute these spillovers as a weighted average of country-level knowledge

stocks, where the weights now reflect the location of the firms’ inventors.30 These con-

trols serve two purposes. First, they ensure that we do not simply capture that some

firms or countries are on different automation trends. Second, knowledge spillovers are

an important characteristic of innovation processes and can amplify the short-run re-

sponse of innovation to economic shocks over time. On the empirical side, Popp (2002)

finds that including a measure of knowledge stocks is important to obtain correct esti-

mates of energy prices on energy-saving innovations. On the theoretical side, including

measures of the stock of knowledge is important for the calibration of macro models of

directed technical change (Acemoglu, 2023).

We lag the right-hand side variables by 2 years in the baseline regressions for two

reasons. First, the empirical literature for other types of innovation suggests a 2-year

lag between R&D investment and patent application. Second, at the time of their R&D

investment, innovators would use contemporaneous wages as a predictor of future wages.

Section 4.5 explores alternative timing assumptions.

δi are firm fixed effects such that our variation comes from how changes in wages

affect changes in automation innovations.31 δj,t are industry-year fixed effects. A firm’s

industry j is the manufacturing industry and corresponds to its 2-digit industry in Orbis.

Appendix Table A.2 gives the distribution of firms and patents across the main industries

in our sample. In some specifications, we include country-year fixed effects δc,t, where

the firm’s country (“the home country”) is defined as the country with the largest weight

κi,c. We cluster standard errors at the firm level.32

30We use a depreciation rate of 15% when computing stocks at the firm or country level. The weights
in the spillover variables correspond to the location of firms’ innovators (obtained from PATSTAT)
pre-sample in 1971-1994. When computing the log of stocks or spillovers, we replace 0’s with 1’s and
add a dummy variable to indicate where stocks or spillovers are zero.

31We use the Hausman, Hall and Griliches (1984, HHG) method in our baseline specification to control
for firm-level fixed effects. This is the count data equivalent to the within-group estimator. Technically,
this method is inconsistent with equation (4) as it requires strict exogeneity and hence prevents the
lagged dependent variable from appearing on the right-hand side (which it does here to a limited extent
through the knowledge stock KAut,i,t−2). Nevertheless, we show in Section 4.5, that our coefficients of
interest are not affected by this Nickell bias.

32Alternatively, we cluster at the country level in Appendix A.6 including following the approach of
Cameron, Gelbach and Miller (2008) and discuss inference in the shift-share setting in Section 4.3.
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Table 4: Descriptive statistics of the firms in our baseline regression

Average weights Weight variation

(1) (2) (3) (4)

Largest country 0.47 United States 0.21 Total Foreign
Second largest 0.17 Germany 0.20 HHI country 13.3% 9.0%
Third largest 0.10 Japan 0.17 HHI country-year 0.9% 0.6%
Fourth largest 0.07 France 0.09 Mean pairwise corr. 0.08 0.13

Notes: This table presents summary statistics for the country weights of firms. Columns 1–3 report statis-
tics for the total weights. Column 4 presents information on foreign weights (normalized to 1). Columns
1 and 2 report the average weights of the largest countries. Columns 3 and 4 report the Herfindahl-
Hirschman Index (HHI) at the country and country-year level. The mean pariwise correlation is the av-
erage pairwise correlation between any two firms (column 3) or firms within a home country (column 4).

3.5 Baseline sample

We now describe the sample we rely on to estimate equation (4). Since wages are

available for 1995-2009, our baseline datasets rely on firms that applied for at least one

biadic automation patent between 1997 and 2011. These firms must also have at least

one patent prior to 1995, so that we can compute the patent weights κi,c. We also

exclude purely domestic firms (i.e., those that patented in only one country pre-sample),

though our results are very similar if we include them. Our baseline sample for the

auto95 measure corresponds to 3, 236 firms.

Appendix Table A.3 shows that our sample of firms covers a considerable share of

worldwide automation innovations in machinery. Orbis’ coverage is excellent: we can

assign 84.9% of all biadic auto95 patent families in 1997-2011 to a firm. Moreover, most

heavy patenters had already patented in at least two countries pre-sample: the firms of

our sample account for 53.5% of all biadic auto95 patent families.

Appendix Table A.4 gives descriptive statistics on the number of automation patents

per year and lists the sample’s ten biggest automation innovators. The distribution of

auto95 patents is strongly skewed: over the period 1997-2011, the median firm in the

sample filed two auto95 patent applications, whereas the 99th percentile filed 194. In

our empirical analysis, we also look at the effect of wages on non-automation machin-

ery patents (defined as pauto90 patents, i.e. machinery patents which are not auto90

patents). For that exercise, we restrict the sample further to firms that have at least

one pauto90 patent. The average citations per patent is slightly higher for auto95 than

pauto90 patents (9.3. vs 7.6).

Table 4 provides descriptive statistics on the country weights for the firms in our

sample. The largest country for a given firm has, on average, a weight of 0.47 (for

the auto95 sample), and the second largest has a weight of 0.17. For regressions with
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country-year fixed effects, the latter is more relevant. The three countries with the

largest weights on average are the United States, Germany, and Japan. Finally, we

compute Herfindahl indices (HHI) of the weights. The HHI of country-level weights is

0.13. For regressions with country-year fixed effects, the relevant statistic is the HHI of

the foreign weights (i.e. excluding the home country and renormalizing to 1), which is

0.09 at the country-level. With 15 years the HHI of country-year weights are 15 times

smaller. The average pairwise correlation of weights is low: 0.08 (and 0.13 for foreign

weights of firms from the same country).

Appendix Table A.5 reports standard deviations and a correlation matrix for the

firm-level macroeconomic variables, residualized on firm and industry-year fixed effects.

We still find significant variation in the residualized (log) low-skill wages, as the standard

deviation is 0.03 (by comparison, the standard deviation is 0.1 when residualizing only

on firm fixed effects). Appendix A.6.1 provides additional statistics computed at the

level of the shock of our shift-share variable (see Appendix Table A.30).

4 Global Wages and Induced Automation

We present our results in three steps: First, we find a positive effect of low-skill wages

on automation innovations. Second, we show that this effect does not exist for non-

automation innovations in machinery. Third, we build on the recent shift-share literature

(notably Borusyak, Hull and Jaravel, 2022, henceforth BHJ) and argue that the effect

of low-skill wages on automation innovations is causal. We then discuss the magnitude

of our effects and provide robustness checks.

4.1 Main results

Table 5 presents our baseline results. We run a panel analysis at the firm-level for the

period 1997-2011 for the left-hand side and 1995-2009 for the right-hand side. We regress

the count of automation patents in a firm on measures of the low- and high-skill labor

costs faced by their potential customers. Columns (1)-(3) control for firm and industry-

year fixed effects. An increase in the low-skill wage paid by the downstream producers of

an innovating firm predicts an increase in automation innovation. The estimated coeffi-

cient is an elasticity, such that an increase of 1% in the low-skill wage is associated with

between 2.7% and 3.6% more automation patents. In contrast, high-skill wages predict a

decrease in automation innovation of roughly the same magnitude. The regressions also
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Table 5: Baseline regressions: effect of wages on automation innovations (auto95)

Dependent variable Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.97∗∗∗ 2.72∗∗∗ 3.64∗∗∗ 2.24∗∗ 2.61∗∗ 3.64∗∗∗ 4.19∗∗∗ 5.30∗∗∗ 4.43∗∗

(0.80) (0.85) (0.96) (1.01) (1.14) (1.28) (1.34) (1.57) (1.80)
High-skill wage −2.23∗∗∗ −2.64∗∗∗ −1.56∗ −2.81∗∗∗ −2.04∗ −1.87∗ −4.47∗∗∗ −2.91∗∗ −4.33∗∗∗

(0.73) (0.80) (0.82) (0.97) (1.08) (1.07) (1.32) (1.48) (1.42)
GDP gap −3.80 −4.34 −2.26 4.56 5.53 6.95 0.04 2.40 0.50

(2.62) (2.71) (2.81) (6.87) (6.90) (7.21) (4.59) (4.91) (5.24)
Labor productivity 0.96 −1.77 −2.53

(0.92) (1.78) (1.61)
GDP per capita −1.86 −3.45∗ −0.42

(1.32) (1.97) (2.12)
Stock automation −0.12∗∗∗ −0.12∗∗∗ −0.12∗∗∗ −0.12∗∗∗ −0.12∗∗∗ −0.12∗∗∗ −0.12∗∗∗ −0.13∗∗∗ −0.12∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Stock other 0.51∗∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.52∗∗∗ 0.52∗∗∗ 0.52∗∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.51∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Spillovers automation 0.61∗∗ 0.64∗∗ 0.76∗∗ 1.36∗∗∗ 1.34∗∗∗ 1.35∗∗∗ 1.33∗∗∗ 1.29∗∗∗ 1.32∗∗∗

(0.30) (0.30) (0.31) (0.47) (0.47) (0.47) (0.46) (0.46) (0.46)
Spillovers other −0.20 −0.25 −0.33 −0.97∗∗∗ −0.93∗∗∗ −0.99∗∗∗ −0.97∗∗∗ −0.97∗∗∗ −0.98∗∗∗

(0.22) (0.22) (0.24) (0.36) (0.36) (0.36) (0.35) (0.35) (0.35)

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 453 47 453 47 453 47 453 47 453 47 453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: This table presents the results of our baseline regression. The independent variables are lagged by two periods. Coeffi-
cients are estimated using conditional Poisson fixed effects regressions (HHG). All columns include firm and industry-year fixed
effects. Columns 4–9 add country-year fixed effects. In Columns 7–9, the macroeconomic variables are the normalized foreign
variables as defined in the text. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels
at *10%, **5%, ***1%.

control for the business cycle (GDP gap), labor productivity in manufacturing (in Col-

umn (2)), or GDP per capita (in Column (3)) in the customers’ countries. None of these

macroeconomic controls have consistently significant effects. We find no evidence that

firms specialize more in automation innovations following a successful innovation as the

stock of automation knowledge at the firm level predicts fewer automation innovations

in the future. In contrast, we find clear evidence of knowledge spillovers: firms exposed

to more knowledge in automation technologies tend to undertake more automation in-

novations. As a result, the overall effect of an increase in low-skill wages on innovation

is larger than its short-run effect (see Section 4.4).

Country-year fixed effects. Unobserved country-level shocks in the innovator’s

country may impact both wages and innovation by affecting the cost of innovation or

the demand for automation equipment through other channels than downstream wages.

For instance, a tax reform in Germany could affect both German low-skill wages and
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directly the incentive to innovate for German firms. Shocks that affect firms mainly

through their home country can be captured with (home) country-year fixed effects. As

discussed further in Section 4.3, our identifying assumption is then that foreign wages

are exogenous to the firm’s automation innovation given our controls. Columns (4)-(6)

report the results with country-year fixed effects: we still obtain a positive effect of

low-skill wages on automation innovations and a negative effect for high-skill wages with

similar elasticities. In Appendix Table A.6, we instead define the home country as the

country with the largest pre-sample inventor weight or the headquarter country. We find

similar effects.33

Foreign wages. Building on these results, we decompose the macro variables into

their home and foreign components and analyze the effect of foreign wages. We normalize

foreign variables such that the coefficients can still be interpreted as elasticities.34 Again,

we find a positive effect of low-skill wages on automation innovation and a negative effect

for high-skill wages (Columns (7)-(9)). Neither ADHMV nor other papers using their

methodology include country-year fixed effects or focus on foreign variation. As argued

below, these fixed effects are generally important for identification in such settings.

The elasticity of automation innovation with respect to low-skill wages range from

2.2 to 3.6 when we focus on total wages and somewhat larger, from 4.2 to 5.3 when we

focus on foreign wages. This range does not depend on the inclusion of controls for for

stocks, spillovers or the GDP gap (see Appendix Table A.7). To interpret the size of this

elasticity, note that our analysis focuses on innovation with a high automation content

and reflects the behavior of firms undertaking automation innovations.35 We discuss the

magnitude of our effect further in Section 4.4.

Auto90. Appendix Table A.8 reproduces Table 5 but for the auto90 measure of

automation. The results are very similar, but the coefficients on low-skill wages tend to

33For our sample, the country with the largest patent weight is also the one with the largest inventor
weight in 61% of the cases (75% if firms are weighed by their count of auto95 patents).

34Specifically, we can decompose total low-skill wages wL,i,t as wL,i,t = κi,DwL,D,t+κi,FwL,F,t, where
κi,D is the home weight, wL,D,t the home wage, κi,F = 1−κi,D the foreign weight and wL,F,t the average
foreign wage. We use the normalized foreign (log) low-skill wage which is defined as

κi,FwL,F,0

wL,i,0
logwL,F,t.

The ratio
κi,FwL,F,0

wL,i,0
captures that more internationally exposed firms are more affected by foreign

wages. We compute it at the beginning of the sample. As d logwL,i,t =
κi,DwL,D,0

wL,i,0
d logwL,D,t +

κi,FwL,F,0

wL,i,0
d logwL,F,t, an increase in the normalized foreign low-skill wage by 0.01 corresponds to an

increase in total wages by 1%. We define normalized foreign high-skill wages, GDP per capita, and
labor productivity similarly (GDP gap is already an average of logs so we simply multiply the average
foreign GDP gap with κi,F ).

35By comparison, the elasticities of clean and dirty patents wrt. fuel price in ADHMV are slightly
smaller (between 0.5 and 3).
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Table 6: Effect of wages on non-automation innovations

Dependent variable Placebo machinery (pauto90)

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 0.87 0.96 1.74∗ 0.34 0.53 0.95 1.05 1.71 1.21
(0.72) (0.78) (0.89) (0.97) (1.03) (1.29) (1.53) (1.64) (1.78)

High-skill wage −0.47 −0.32 0.30 −0.72 −0.33 −0.35 −1.51 −0.59 −1.42
(0.82) (0.79) (0.84) (1.16) (1.21) (1.18) (1.57) (1.75) (1.68)

GDP gap −2.13 −1.96 0.22 3.40 3.80 4.51 −0.24 1.10 0.05
(1.56) (1.62) (1.90) (4.30) (4.29) (4.29) (2.90) (3.01) (2.97)

Labor productivity −0.33 −0.86 −1.45
(0.74) (1.27) (1.40)

GDP per capita −2.33∗ −1.42 −0.26
(1.32) (1.91) (1.74)

Stock own 0.36∗∗∗ 0.36∗∗∗ 0.36∗∗∗ 0.35∗∗∗ 0.35∗∗∗ 0.35∗∗∗ 0.35∗∗∗ 0.35∗∗∗ 0.35∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Stock other 0.15∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.16∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Spillovers own 2.23∗∗∗ 2.24∗∗∗ 1.80∗∗∗ 0.88 0.89 0.82 0.92 0.97 0.92

(0.47) (0.47) (0.58) (0.71) (0.71) (0.71) (0.71) (0.71) (0.71)
Spillovers other −2.03∗∗∗ −2.03∗∗∗ −1.62∗∗ −0.85 −0.85 −0.80 −0.91 −0.97 −0.91

(0.56) (0.57) (0.66) (0.75) (0.75) (0.75) (0.74) (0.75) (0.74)

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 42 538 42 538 42 538 42 405 42 405 42 405 42 405 42 405 42 405
Number of firms 2848 2848 2848 2845 2845 2845 2845 2845 2845

Notes: This table replicates our baseline regressions using placebo machinery innovations. Placebo machinery are innovations
in machinery excluding auto90, denoted pauto90. The sample is restricted to firms having done an auto95 innovation in the
sample period. All columns include firm and industry-year fixed effects. Columns 4-9 add country-year fixed effects. In Columns
7–9, the macroeconomic variables are the normalized foreign variables as defined in the text. Spillover and stock variables
are calculated with respect to the dependent variable (pauto90). Standard errors are clustered at firm-level and reported in
parentheses. Significance levels at *10%, **5%, ***1%.

be of a smaller magnitude, consistent with auto95 being a stricter measure of automation.

Skill premium. The previous results suggest that the skill premium is a driver of

automation innovations since the coefficients on low-skill and high-skill wages are of a

similar magnitude but opposite signs. Appendix Table A.9 directly regresses automation

innovation on the log of the inverse of the skill premium. The coefficient on the inverse

skill premium is similar to that on low-skill wages in the previous specifications and

significant at the 1% level in all specifications.

4.2 Non-automation innovation and the direction of innovation

Is the effect of wages on automation innovations specific to automation, or does it af-

fect machinery patents in general? To answer this question, we now look at the non-

automation innovations in machinery undertaken by the sample of firms in our baseline
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regressions. Specifically, we reproduce the regressions of Table 5 but for machinery in-

novations that are not auto90, denoted pauto90. We recompute the knowledge stocks

and spillover variables for pauto90 innovations (“own”) and for all innovations except

pauto90 (“other”). Table 6 reports the results. The coefficients on low- and high-skill

wages are much smaller and only significant in one specification without country-year

fixed effects for low-skill wages.36 Therefore, the same firms react differently following

the same shocks in their automation and non-automation innovations.

The pauto90 patents are a good placebo for the auto95 patents as they are both

machinery patents and tend to target the same sectors (see Appendix Figure A.9).

However, to ensure even greater comparability between the two sets of patents, we focus

on a subset of pauto90 patents, “refined pauto90”, which are technologically closer to

auto95 patents. Specifically, we identify the set of 4-digit C/IPC machinery codes which

contain at least one 6-digit auto95 code (i.e. a 6-digit machinery code for which the

prevalence of automation keywords is in the top 5% percent of the distribution). Re-

fined pauto90 patents are pauto90 patents which belong to one of these 4-digit C/IPC

codes.37 Columns (1)-(3) in Appendix Table A.10 show that the results are very sim-

ilar to pauto90. In that Table, we also include the full sample of firms with pauto90

innovations (Columns (4)-(6)) and look at all machinery innovations excluding auto95

innovations (pauto95 in Columns (7)-(9)). Again, the coefficients on low- and high-skill

wages are much smaller than for auto95 patents and insignificant.

Finally, we show that wages affect the direction, and not just the level, of innovation

in Appendix Table A.11: we regress the count of auto95 innovations controlling for the

number of pauto90 patents. We find similar coefficients, so that our results are not

driven by a general tendency for firms to innovate more.38

36We drop some firms from the sample of Table 5 because they do not have pauto90 patents during
this period. The baseline results on auto95 innovations remain unchanged when restricting attention
to the common subsample of Table 6.

37Refined pauto90 patents tend to be used by the same sectors as auto95 patents: the employment-
weighted correlation between the ratio of auto95 patents over capital purchases and refined pauto90
over capital purchases across US sectors rises to 0.90 (versus 0.76 for all pauto90 patents).

38To handle 0’s in the count of pauto90 patents we either use the arcsinh or replace 0’s with 1’s in
the log count and add a dummy variable for any positive count. We also run a regression where we
fix the coefficient on the log(pauto90) to 1, which amounts to using the ratio of auto95 / pauto90 as a
dependent variable.
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4.3 Shift-share structure and identification

The previous results establish a correlation between firms’ automation innovations and

the low-skill wages faced by their customers. We now argue that this correlation reflects

a causal effect of an increase in low-skill wages on automation innovation.

Since our measure of wages has a shift-share structure, we draw on the recent lit-

erature that discusses the identifying assumptions in this type of setup. We interpret

our results through the lens of BHJ. In the language of our setting, they show that the

random assignment of wage shocks conditional on weights and controls can be sufficient

for identification. The estimator is consistent if many country-year pairs are affected by

weakly correlated shocks (we argue in Appendix A.6.1 that these conditions are met).39

Conditionally randomly assigned wage shocks. An important feature of our

research design is that we include country-year fixed effects and focus on foreign macro

variables. As a result, our regression coefficients do not reflect a spurious correlation

between low-skill wages and innovation coming from domestic shocks such as domestic

tax policy. Instead, our regression coefficients must reflect the effect of foreign shocks

that affect the demand for automation machinery and are correlated with changes in

wages. Further, since we control for high-skill wages, these foreign shocks must have

asymmetric effects for low- and high-skill workers – a point further supported by the

results on the skill premium. Wages themselves are an equilibrium outcome, and we can

think of wage shocks as coming from four sources of variation: regulatory changes, labor

supply shocks, customer demand shocks, and technology shocks. We discuss these in

turn.

First and second, regulatory changes or labor supply shocks present an ideal source of

variation. For example, the introduction of a minimum wage, demographic or education

shocks are unlikely to affect automation innovations through any channel other than

an increase in labor costs. In principle, regulation or labor supply shocks could also

affect the production costs of innovating firms and thus innovation. However, as long as

production is concentrated in the home country, country-year fixed effects will absorb

the effect.40 In Section 5, we will focus on minimum wage changes and a specific labor-

39As shown in Table 4, the Herfindahl index for our foreign weights at the country level is 0.09 and
0.006 at the country-year level. In Appendix A.6.1, we argue that there is significant variation within
countries (see also Figures 3 and A.12).

40If a seller of automation machinery serves a foreign market through local production instead of
exporting, higher foreign low-skill wages in production would increase the price of machines and therefore
bias our coefficient on low-skill wages toward 0.
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Table 7: Controls for demand effects and technology shocks

Dependent variable Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 3.19∗∗∗ 2.40∗∗∗ 2.59∗∗∗ 2.33∗∗ 2.19∗ 2.07∗ 4.09∗∗∗ 5.57∗∗∗ 6.94∗∗∗

(0.81) (0.85) (0.93) (1.00) (1.18) (1.25) (1.33) (1.63) (1.76)
High-skill wage −1.67∗∗ −2.37∗∗∗ −2.38∗∗∗ −2.07∗∗ −1.97∗ −1.14 −4.01∗∗∗ −3.02∗∗ −3.80∗∗

(0.75) (0.77) (0.82) (1.01) (1.07) (1.01) (1.43) (1.51) (1.49)
GDP gap 0.51 1.05 −4.15 9.88 8.73 7.32 2.55 1.46 4.15

(3.05) (2.85) (2.69) (6.98) (6.86) (6.82) (5.63) (5.21) (4.99)
Labor productivity 1.98∗∗ 0.73 −0.68 −2.36 −2.96∗ −5.19∗∗

(0.96) (1.03) (1.94) (1.86) (1.79) (2.11)
Manufacturing size −1.68∗∗ −2.74∗∗ −1.02

(0.67) (1.07) (1.16)
Manufacturing size
(low-skill weighted)

−1.83∗∗∗ −1.73∗ 0.57
(0.61) (0.98) (1.02)

Recent auto95 innovation −1.14 −2.51∗∗ 1.24
(0.76) (1.26) (0.93)

Recent other innovation 0.87∗ 1.56∗∗ −0.47
(0.48) (0.78) (0.80)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 453 47 453 47 453 47 453 47 286 47 453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3220 3233

Notes: This table adds additional control variables. Manufacturing size denotes the log of weighted average of
manufacturing value added in the customers’ countries. Manufacturing size (low skill-weighted) weighs the value
added of each manufacturing sector by the low-skill share in the total labor share in the US in 1995. Recent
auto95 innovation and recent other innovation denote the log weighted averages of the flow of auto95 and other
innovations in the last 3 years in the customers’ countries. All columns include firm and industry-year fixed
effects. Columns 4–9 add country-year fixed effects. Columns 7–9 use the normalized foreign variables as defined
in the text The normalized foreign manufacturing sizes and foreign innovations are defined similarly to normal-
ized foreign low-skill wages. Standard errors are clustered at firm-level and reported in parentheses. Significance
levels at *10%, **5%, ***1%.

market shock, the Hartz reforms in Germany.

Third, foreign demand shocks for the customers of innovating firms may affect foreign

manufacturing wages and thus automation innovation. But foreign demand shocks may

also directly affect the demand for automation equipment and innovation, which could

bias our wage coefficients. The asymmetry between low- and high-skill wage coefficients

already rules out the possibility that our results are driven by skill-neutral demand

shocks (which are also addressed by our controls for GDP gap and GDP per capita).

However, sectoral demand shifts toward low-skill intensive sectors could raise low-skill

wages (relative to high-skill wages) and may lead to an increase in auto95 innovations,

if these innovations tend to target more low-skill intensive sectors (see Autor et al, 2022,

for a model with such sectoral shifts). This is why we control for labor productivity in

manufacturing in Table 5. Further, in Columns (1), (4) and (7) of Table 7, we control
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for the size of the manufacturing sector, computed as the other macro variables.41 Our

coefficients on low- and high-skill wages hardly change. Still, skill-biased sectoral demand

shifts could also occur within manufacturing. We build a variable to capture these: We

weigh time-varying sectoral value-added within manufacturing (for 46 sectors) at the

country-level by the low-skill share of labor costs in each sector in the US in 1995. We

then build this variable at the firm-level using a shift-share. Columns (2), (5), and (8)

report the results: the coefficients on wages remain similar. The coefficients on these

controls do not suggest a consistent effect for foreign customer demand shocks.42

Fourth, foreign technology shocks could also directly affect automation innovations.

Skill-neutral technology shocks are already addressed by our control for labor productiv-

ity. In contrast, a recent period of higher-than-usual automation innovation will increase

the skill premium, and could reduce future automation innovations through another

channel than wages, for instance, if it affects the competitive landscape for machinery

producers. To address this, we construct a measure of recent innovation analogous to

that for low-skill wages: For each country, we compute the number of automation inno-

vations applied for in the last three years. Then, we build firm-specific measures using

the same patent weights as for wages (while spillover controls use inventor weights). We

construct a similar control for other innovations. Columns (3), (6) and (9) of Table 7 re-

port the results. Our coefficients on low-skill wages remain similar, and these controls do

not show a consistent effect across specifications. Reverse causality would also manifest

itself as a technology shock. The effect of a firm on its home market is already captured

by country-year fixed effect, but a firm’s own innovation may affect foreign wages if the

firm is particularly large. In addition, to the above control, we also directly control

for the stock of knowledge at the firm level and lag wages. Finally, reverse causality

would, if anything, bias the low-skill wage coefficient downward.43 Therefore skill-biased

technology shocks do not seem to be driving our results.

To summarize, in the presence of country-year fixed effects and a control for high-

skill wages, our regression coefficients must reflect the effect of foreign demand shocks

41We remove the control for labor productivity in manufacturing since it is closely related to that
control—though keeping it does not change the results. Controlling for the share (instead of the size)
of manufacturing in GDP leads to similar results in unreported regressions.

42Offshoring is another form of foreign demand shocks. We show that our results are robust to a
control for offshoring in Appendix A.6.2.

43An additional concern might come from low-skill human capital shocks (captured by γ(i) in the
model of Appendix A.4), which we cannot directly control for. However, a positive shock to low-
skill human capital would be associated with higher wages and less automation innovation and would
correspondingly also bias our estimates downwards.
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Table 8: Falsification tests including Adão et al. (2019) s.e. bias

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.97∗∗ 2.72∗∗ 3.64∗∗∗ 2.24 2.61∗ 3.64∗∗ 4.19∗∗∗ 5.30∗∗∗ 4.43∗∗∗

[0.012] [0.027] [0.002] [0.124] [0.088] [0.020] [0.007] [0.001] [0.008]
{0.002} {0.002} {0.000} {0.013} {0.006} {0.002} {0.002} {0.001} {0.008}

High-skill wage −2.23∗ −2.64∗∗ −1.56 −2.81∗ −2.04 −1.87 −4.47∗∗∗ −2.91∗ −4.33∗∗∗

[0.058] [0.026] [0.182] [0.054] [0.150] [0.169] [0.005] [0.058] [0.007]
{0.001} {0.003} {0.016} {0.002} {0.064} {0.070} {0.001} {0.060} {0.002}

GDP gap Yes Yes Yes Yes Yes Yes Yes Yes Yes
Labor productivity No Yes No No Yes No No Yes No
GDP per capita No No Yes No No Yes No No Yes

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 453 47 453 47 453 47 453 47 453 47 453
Firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: This table reproduces the baseline regression and performs two falsification tests. The first test addresses
Adao et al. (2019)’s concern that in shift-share design, observations with similar weights distribution may have
correlated errors, leading to an overrejection of the null hypothesis. For each country, we sample with replace-
ment the entire path of macroeconomics variables (wages, labor productivity, GDP per capita, and GDP gap)
from the existing set of countries. We then run the same regressions as in our baseline. We repeat 4000 times
and compare the coefficients from the true regression with the distribution of coefficients from simulated re-
gressions. The [ ] brackets report the p-values of our original coefficients. In a second exercise, we perform a
similar exercise but instead of re-drawing the macro-variables, we re-draw firms’ weights from the distribution
of weights for firms in the same country. We run regressions on the simulated data and the { } brackets state
the p-values. Significance levels at *10%, **5% and ***1% using the [ ] p-values.

for automation equipment producers with asymmetric effect on wages. As we have just

seen, these foreign demand shocks are most likely regulatory shocks or labor supply

shocks that allow us to identify a causal effect of wages on automation innovations. The

stability of our coefficients to various controls can also be seen as a test of the exclusion

restriction (BHJ, Aghion et al., 2022). Importantly, our coefficients on low-skill wages

should be compared with those from regressions with the placebo innovations (reported

in Table 6 and Appendix Table A.10). Should our result on the effect of low-skill wages

on automation innovations come from a bias, then that bias would have to be absent

for other types of machinery innovations undertaken by the same firms and for the same

4-digit C/IPC codes. Finally, Section 5 provides direct evidence from regulatory changes

with quantitatively similar results.

Falsification tests and inference. We now turn to inference. Two potential

issues arise: residual errors of firms with similar country distributions may be correlated

(Adão, Kolesar and Morales, 2019) and our identification variations come from a limited

set of country-year observations (BHJ). To address these in our Poisson setting, we

implement a Monte Carlo simulation similar to those of Borusyak and Hull (2021).
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We base our simulation on the regressions of Table 5. For each country, we sample

with replacement the full path of macro variables (wages, labor productivity, GDP per

capita, and GDP gap) from the existing set of countries (for instance Germany will

get the macro variables of Canada). Then, for each firm, we compute the firm-level

macro variables as the weighted average of these new country-level variables keeping the

original country weights. We keep the automation activity, the stocks of innovations

and the spillover variables as in the data. We run the regressions, store the coefficients

on low-skill and high-skill wages and repeat 4000 times. Table 8 reports the p-values of

the original coefficients on low-skill wages and high-skill wages based on the simulated

distribution of coefficients. The p-values are not markedly different from those in Table

5. In particular, the low-skill wage coefficients are significant at least at the 10% level

(except in Column 4 with a p-value of 0.12) and at the 1% level when we focus on

foreign wages. In the language of Adão et al. (2019), the set of controls absorbs most

of the country-specific shocks affecting the outcome variable and, consequently, no shift-

share structure is left in the regression residuals. Appendix Figure A.3, panels a, b,

c plot the distribution of coefficients for Columns (2), (5), and (8). We can also view

this permutation exercise as a falsification test, and accordingly, the distributions are

centered around 0.

Similarly, we perform an additional falsification test where instead of permuting

the macro variables across countries, we permute the weights across firms from the

same country. Specifically, for each firm, we keep the automation activity, the stocks of

innovations and the spillover variables as in the data, but we sample (with replacement)

their weights from the set of firms from the same country. That is, we may now attribute

to Siemens the wages that, in reality, Bosch faces. We repeat the exercise 4000 times

and Table 8 reports the p-values of the original coefficients on low-skill wages and high-

skill wages based on the simulated distribution of coefficients. The p-values are similar

or smaller than those of Table 5. Figure A.3 plots the distribution of coefficients we

obtain for Columns (2), (5), and (8). The distributions are centered around 0 when we

include country-year fixed effects (panels e and f). In panel d, we use the home country

variation for identification and the mean coefficient is positive but significantly smaller.

This exercise highlights that the relevant variation is between firms of the same country

and not simply cross-country.
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4.4 Magnitude of the effect

Having established that the effect of wages on automation innovations is likely causal,

we now focus on the magnitude of the effects.

High-skill wages. We found a large positive effect of high-skill wages when con-

trolling for low-skill wages. This is consistent with a large literature on capital-skill

complementarity (Krusell et al., 2000), with our model in Appendix A.4, and with the

results in Section 2.8 on the skill ratio. More generally, papers studying the effect of

automation technologies on employment outcomes frequently (though not always) doc-

ument an increase in the skill ratio (see, among others, Graetz and Michaels, 2018,

Humlum, 2021, and Boustan, Choi and Clingingsmith, 2022).

Comparison with the literature. We now compare our estimates to those of

the two papers closest to ours: Lewis (2011) and Acemoglu and Restrepo (2022). Lewis

(2011) shows that US manufacturing plants adopted fewer automation technologies when

the local ratio of low- to middle-skill workers increased following immigration shocks.

He measures automation with the SMT, from which we derived a large share of our

keywords. He also measures the effect of an increase in the ratio of low- to middle-

skill workers on the relative wages of high-, middle-, and low-skill workers. Combining

these numbers, we can back out an elasticity of automation adoption with respect to

the inverse skill premium of 3.6, very much in line with our coefficients. Deriving this

number, however, requires making a number of assumptions and should be assessed

accordingly (see Appendix A.6.3 for details).

Acemoglu and Restrepo (2022) study the effect of aging on robotics adoption and

innovation across countries. They also report the effect of aging on blue-collar manufac-

turing wages across US commuting zones. Combining these results, we can back out an

elasticity of robot adoption with respect to relative blue-collar manufacturing wages of

3.9 and an elasticity of innovation of 1.5 (see Appendix A.6.3 for details). Again, these

“back-of-the-envelope” numbers should be taken with caution, and cannot substitute for

our analysis which looks directly at the effect of wages on automation innovation. Still,

it is reassuring that the magnitudes of the effects are similar.

Conceptually, and as emphasized in the introduction, it is important to distinguish

the adoption response to a wage shock from the innovation response. In particular,

calibrating directed technical change macro models requires estimates of the innovation

response (Acemoglu, 2023). While a shock to adoption must die out over time (when all

firms have adopted a given technology), a shock to innovation can build on itself. In the

34



short-run, technology adoption is dominated by the increased use of existing technologies.

In the medium run, however, the innovation response is a key determinant of the overall

adoption response, while new adoption of existing technologies plays a smaller role. In

the longer run, the innovation response also depends on knowledge spillovers.44

Simulation results. In the following, we analyze the economic magnitude of our

coefficients and highlight the role played by spillovers. We do so by estimating the long-

run effect of a change in the skill premium on task demand and the labor share that runs

through endogenous automation innovation. To do so, we run a simulation in which we

consider a uniform and permanent decrease in the skill premium by 10% between 1995

and 2009. We run a regression that jointly estimates the effect of automation innovations

(auto95) and other machinery innovations (pauto95). We then use our regression results

to simulate a Poisson process for each firm and we recompute the share of automation

innovations in machinery over that period. We run alternative simulations that either

include or exclude the effects of spillovers and firms’ knowledge stocks. Appendix A.6.4

details our procedure including the exact regression (Table A.43).

Figure 4 reports the results averaged over 800 simulations.45 We first compute the

direct effect of a decrease in the skill premium (keeping stocks and spillover variables

constant) on the share of automation innovations in machinery. This effect is captured

by the gap between the data curve and the data + direct effect curve. This gap reflects

the elasticity of 2.55 of auto95 innovations with respect to the inverse skill premium

(with an elasticity of 0.52 for pauto95). Next, we include the effect of updating firms’

own innovation stocks in the curve “data + direct + stock”, which slightly decreases the

effect of low-skill wages reflecting the negative effect of the automation stock on auto95

innovations and its positive effect on pauto95 innovations.

We then assess the importance of knowledge spillovers by recomputing the spillover

variables for the auto95 and pauto95 innovations. This is not straightforward exercise

because we need to predict not only the number of innovations but also their location.

44There can also be spillovers in the adoption of new technologies, though fundamentally they are
of a different nature: spillovers in adoption are likely to hasten the diffusion of a given technology
in the whole economy, while spillovers in innovation (such as the building-on-the-shoulders-of-giants
externality) can lead to a different technology path. A rich literature studies spillovers in technology
diffusion and adoption. These tend to be large for technologies exhibiting complementarities such as
payment systems, but for the machinery technologies that we are studying, spillovers are likely to be
mostly informational. Existing studies (Baptista, 2000, No, 2008, Bekes and Harasztozi, 2020) point
toward spillovers with elasticities between 0.001 and 0.08, much smaller than the coefficients we find
here (see Appendix A.6.3).

45The figure reports the share of automation patents for the firms in our regression sample. This
differs from Figure 2 which reports the share of automation patents for all firms.
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Figure 4: Simulation of a permanent and global 10% decrease in the skill premium on the
share of automation innovations in machinery

Notes: We report the median share of automation patents in machinery across 800 simulations. The shaded areas depict
the 33.3% - 66.7% range. The effects are computed based on the regression results of Appendix Table A.43. The baseline
curve reports the mean realization without any change in the skill premium, but when the knowledge spillovers are
recomputed every period depending on the simulated number of innovation in the previous periods. The total effect of
the skill premium shock is captured by the gap between the total effect curve and the baseline curve.

The baseline curve corresponds to the median realization for the share of automation

patents without a wage change (while the data series is one possible realization). The

overall effect of an increase in the inverse skill premium on the share of automation

innovation is then captured by the gap between the baseline curve and the baseline +

total effect curve. Knowledge spillovers increase the elasticity of the share of automation

patents with respect to the inverse skill premium. The average share of automation

innovations in machinery between 1997 and 2011 increases by 4.3 pp, that is 2.3 pp more

than the direct effect (for comparison, the share of automation innovations increased by

4.4 pp over the same time period).

Finally, we combine these effects with the results of Section 2.8 on the labor market

outcomes of automation use (Columns 1, 3 and 5 of Table 3). A 4.3 pp increase in the

share of automation innovation is associated with a decline in routine cognitive tasks of

6.1 centiles, a decline in routine manual tasks of 5.5 centiles, and a decline in the labor

share in manufacturing of 5.6 pp per decade (for comparison, routine cognitive, routine

manual tasks and the labor share declined by 1.4 centiles, 1.3 centiles and 5.2 pp per

decade, respectively, in the sectors considered over the period 1980-1998). Importantly,

we stress that one must not interpret the results of this simulation as predictive, notably
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because a change in innovation will affect the skill premium. Nevertheless, this partial

equilibrium analysis shows that the effect of the inverse skill premium on automation

innovations is economically significant.

4.5 Additional Results and Robustness Checks

This section discusses additional results and robustness checks.

Shift-share design. BHJ show that, in our context, shift-share firm-level regressions

are equivalent to weighted shock-level (i.e. country-year level) regressions. In Appendix

A.6.1, instead of our Poisson regression, we consider a linear setting where such an

equivalence result applies: we use the arcsinh of the count of automation patents as the

dependent variable and replace our log of the average macro variables with the average

of the logs. This linear setting allows us to give summary statistics on our shock variable

and unpack the relationship between the inverse skill premium and automation in the

data. Appendix Figure A.11 shows bin-scatter plots of the shock-level regressions of

residualized automation measures on the inverse skill premium: the relationship appears

linear and not driven by outliers. We also report how balanced our shocks are with

respect to observables.

Goldsmith-Pinkham, Swan and Swift (2020) show that alternatively, identification

in a shift-share design can be obtained if the weights are exogenous. In our context, this

assumption is likely violated because firms’ decision to innovate may be affected by other

macro shocks in the destination countries, which would affect firms in proportion to the

same weights. This is why we rely on BHJ. Nevertheless, we note that our weights appear

predetermined and do not reflect firms’ expectations of future wage growth: country-level

growth rates in low- and high-skill wages between 1995 and 2000 have no predictive power

on firm weights in 1995 (see Appendix Table A.12). In addition, we conduct robustness

checks on our weights in Appendix Table A.13: We exclude automation patents from

the weights; we use a longer lag between the period used to compute the weights and

the regression period, either by computing weights only up to 1989 or by dropping the

first 5 years of the regression; and drop the earlier years of the pre-sample period when

computing the weights. Our results are robust in all cases.

We conduct additional exercises related to our shift-share setting in Appendix A.6.1.

First, we show that no single country drives our results by sequentially excluding the

six largest countries. Second, BHJ recommend considering other shock-level variables

that may bias the results. We consider the effect of offshoring and the real interest rate.
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We also control for R&D costs by building firm-specific wage variables using weights

based on the location of inventors instead of patent offices. Finally, we implement the

correction suggested by Borusyak and Hull (2021) to address the non-linearity of logged

shift-share measures. Our results are robust in all cases.

Timing and pre-trends. We now study different timing assumptions to assess

whether there are pre-trends and because our choice of a 2-year lag is somewhat arbitrary.

In Appendix Figure A.4, we look at alternative lags and leads for the dependent variables.

We consider two specifications, both controlling for GDP gap, labor productivity, and

country-year fixed effects. In Panel a, we look at total wages, corresponding to Column

(5) of Table 5. In Panel b, we consider only foreign wages, corresponding to Column

(8).46 The 2-year lag delivers the highest coefficient for low-skill wages in both cases.

This is in line with the empirical literature on induced innovation using patent data

which often finds effects peaking with a 2-3 year lag (see e.g. ADHMV or Popp, 2002).

A possible interpretation of this fast response is that firms may prioritize existing projects

over starting new ones.47

Figure A.4 also looks at the effect of leads of wages on automation innovations. The

early leads (up to 2 years) show significant effects for high-skill wages. This is not

surprising: wages are auto-correlated and firms may anticipate shocks at short horizons.

Importantly, though, we find no significant effect for longer leads, suggesting that there

are no pre-trends (testing for such pre-trends is one of the recommendations of BHJ).

Appendix Table A.14 runs a horse-race regression between 2-year lagged macro variables

and macro variables with varying leads or lags. The coefficient on lead high-skill wage

is only significant in one case and the effect of 2-year lagged low-skill wages is always

positive and significant except in one specification.

Additionally, innovators should only care about current wages insofar as they are

predictive of future wages. In Appendix Table A.15, we compute predicted future wages

at time t− 2 based on an AR(1) process with country-specific trends instead of directly

using lagged wages. The results are similar to our baseline.

Nickell’s bias. Our regressions include the stock of automation innovations and

46We keep a lag of two periods for the stock variables; otherwise, the dependent variable would be
included in the RHS in the lead and contemporaneous cases.

47In contrast, our regressions are unlikely to only capture the effect of patenting off-the-shelf inventions
which already exist and have become commercially viable. First, Hall, Griliches and Hausman (1986)
and Kaufer (1989) show patent applications to be timed closely to research expenditures because the
first-to-file rule provides inventors with a strong incentive to patent as early as possible (Dechezleprêtre
et al., 2017). Second, in that case, the largest effect of wages on patents would be contemporaneous.
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may suffer from Nickell’s bias. Appendix Table A.16 removes stocks or uses the standard

method of Blundell, Griffith and van Reenen (1999), that proxies for the fixed effect with

the firm’s pre-sample average of the dependent variable. We obtain similar results.

Additional results. We derive more results in Appendix A.6.2. We control for

middle-skill wages or firm-size year fixed effects. Then, we consider alternative specifica-

tions: we run long-difference regressions or cluster our baseline regressions at the country

level. Finally, we look at alternative measures of firm-level wages (by pre-multiplying

patents weights with other factors thanGDP 0.35 or by converting macro variables in USD

differently or using total wages) and firm-level innovations (by using citations-weighted

measures of patents and subcategories of automation innovations).

5 Labor market reforms and induced automation

We now focus on two specific, identifiable labor shocks: minimum wage changes and the

German Hartz reforms. This complements our main analysis, which was agnostic about

the exact nature of the labor market shocks driving automation innovations.

5.1 Minimum wage

We compute the average minimum wage faced by the downstream customers of a specific

firm selling automation equipment. We do this as a shift-share measure of country-level

minimum wages exactly as we did for low-skill wages, with the caveat that we only

have data for 22 countries instead of 41.48 We then run panel regressions similar to our

baseline where we replace the low-skill wage with the minimum wage. Table 9 reports the

results. For regressions on total wages (Columns (1)-(6)), the coefficients on minimum

wage are similar to those on low-skill wages in previous tables, and for regressions on

foreign wages (Columns (7)-(9)) the coefficients are positive but smaller and, in one case,

insignificant.49 Overall, these results support our hypothesis that higher low-skill labor

costs induce automation innovations.

48We use data from the OECD. Importantly, not all countries have government-mandated minimum
wages, and for some countries, we follow the literature and use sectorally bargained minimum wages.
See details in Appendix A.5.1.

49A smaller coefficient is not surprising: First, we focus on manufacturing, where low-skill wages tend
to be above the minimum wage. Second, the minimum wage captures only a portion of the labor costs.
Third, the quality of the data is worse as we lose nearly half of our countries. In Appendix Table A.17,
we restrict attention to firms with at least two auto95 patents in the sample period, and obtain more
precisely estimated coefficients.
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Table 9: Effect of the minimum wage

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Minimum wage 2.02∗∗∗ 1.80∗∗ 2.22∗∗∗ 1.78∗ 1.81∗ 1.97∗ 2.59∗ 2.64∗ 1.36
(0.73) (0.72) (0.83) (0.98) (1.01) (1.12) (1.34) (1.42) (1.56)

High-skill wage −1.53∗∗ −2.33∗∗∗ −1.01 −3.39∗∗∗ −3.26∗∗ −2.99∗∗ −3.79∗∗ −3.64∗ −5.96∗∗∗

(0.71) (0.89) (1.02) (1.06) (1.33) (1.49) (1.51) (2.01) (2.07)
GDP gap −3.34 −4.01 −2.49 8.82 8.91 9.50 4.38 4.55 −1.27

(2.67) (2.69) (3.00) (6.53) (6.58) (6.98) (5.53) (6.12) (7.20)
Labor productivity 1.52∗ −0.24 −0.19

(0.87) (1.65) (1.75)
GDP per capita −0.90 −0.80 4.25

(1.48) (2.18) (2.72)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 46 590 46 590 46 590 46 328 46 328 46 328 46 328 46 328 46 328
Number of firms 3154 3154 3154 3151 3151 3151 3151 3151 3151

Notes: This table replaces the low-skill wage with the minimum wage. All columns include firm and industry-year fixed effects.
Columns 4–9 add country-year fixed effects. In Columns 7–9, the macroeconomic variables are the normalized foreign variables
as defined in the text. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at *10%,
**5%, ***1%.

5.2 Event study: the Hartz reforms in Germany

We now examine the effects of the Hartz reforms, a series of labor-market reforms in

Germany, first drafted in 2002 and implemented between January 1st, 2003 and January

1st, 2005. In order to reduce unemployment and increase labor-market flexibility, the

government reformed employment agencies, deregulated temporary work, offered wage

subsidies for hard-to-place workers, reduced or removed social contributions for low-paid

jobs, and reduced long-term unemployment benefits. Krause and Uhlig (2012), among

others, attribute an important role to the reforms in the remarkable performance of the

German labor market since then, particularly in increasing labor supply and improving

matching efficiency.

Such reforms would reduce the incentive to automate low-skill labor by decreasing

labor costs, both directly and indirectly through an increase in labor supply and a

reduction in the expected cost of vacancies. The Hartz reforms are perhaps the most

salient labor market reforms in a major country in our time period. This presents an

ideal setting: The Hartz reforms are unlikely to have affected the direction of innovation

in non-German firms through channels other than the German labor market and were

the largest macroeconomic shock in Germany at the time. The reforms had a large
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Figure 5: Effect of German exposure on automation innovations.
Notes: Panel (a) reports coefficients on the interaction between the German weight and a set of year fixed effects in a
Poisson regression of auto95 innovations controlling for a full set of fixed effects and firm innovation stocks with 2156 firms.
Panel (b) reports coefficients on the triple interaction between the German weight, a dummy for auto95 innovations, and
a set of year fixed effects in a regression of auto95 and other machinery innovations controlling for a full set of fixed effects,
firm innovation stocks and the interaction between the German weight and a set of year fixed effects with 6692 firms.
Standard errors are clustered at the firm level and the shaded areas represent 95% confidence intervals. The figure shows
that the relative trend in automation innovation for firms more exposed to Germany reversed after the Hartz reforms.

and immediate effect. As soon as they were implemented in 2003, low-skill labor costs

started stagnating while high-skill labor costs kept rising, leading to a sharp decline in

the inverse skill-premium in Germany (see Appendix Figure A.5). In contrast, there is

no such trend for the aggregate rest of the world.

We use an approach analogous to our main analysis, measuring innovation and firms’

exposure to international markets. However, we exclude German firms as the Hartz

reforms likely affected them through channels other than their customers’ labor costs.

We run the following regression over the years 1997–2014:

E (PATAut,i,t) = exp (βDE,t · δtκi,DE + βKa lnKAut,i,t−2 + βKo lnKother,i,t−2 + δi + δj,t + δc,t) .

We keep a 2-year lag on the innovation stocks. As before, PATAut,i,t counts automation

patents, KAut,i,t−2 and Kother,i,t−2 denote firm knowledge stocks, δi, δj,t, and δc,t are firm,

industry-year, and country-year fixed effects, respectively. κi,DE is the fixed German

weight of the firm; and δt is a set of year dummies (with 2005 the excluded year). βDE,t

are the coefficients of interest. They state by how much more a firm exposed to Germany

tends to file automation patents in a given year relative to 2005.

Figure 5.a reports the results. The coefficient of −2.71 in 2010 means that, on
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average, a firm with a German weight of 0.1 (the mean value is 0.105) had a 27.1%

smaller increase in automation innovations between 2005 and 2010 than a firm with no

German exposure. This aligns with our regression results: Between 2003 and 2008, the

inverse skill-premium in Germany declined by 12.3% relative to the rest of the world.

Using the elasticity of 2.5 of Column (4) in Table A.9, this would correspond to a decline

in automation innovations of 30.8% between 2005 and 2010.

From 1999 to 2004, firms more exposed to Germany slightly increased their propensity

to introduce automation innovations. As expected, the trend reversed between 2005 and

2009, consistent with the Hartz reform increasing labor supply from 2003 onward and a 2-

year lag effect on innovation. From 2010 on, the coefficients increase again. This reversal

suggests only temporary effects of the Hartz reform on the direction of innovation, or

may be the result of the Great Recession.

We conduct a triple difference exercise to show that the trends above are specific

to automation innovations. We compare automation innovations with non-automation

machinery innovations by firms more or less exposed to Germany over time. Formally,

we run the following regression:

E (PATk,i,t) = exp

 βDE,t · δtκi,DE + βautDE,t · δtκi,DE1k=aut + βKa lnKAut,i,t−2

βautKa lnKAut,i,t−21k=aut + βKp lnKPaut,i,t−2 + βautKp lnKPaut,i,t−21k=aut

+βKo lnKother,i,t−2 + βautKo lnKother,i,t−21k=aut + δk,i + δk,j,t + δk,c,t

 .

(5)

k denotes the type of an innovation which is either auto95 or other machinery innovation

(pauto95), δk,i represents a set of innovation type firm fixed effects, δk,c,t innovation type

country-year fixed effects, δk,j,t innovation type industry year fixed effects and 1k=aut is

a dummy for an auto95 innovation. KPaut,i,t is the stock of other machinery innovations

(pauto95) and Kother,i,t the stock of non-machinery innovations. βautDE,t are the coefficients

of interest. For each year, they measure how much exposure to Germany increases the

relative propensity to introduce automation innovations compared to other forms of

machinery innovations relative to 2005. The coefficients βDE,t measure the effect of

German exposure that is common to all machinery innovations. Figure 5.b reports the

results: the pattern is, if anything, more pronounced than in Figure 5.a.

To formally test that the Hartz reform created a trend break, we replace the set of

year fixed-effects δt in βautDE · δtκi,DE1k=aut in equation (5) with a time trend t − 2005

and a time trend interacted with a post 2005 dummy (t− 2005)t>2005. We focus on the
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Table 10: Automation vs non-automation innovation and exposure to Germany: triple diff
exercise

Auto95 and
pauto95

Auto95 and
pauto90

(1) (2) (3) (4)

Time trend×auto95 dummy×German exposure×post −1.05∗∗∗ −1.10∗∗∗ −1.08∗∗∗ −1.12∗∗∗

(0.33) (0.33) (0.33) (0.33)
Time trend×auto95 dummy×German exposure 0.49∗∗∗ 0.46∗∗∗ 0.45∗∗ 0.46∗∗∗

(0.18) (0.18) (0.18) (0.18)
Time trend×German exposure×post 0.31

(0.22)
Time trend×German exposure −0.34∗∗

(0.15)

Firm innovation stocks× innovation types No Yes Yes Yes
Year dummy×German exposure Yes Yes No Yes
Industry×year×innovation types FE Yes Yes Yes Yes
Country×year×innovation types FE Yes Yes Yes Yes
Firm× innovation types FE Yes Yes Yes Yes

Observations 76 037 76 037 76 037 74 102
Number of firms 5416 5416 5416 5280

Notes: This table shows that the effect of German exposure is specific to automation innovations.
All regressions control for firm innovation types fixed effects, country-year-innovation types fixed
effects, and industry-year-innovation types fixed effects. Innovation types are auto95 and pauto95
in Columns 1–3 and auto95 and pauto90 in Column 4. Column 2–4 control for innovation stocks
lagged by two periods interacted with innovation types dummies. Column 3 controls for a linear
time trend times the German exposure instead of yearly dummies times the German exposure.
Throughout, German exposure is measured by the German weight. Standard errors are clustered
at the firm-level and reported in parentheses. Significance levels at *10%, **5%, ***1%.

years 2000-2010 to have a panel centered on 2005 and to avoid the effects of the Great

Recession on innovation. Table 10 reports the result. Column (2) corresponds exactly

to this specification. We find a significant time trend in the effect of German exposure

on the relative propensity to innovate in automation between 2000 and 2005. However,

the trend sharply reverses in the following five years. Column (1) omits the controls

for the stock variables. Column (3) replaces the flexible set of year dummies times

German exposure, δtκi,DE, by a time trend times German exposure and a time trend

times German exposure post 2005. Finally, instead of looking at auto95 and pauto95

(i.e. all non-auto95 machinery innovations) innovation, Column (4) considers auto95 and

pauto90 innovations (which we used as the default non-automation innovations in Table

6). In all cases, the trend break on automation innovations remains with a consistent

magnitude. Overall, this section shows that, in line with our theory, the Hartz reforms

reduced automation innovations by foreign firms highly exposed to Germany, both in

absolute terms and relative to other types of machinery innovation.
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6 Conclusion

In this paper, we identify automation patents and present evidence that equipment

producers innovate more in automation technologies following increases in the low-skill

labor costs of downstream firms. We develop a method to classify patents in machinery as

automation or not, covering a broad range of technologies. We then use this classification

to measure the use of automation technology by industry at a highly disaggregated level

and find that our measure of automation predicts a decline in routine tasks, an increase

in the skill ratio and a decrease in the labor share across US sectors.

Further, we use our classification to analyze labor market conditions’ effect on ma-

chinery automation innovations. Using global data and firm-level variation, we find

that automation innovations are highly responsive to changes in low-skill wages, with

elasticities between 2 and 5, while an increase in high-skill wages decreases automation

innovations. In contrast, other innovations in machinery by the same set of firms do

not respond to changes in labor costs. To complement our analysis, we then focus on

two policy-induced labor market shocks. We show that increases in the minimum wage

lead to more automation innovations and that the Hartz reforms, aimed at reducing the

effective cost of low-skill labor, induced a relative decrease in automation innovations by

foreign firms with high exposure to Germany.

Our results highlight that labor market policies can generate technological responses,

so that the long-term effects of these policies may differ from their short-term effects.

Analyzing this feedback loop quantitatively would require the development of a macroe-

conomic model, which could be calibrated using our estimates. More generally, our

estimates can discipline an emerging literature on automation and economic growth. In

addition, future research could adapt our classification method to automation patents

beyond machinery, and analyze how much the emergence of recent automation technolo-

gies for high-skill labor, such as AI, results from rising high-skill wages.
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Békés, Gábor and Péter Harasztosi, “Machine imports, technology adoption, and local spillovers,”

Review of World Economy, 2020, 156, 343–375.

45



Blundell, Richard, Rachel Griffith, and John Van Reenen, “Market Share, Market Value and

Innovation in a Panel of British Manufacturing Firms,” The Review of Economic Studies, 1999, 66

(3), 529–554.

Borusyak, Kirill and Peter Hull, “Non-Random Exposure to Exogenous Shocks: Theory and Ap-

plications,” 2021.

, , and Xavier Jaravel, “Quasi-experimental Shift-share Research Designs,”Review of Economic

Studies, 2022, 89 (1), 181–213.

Boustan, Leah Platt, Jiwon Choi, and David Clingingsmith, “Automation after the Assembly

line: Computerized Machine Tools, Employment and Productivity in the United States,” 2022.

Cameron, A. Colin, Jonah Gelbach, and Douglas Miller, “Boostrap-based Improvements for

Inference with Clustered Errors,” The Review of Economics and Statistics, 2008, 90 (3), 414–427.

Clemens, Michael, Ethan Lewis, and Hannah Postel, “Immigration Restrictions as Active Labor

Market Policy: Evidence from the Mexican Bracero Exclusion,” American Economic Review, June

2018, 108 (6), 1468–87.

Coelli, Federica, Andreas Moxnes, and Karen Ulltveit-Moe, “Better, Faster, Stronger: Global

Innovation and Trade Liberalization,” The Review of Economics and Statistics, 2020.
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Krusell, Per, Lee Ohanian, José-Vı́ctor Rı́os-Rull, and Giovanni Violante, “Capital-Skill

Complementarity and Inequality: A Macroeconomic Analysis,” Econometrica, 2000, 68 (5), 1029–

1053.

Lewis, Ethan, “Immigration, Skill Mix and Capital Skill Complementarity,” Quarterly Journal of

Economics, May 2011, 126 (2), 1029–1069.

Lordan, Grace and David Neumark, “People versus machines: The impact of minimum wages on

automatable jobs,” Labour Economics, 2018, 52 (40-53).

Lybbert, Travis and Nikolas Zolas, “Getting patents and economic data to speak to each other:

An ’Algorithmic Links with Probabilities’ approach for joint analyses of patenting and economic

activity,” Research Policy, 2014, 43, 530–542.

Mann, Katja and Lukas Puettmann, “Benign Effects of Automation: New Evidence from Patent

Texts,” The Review of Economic and Statistics, August 2021, pp. 1–45.

No, Joung, “Cities and Growth: Knowledge Spillovers in the Adoption of Advanced Manufacturing

Technologies,” 2008. The Canadian Economy in Transition Series.
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A Main Appendix

A.1 Additional Figures and Tables
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Figure A.1: Share of biadic patent applications in the different technical fields in 1997-2011.
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Figure A.2: Trends in automation patents.
Notes: Panel (a) reports the share of automation patents (auto90 or auto95) in machinery out of total patents according to
the auto90 and auto95 definitions. Panel (b) reports the raw number of automation patents (auto90 or auto95) worldwide.
We restrict attention to biadic families.
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Figure A.3: Distribution of coefficients in Monte-Carlo simulations.
Notes: We run Monte-Carlo simulations where for each country, we sample with replacement the entire path of macroe-
conomics variables (wages, labor productivity and GDP gap) from the existing set of countries. We then re-run our
regressions 4000 times. Panels a), b) and c) report histograms on the distribution of low-skill wage coefficients. The
vertical red lines correspond to the coefficients of the true regressions. We then carry a symmetric exercise, where for
each firm, we sample with replacement the set of country-weights from the existing set of firms within the same country.
We re-run our regressions 4000 times and panels d), e) and f) report histograms on the distribution of low-skill wage
coefficients. Each panel corresponds to a different column in Table 8.
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and each year corresponds to a different Poisson regression of auto95 innovations on wages, GDP gap, labor productivity,
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throughout. Panel a consider the total macroeconomic variables while Panel b looks at the normalized foreign variables
previously defined. The shaded area represent 95% confidence interval, standard errors are clustered at the firm level.
Panel a, year -2 corresponds to Column 5 of our baseline Table 5, and Panel b, year -2 corresponds to Column 8. The
leads test for the presence of pre-trends.
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Figure A.5: Effect of the Hartz reforms on labor costs and the inverse skill premium.

Notes: Panel a) shows log low-skill and high-skill labor costs (denoted wages) in Germany and in the rest of the world.
Panel b) shows the inverse skill premium. The rest of the world series is computed as a weighted average using the weights
(excluding Germany) of the firms included in the regression of Figure 5.a
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Table A.1: Summary statistics on the industry level regressions

Mean SD Min P10 P50 P90 Max N

Share automation (using industry) 0.075 0.013 0.042 0.059 0.079 0.088 0.110 133
Share automation (inventing industry) 0.081 0.060 0.010 0.027 0.076 0.166 0.381 126
∆ Computer use (1984-1997) 0.192 0.072 -0.159 0.104 0.187 0.280 0.412 133
∆ Routine cognitive -2.493 4.216 -21.667 -8.286 -2.710 4.020 9.666 133
∆ Routine manual -2.308 4.336 -23.283 -9.330 -1.435 3.073 12.516 133
∆ High/low skill workers 0.123 0.176 -0.105 -0.003 0.070 0.318 1.132 133
∆ Labor share (NBER manufacturing) -0.093 0.063 -0.230 -0.179 -0.084 -0.040 0.035 56
∆ Labor share (BEA) -0.046 0.121 -0.616 -0.191 -0.015 0.045 0.327 60

Notes: This table shows summary statistics for the variables in our industry level regression. Share automation
(using industry) represents the share of automation patents among machinery patents used by an industry.
Share automation (inventing industry) represents the share of automation patents among machinery patents
invented by an industry. Patents are USPTO granted patents over the years 1980-1998. ∆ Computer use is the
change in computer per-employee between 1997 and 1984. ∆ routine cognitive, routine manual and high/low
skill workers denote changes in these variables between 1980-1998. ∆ labor share (NBER manufacutring) is
the change in payroll / value added in the NBER-CES manufacuring industry database. ∆ Labor Share (BEA)
is the change in total compensation / value added in 60 aggregated industries. Industries are weighed by mean
industry employment in 1980 and 1998.

Table A.2: Industry of innovators

Industry Share auto95 (%) Share firms (%)

20 Manufacture of chemicals and chemical products 2.14 3.43
25 Manufacture of fabricated metal products, except machinery and equipment 1.18 4.42
26 Manufacture of computer, electronic and optical products 23.26 7.66
27 Manufacture of electrical equipment 9.47 2.90
28 Manufacture of machinery and equipment n.e.c. 24.29 21.11
29 Manufacture of motor vehicles, trailers and semi-trailers 5.32 3.55
30 Manufacture of other transport equipment 4.58 1.17
46 Wholesale trade, except of motor vehicles and motorcycles 1.32 3.31
64 Financial service activities, except insurance and pension funding 1.68 0.99
72 Scientific research and development 2.05 2.38

Other industries 12.96 26.83
No information on industry 11.75 22.22

Notes: The table reports the industry of patenting firms included in our baseline regression with industry-year fixed effects
at the NACEv2 division level, and the share of biadic auto95 families for each industry. Industries representing less than
1% of patents are summed up in the ’Other industries’ category.

Table A.3: Coverage of the regression sample

Applications Families Biadic Families Firms

Patstat 1997-2011 430 783 179 663 61 497 –
Matched with Orbis 347 242 140 560 52 241 4231
Firms in sample 206 313 85 893 32 918 3236

Notes: This table reports the number of auto95 patent applications, families,
biadic families, and firms (that do at least one auto95 biadic innovation) for
the time period 1997-2011 for three different samples based on PATSTAT:
the whole sample, the sample of firms observed in ORBIS and the sample of
firms included in our baseline regression.
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Table A.4: Descriptive statistics on innovation

(a) Top 10 auto95 innova-
tors in our sample

Company Auto95’s
in 1997-2011

Siemens Aktiengesellschaft 1781
Honda Motor Co., Ltd. 815
Fanuc Co. 779
Samsung Electronics Co., Ltd. 718
Mitsubishi Electric Co. 669
Robert Bosch Gmbh 663
Tokyo Electron Limited 583
Murata Machinery, Ltd. 502
Kabushiki Kaisha Toshiba 491
Panasonic I.P.M Co., Ltd. 460

Notes: This table reports the 10 firms with the
highest number of biadic auto95 patents in our
baseline sample.

(b) Summary statistics on auto95 and
pauto90 innovation

Sample Baseline Restricted

Auto95 Auto95 Pauto90

(1) (2) (3) (4)

Number of patents
Yearly 1997-2011 1997-2011 1997-2011

Mean 1 12 13 83
SD 4 54 57 314
P50 0 2 2 14
P75 0 6 7 49
P90 2 20 24 167
P95 3 43 50 340
P99 14 194 200 1184

Average citations
received in 5 years 9.4 9.3 7.6

Number of firms 3236 2848

Notes: This table presents summary statistics for the firms’ patenting
activity. Columns 1 and 2 show statistics for the baseline regression
sample. Columns 3 and 4 describe the restricted sample in which we
include non-automation machinery (pauto90) patents. Average cita-
tions are calculated as the average number of citations received by
a patent within 5 years after the application. The firms are the non-
domestic firms that patent at least once before 1995 and during the
sample period 1997-2011.

Table A.5: Summary statistics on the firm-level macro variables

Low-skill
wage

Middle-skill
wage

High-skill
wage

GDP
gap

GDP per
capita

Labor
productivity

Low-skill wage 1.000
Middle-skill wage 0.942 1.000
High-skill wage 0.608 0.749 1.000
GDP gap −0.063 −0.051 −0.032 1.000
GDP per capita 0.709 0.805 0.732 0.114 1.000
Labor productivity 0.674 0.736 0.772 0.039 0.668 1.000

Standard deviation 0.032 0.029 0.034 0.004 0.026 0.026

Notes: This table shows the correlation of residuals for the auto95 baseline regression sample, con-
trolling for firm and year-industry fixed effects. The last row shows the standard deviation of the
residual variables.
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Table A.6: Alternative definitions for the home country

Dependent variable Auto95

home = largest inventor weight home = hq country

Dom. and Fgn. Fgn. Dom. and Fgn. Fgn.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Low-skill wage 3.06∗∗∗ 2.52∗∗∗ 3.20∗∗∗ 3.03∗∗ 2.96∗∗ 2.37∗ 3.17∗∗∗ 2.69∗∗∗ 3.28∗∗∗ 3.23∗∗∗ 3.33∗∗∗ 3.00∗∗

(0.94) (0.98) (1.16) (1.18) (1.30) (1.41) (0.88) (0.93) (1.07) (1.02) (1.13) (1.26)
High-skill wage −2.91∗∗∗ −3.84∗∗∗ −2.78∗∗∗ −4.20∗∗∗ −4.34∗∗∗ −4.82∗∗∗ −2.90∗∗∗ −3.70∗∗∗ −2.79∗∗∗ −3.58∗∗∗ −3.37∗∗∗ −3.81∗∗∗

(0.91) (0.99) (0.98) (1.19) (1.36) (1.31) (0.82) (0.87) (0.92) (1.00) (1.01) (1.14)
GDP gap −1.56 −2.65 −1.24 −2.56 −2.70 −3.97 −5.92∗ −6.99∗∗ −5.66∗ −5.56∗∗ −5.37∗∗ −6.09∗∗

(4.00) (4.12) (4.12) (3.12) (3.36) (3.29) (3.18) (3.30) (3.38) (2.67) (2.72) (2.92)
Labor productivity 2.13∗ 0.19 1.91∗ −0.29

(1.22) (1.34) (1.06) (1.06)
GDP per capita −0.38 1.34 −0.30 0.50

(1.54) (1.47) (1.43) (1.51)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm f.e. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year f.e. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year f.e. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 47 360 47 360 47 360 47 360 47 360 47 360 47 344 47 344 47 344 47 344 47 344 47 344
Number of firms 3229 3229 3229 3229 3229 3229 3222 3222 3222 3222 3222 3222

Notes: This table varies the definition of the home country. In Columns 1-6, the home country is defined as the country with the
largest inventor weight. In Columns 7-12, the home country is the one where headquarters are located. All columns include controls
for stocks and spillovers, firm, industry-year and country-year fixed effects. In Columns 4-6 and 9-12, the macroeconomic variables
are the normalized foreign variables as defined in the text. Standard errors are clustered at the firm-level and reported in parentheses.
Significance levels at *10%, **5%, ***1%.

Table A.7: Baseline regressions with fewer controls

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 3.42∗∗∗ 2.65∗∗∗ 3.01∗∗∗ 2.72∗∗∗ 2.65∗∗∗ 2.24∗∗ 4.67∗∗∗ 4.19∗∗∗ 4.19∗∗∗

(0.76) (0.76) (0.80) (0.98) (0.76) (1.01) (1.33) (1.32) (1.33)
High-skill wage −1.56∗∗ −1.51∗∗ −2.21∗∗∗ −2.72∗∗∗ −1.51∗∗ −2.83∗∗∗ −4.94∗∗∗ −4.51∗∗∗ −4.47∗∗∗

(0.68) (0.65) (0.73) (0.93) (0.65) (0.97) (1.39) (1.33) (1.32)
Stock automation −0.11∗∗∗ −0.12∗∗∗ −0.11∗∗∗ −0.12∗∗∗ −0.11∗∗∗ −0.12∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Stock other 0.51∗∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.52∗∗∗ 0.50∗∗∗ 0.51∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Spillovers automation 0.58∗∗ 1.35∗∗∗ 1.33∗∗∗

(0.29) (0.47) (0.46)
Spillovers other −0.19 −0.97∗∗∗ −0.97∗∗∗

(0.22) (0.36) (0.35)
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 453 47 812 47 453 47 453 47 453 47 453
Number of firms 3236 3236 3236 3233 3236 3233 3233 3233 3233

Notes: This table shows our baseline regressions with fewer controls. All columns include firm and industry-year
fixed effects. Columns 4–9 add country-year fixed effects. In Columns 7–9, the macroeconomic variables are the
normalized foreign variables as defined in the text. Significance levels at *10%, **5%, ***1%.
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Table A.9: Effect of the inverse skill premium on auto95 innovations

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill / High-skill wages 2.52∗∗∗ 2.68∗∗∗ 2.53∗∗∗ 2.53∗∗∗ 2.39∗∗∗ 2.63∗∗∗ 4.39∗∗∗ 4.20∗∗∗ 4.37∗∗∗

(0.70) (0.70) (0.70) (0.89) (0.88) (0.89) (1.28) (1.25) (1.27)
GDP gap −4.12 −4.40∗ −4.14 4.77 5.15 5.50 −0.02 0.66 0.40

(2.59) (2.61) (2.61) (6.79) (6.73) (6.85) (4.60) (4.64) (4.68)
Labor productivity 1.03 −1.21 −0.59

(0.64) (1.10) (0.73)
GDP per capita 0.04 −1.62 −0.33

(0.71) (1.14) (0.89)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 453 47 453 47 453 47 453 47 453 47 453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: This table shows the effect of the skillpremium on automation innovations. All columns include firm and
industry-year fixed effects. Columns 4–9 add country-year fixed effects. Columns 7–9 compute the normalized
foreign (log) inverse skill premium as the difference between the normalized (log) foreign low-skill wages and the
normalized (log) foreign high-skill wages as defined in the text. In these columns, GDP gap, GDP per capita
and labor productivity also correspond to their normalized foreign values. Standard errors are clustered at the
firm-level and reported in parentheses. Significance levels at *10%, **5%, ***1%.

Table A.8: Auto90 innovations

Dependent variable Auto90

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.33∗∗∗ 2.06∗∗∗ 3.29∗∗∗ 1.69∗∗ 1.72∗ 2.80∗∗∗ 3.26∗∗∗ 3.83∗∗∗ 3.87∗∗∗

(0.67) (0.69) (0.79) (0.83) (0.90) (1.07) (1.14) (1.34) (1.47)
High-skill wage −1.95∗∗∗ −2.44∗∗∗ −0.91 −1.79∗∗ −1.73∗ −1.05 −3.73∗∗∗ −2.88∗∗ −3.37∗∗∗

(0.60) (0.66) (0.67) (0.82) (0.93) (0.87) (1.18) (1.31) (1.24)
GDP gap −3.61∗ −4.27∗∗ −1.21 3.68 3.77 5.58 −0.32 0.92 0.89

(2.09) (2.15) (2.25) (5.28) (5.36) (5.47) (3.27) (3.54) (3.71)
Labor productivity 1.12 −0.15 −1.36

(0.73) (1.31) (1.35)
GDP per capita −2.72∗∗ −2.73∗ −1.10

(1.06) (1.49) (1.57)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 71 656 71 656 71 656 71 367 71 367 71 367 71 367 71 367 71 367
Number of firms 4821 4821 4821 4818 4818 4818 4818 4818 4818

Notes: This table shows our baseline regression using a weaker measure of automation (auto90). All columns
include firm and industry-year fixed effects. Columns 4–9 add country-year fixed effects. In Columns 7–9, the
macroeconomic variables are the normalized foreign variables as defined in the text. Stock and spillover variables
are calculated with respect to the dependent variable (auto90). Standard errors are clustered at the firm-level
and reported in parentheses. Significance levels at *10%, **5%, ***1%.
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Table A.10: Additional regressions with non-automation patents

Dependent variable Pauto90 refined Pauto90 Pauto95

Dom. and Fgn. Fgn. Dom. and Fgn. Fgn. Dom. and Fgn. Fgn.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 1.29 1.69 2.46 0.73 0.19 1.10 0.95 0.49 1.60
(0.90) (1.24) (1.75) (0.59) (0.79) (1.35) (0.76) (1.00) (1.61)

High-skill wage −1.41 0.38 0.84 −0.22 −0.57 −0.90 −0.44 −0.43 −0.81
(0.87) (1.35) (1.98) (0.56) (0.91) (1.33) (0.74) (1.18) (1.71)

GDP gap −2.89 −0.20 −1.71 −3.06∗∗ 2.74 0.73 −2.03 3.49 0.77
(2.14) (4.46) (3.43) (1.35) (4.35) (2.73) (1.57) (4.16) (2.87)

Labor productivity 1.26 −1.74 −2.68 −0.11 0.34 −1.03 −0.11 −0.58 −1.14
(0.80) (1.57) (1.71) (0.60) (1.02) (1.12) (0.71) (1.22) (1.35)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No Yes Yes No Yes Yes No Yes Yes

Observations 34 981 34 771 34 771 149 580 115 342 115 342 43 809 43 686 43 686
Number of firms 2352 2350 2350 10 012 8911 8911 2932 2929 2929

Notes: This table presents additional regressions using non-automation innovations. In columns 1–3 the dependent
variable is refined pauto90 (non-auto90 machinery patents that list at least one 4-digit C/IPC code containing a 6-
digit code classified auto95), and the sample is restricted to the firms in the baseline auto95 regressions. In columns
4–6 the dependent variable is pauto90 (machinery patents excluding auto90) but the sample is unrestricted. In
columns 7–9 the dependent variable is pauto95 (machinery patents excluding auto95), and the sample is again
restricted to the firms in the baseline auto95 regression. All columns include firm and industry-year fixed effects,
Columns 2, 3, 5, 6, 8 and 9 add country-year fixed effects. In Columns 3, 6, and 9 the macroeconomic variables are
the normalized foreign variables as defined in the text. Stocks and spillovers are defined in terms of the respective
dependent variable. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels
at *10%, **5%, ***1%.

Table A.11: Wages and the direction of innovation

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.11∗∗∗ 2.12∗∗∗ 2.00∗∗ 2.37∗∗ 2.37∗∗ 2.56∗∗ 4.75∗∗∗ 4.74∗∗∗ 4.96∗∗∗

(0.73) (0.73) (0.80) (0.99) (0.99) (1.05) (1.35) (1.35) (1.48)
High-skill wage −2.15∗∗∗ −2.16∗∗∗ −1.96∗∗∗ −2.13∗∗ −2.16∗∗ −2.27∗∗ −2.94∗∗ −2.97∗∗ −3.08∗∗

(0.66) (0.66) (0.71) (0.98) (0.98) (1.08) (1.33) (1.34) (1.51)
GDP gap −2.55 −2.55 −2.38 2.13 2.29 −1.36 3.83 3.74 5.08

(2.24) (2.26) (2.26) (5.54) (5.59) (5.31) (4.19) (4.18) (5.11)
Labor productivity 0.89 0.89 0.79 −1.46 −1.43 −1.45 −1.90 −1.85 −1.82

(0.84) (0.84) (0.93) (1.62) (1.62) (1.71) (1.41) (1.42) (1.56)
Arcsinh pauto90 0.51∗∗∗ 0.51∗∗∗ 0.51∗∗∗

(0.02) (0.02) (0.02)
Log pauto90 0.48∗∗∗ 1.00 0.49∗∗∗ 1.00 0.49∗∗∗ 1.00

(0.02) (0.02) (0.02)
Any pauto90 0.42∗∗∗ 0.08 0.42∗∗∗ 0.09∗ 0.42∗∗∗ 0.08∗

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 453 47 453 47 453 47 453 47 453 47 453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: This table shows regressions with a control for non-automation machinery innovations (pauto90). Columns
1, 4, and 7 control for the arcsinh of pauto90 patent flow. Columns 2, 5, and 8 control for log pauto90 and a
dummy variable indicating at least 1 pauto90 innovation. Columns 3, 6, and 9 constrain the coefficient on log
pauto90 to 1. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at
*10%, **5%, ***1%.
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Table A.12: Predicting weights using subsequent wages

Weight Foreign weight

(1) (2) (3) (4) (5) (6)

Growth in low-skill wages, 1995-2000 −0.14 −0.26 −0.13 −0.10 −0.31 −0.33
(0.12) (0.28) (0.29) (0.11) (0.26) (0.30)

Growth in high-skill wages, 1995-2000 0.13 0.01 0.20 0.23
(0.24) (0.27) (0.21) (0.24)

Patent weighted No No Yes No No Yes
Observations 132 676 132 676 132 676 129 440 129 440 129 440
Firms 3236 3236 3236 3236 3236 3236

Notes: This table shows OLS regressions of firm-level weights on country growth rates for low-skill and
high-skill wages between 1995 and 2000. Columns 3 and 6 weigh observations by the number of auto95
patents between 1997 and 2011. In columns 4–6, the dependent variable is the the foreign weight compo-
nent only. Standard errors are clustered at the country-level. Significance levels at *10%, **5%, ***1%.

Table A.13: Alternative weights

Dependent variable Auto95

Weight robustness Pauto95 1971–1989 1985–1994 start 2000

Dom.
and fgn. Fgn. Dom.

and fgn. Fgn. Dom.
and fgn. Fgn. Dom.

and fgn. Fgn.

(1) (2) (3) (4) (5) (6) (7) (8)

Low-skill wage 2.64∗∗ 2.24∗ 2.86∗∗ 3.42∗∗ 5.55∗∗∗ 5.41∗∗∗ 5.12∗∗∗ 6.64∗∗∗

(1.18) (1.29) (1.16) (1.47) (1.72) (1.92) (1.52) (2.11)
High-skill wage −2.10∗ −2.40∗∗ −1.19 −2.03 −2.94∗ −3.46∗∗ −1.39 −3.03

(1.08) (1.22) (1.14) (1.63) (1.66) (1.70) (1.55) (2.05)
GDP gap −2.63 3.75 4.03 −0.92 7.62∗ 0.85 3.41 0.69

(5.72) (6.76) (6.60) (6.79) (4.10) (4.15) (4.81) (3.91)
Labor productivity −0.39 0.15 −3.18∗ 0.45 −2.61∗ −2.48 −3.87∗∗ −4.80∗∗∗

(1.63) (1.89) (1.77) (2.16) (1.55) (1.79) (1.62) (1.78)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 44 672 33 752 43 262 25 854 44 672 33 752 43 262 25 854
Number of firms 3057 2319 2949 2624 3057 2319 2949 2624

Notes: This table uses alternative weights to compute firm’s macroeconomic variables. In Columns 1–2 the
firm’s country weights are calculated using pauto95 patents (machinery patents excluding auto95). Columns
2–4 compute the weights over the period 1971–1989 and Columns 5–6 over the period 1985–1994. Columns 7–8
use the baseline pre-sample period of 1971–1994 to compute weights but restrict the regression sample to the
years 2000–2009. In columns 2, 4, 6, and 8 the macroeconmic variables are the normalized foreign variables as
described in the text. Standard errors are clustered at the firm-level and reported in parentheses. Significance
levels at *10%, **5%, ***1%.
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Table A.14: Horse-race regressions between 2 year lags and other lags / leads

Dependent variable Auto95

Macrovars lag j 6 5 4 3 2 1 0 -1 -2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Domestic and Foreign
Low-skill wage (L2) 3.08∗∗∗ 2.55∗∗ 2.38∗∗ 2.26∗∗ 2.37∗∗ 6.73∗∗∗ 3.59∗∗ 2.78∗ 2.09

(1.06) (1.13) (1.08) (1.10) (0.99) (2.15) (1.80) (1.54) (1.62)
Low-skill wage (Lj) −0.64 −0.10 −0.02 −0.11 −3.98∗∗ −0.75 0.42 0.08

(0.43) (0.48) (0.47) (0.59) (1.92) (1.58) (1.50) (1.52)
High-skill wage (L2) −3.17∗∗∗ −2.17∗∗ −2.55∗∗ −2.69∗∗ −2.13∗∗ −2.83 −1.13 −2.11 −1.73

(1.08) (0.94) (1.00) (1.27) (0.98) (1.78) (1.61) (1.68) (1.65)
High-skill wage (Lj) 0.39 −0.65 0.64 −0.01 0.32 −1.92 −1.19 −0.05

(0.90) (1.07) (1.04) (1.28) (1.49) (1.21) (1.22) (1.40)

Observations 47 453 47 453 47 453 47 453 47 453 42 933 38 624 34 566 30 628
Number of firms 3233 3233 3233 3233 3233 3132 3034 2943 2843

Panel B. Foreign
Low-skill wage (L2) 4.99∗∗∗ 4.66∗∗∗ 4.70∗∗∗ 4.26∗∗∗ 4.75∗∗∗ 8.69∗∗∗ 6.48∗∗∗ 5.54∗∗∗ 3.99∗

(1.39) (1.44) (1.38) (1.46) (1.35) (2.80) (2.20) (2.06) (2.17)
Low-skill wage (Lj) −0.38 0.12 0.01 0.39 −4.10∗ −1.54 −0.52 0.47

(0.53) (0.58) (0.59) (0.84) (2.46) (2.02) (1.97) (2.03)
High-skill wage (L2) −3.15∗∗ −2.38∗ −2.64∗ −1.16 −2.94∗∗ −3.66∗ −1.78 −2.54 −2.77

(1.49) (1.40) (1.44) (1.58) (1.33) (2.07) (1.78) (1.84) (2.10)
High-skill wage (Lj) 0.05 −1.18 −0.41 −2.26 −0.21 −3.33∗∗ −3.19∗∗ −0.61

(1.07) (1.23) (1.17) (1.49) (1.91) (1.64) (1.61) (1.79)

Observations 47 053 47 141 47 251 47 363 47 453 42 933 38 624 34 566 30 628
Number of firms 3222 3224 3227 3231 3233 3132 3034 2943 2843

GDP gap Yes Yes Yes Yes Yes Yes Yes Yes Yes
Labor productivity Yes Yes Yes Yes Yes Yes Yes Yes Yes
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table studies different timing assumptions. The independent variables are included twice: lagged by
two periods (baseline) and shifted as indicated by lag j in the header. The positive numbers are lags, the negative
numbers indicate leads in years. All columns include controls for labor productivity and the business cycle, firm and
industry-year fixed effects, and country-year fixed effects. In Panel B, the macroeconomic variables are the previously
defined normalized foreign variables. Standard errors are clustered at the firm-level and reported in parentheses.
Significance levels at *10%, **5%, ***1%.
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Table A.15: Predicted wages

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.44∗∗∗ 1.84∗∗ 2.46∗∗∗ 1.64∗ 1.56 1.65∗ 3.82∗∗∗ 4.24∗∗∗ 3.81∗∗∗

(0.82) (0.82) (0.82) (0.94) (1.02) (0.94) (1.30) (1.41) (1.31)
High-skill wage −2.78∗∗∗ −4.75∗∗∗ −2.83∗∗∗ −3.31∗∗∗ −3.55∗∗ −3.32∗∗∗ −4.52∗∗∗ −3.56∗∗ −4.51∗∗∗

(0.83) (1.08) (0.83) (1.04) (1.42) (1.04) (1.33) (1.53) (1.34)
GDP gap −4.40∗ −3.77 −4.45∗ 4.67 4.66 4.68 −0.13 0.74 −0.10

(2.61) (2.56) (2.61) (6.80) (6.81) (6.80) (4.55) (4.59) (4.58)
Labor productivity 2.85∗∗∗ 0.35 −1.59

(0.94) (1.57) (1.50)
GDP per capita 0.14 0.03 −0.01

(0.11) (0.12) (0.14)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 453 47 453 47 453 47 453 47 453 47 453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: This table uses predicted wages as main RHS variables. We estimate for each country an AR(1) process
with time trends for wages, labor productivity, and GDP per capita. We then use the estimated process to pre-
dict with the information available at time t-2 the average values between the years t+2 and t+7, which are
in turn the independent variables in these regressions. All columns include firm and industry-year fixed effects.
Columns 4–9 add country-year fixed effects. In Columns 7–9, the macroeconomic variables are the normalized
foreign variables as defined in the text. Standard errors are clustered at the firm-level and reported in parenthe-
ses. Significance levels at *10%, **5%, ***1%.

Table A.16: Addressing Nickell’s bias

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6)

Low-skill wage 2.67∗∗∗ 2.26∗∗∗ 2.68∗∗ 2.57∗∗ 4.80∗∗∗ 3.86∗∗∗

(0.80) (0.78) (1.07) (1.02) (1.46) (1.39)
High-skill wage −2.55∗∗∗ −1.16 −2.22∗∗ −1.74∗ −2.76∗∗ −2.17

(0.78) (0.80) (1.02) (1.00) (1.40) (1.47)
GDP gap −4.32 −3.02 4.95 6.31 1.85 0.87

(2.77) (3.46) (7.04) (7.31) (4.97) (5.24)
Labor productivity 0.85 0.49 −1.48 −1.15 −1.92 −0.91

(0.90) (0.98) (1.69) (1.44) (1.50) (1.50)

Stock automation No Yes No Yes No Yes
Stock other Yes Yes Yes Yes Yes Yes
Spillovers Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No Yes Yes Yes Yes
Estimator HHG BGVR HHG BGVR HHG BGVR

Observations 47 812 47 812 47 453 47 453 47 453 47 453
Number of firms 3236 3236 3233 3233 3233 3233

Notes: This table addresses potential Nickell’s bias. The coefficients are estimated with con-
ditional Poisson regressions fixed-effects (HHG) in columns 1, 3, and 5. In columns 2, 4, and
6, the coefficients are estimated with Poisson regressions where the firm fixed effects are re-
placed by the pre-sample mean, following Blundell, Griffith and Van Reenen (1999, BGVR).
All columns include firm and industry-year fixed effects. Columns 3–6 add country-year fixed
effects. In In Columns 5 and 6 the macroeconomic variables are the normalized foreign vari-
ables as defined in the text. Standard errors are clustered at the firm-level and reported in
parentheses. Significance levels at *10%, **5%, ***1%.
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Table A.17: Effect of the minimum wage for firms with at least 2 auto95 patents

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Minimum wage 2.34∗∗∗ 2.12∗∗∗ 2.60∗∗∗ 2.25∗∗ 2.31∗∗ 2.51∗∗ 3.07∗∗ 3.21∗∗ 1.96
(0.79) (0.78) (0.90) (1.06) (1.10) (1.24) (1.43) (1.51) (1.70)

High-skill wage −1.57∗∗ −2.36∗∗ −0.90 −3.46∗∗∗ −3.22∗∗ −2.95∗ −3.97∗∗ −3.49 −5.85∗∗∗

(0.76) (0.95) (1.09) (1.14) (1.42) (1.60) (1.59) (2.13) (2.20)
GDP gap −2.77 −3.46 −1.70 9.81 9.97 10.69 3.90 4.45 −1.02

(2.78) (2.80) (3.14) (6.77) (6.81) (7.27) (5.74) (6.33) (7.58)
Labor productivity 1.51∗ −0.45 −0.61

(0.91) (1.78) (1.85)
GDP per capita −1.15 −1.04 3.73

(1.60) (2.38) (2.96)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 28 853 28 853 28 853 28 748 28 748 28 748 28 748 28 748 28 748
Number of firms 1955 1955 1955 1955 1955 1955 1955 1955 1955

Notes: This table replaces the low-skill wage with the minimum wage. Firms are only included if they have
produced 2 auto95 patents during the sample period All columns include firm and industry-year fixed effects.
Columns 4–9 add country-year fixed effects. In Columns 7–9, the macroeconomic variables are the normalized
foreign variables as defined in the text. Standard errors are clustered at the firm-level and reported in parenthe-
ses. Significance levels at *10%, **5%, ***1%.

A.2 Appendix on the classification of automation patents

This Appendix provides additional information on our classification of automation patents

in machinery. First, we report details on our approach not contained in the main text in

Appendix A.2.1. Then, we show additional statistics at the technology category level in

Appendix A.2.2 and at the patent level in Appendix A.2.3. Appendix A.2.4 shows that

our classification is stable. Finally, Appendix A.2.5 gives the prevalence of automation

keywords for a few technology categories and examples of automation patents.

A.2.1 Additional details on our classification

As mentioned in the text, we focus on the technology fields: “machine tools”, “handling”,

“textile and paper machines”, and “other special machines” with a few adjustments.

First, we exclude F41 and F42, which correspond to weapons and ammunition and are

in “other special machines”. Moreover, we include B42C which corresponds to machines

for book production and B07C which corresponds to machines for postal sorting as both

correspond to equipment technologies and contain 6-digit codes with a high prevalence

of automation keywords. We further include the 6-digit codes G05B19 and G05B2219,
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which correspond to “programme-control systems” and contain many computer numer-

ically controlled machine tool patents without C/IPC codes from the machine tools

technology field. Finally, we include the 6-digit code B62D65 which deals with engine

manufacturing (though the rest of the B62D code deals with the vehicle parts them-

selves). We verify that these additional codes do not affect our results.

Furthermore, the Y section of the CPC classification is organized differently from

the rest and is only designed to provide additional information. As a result, we fully

ignore Y codes when defining our technology categories (i.e. we do not consider the pair

{B25J, Y02S} as a technology category).

We derived the exact list of keywords in Table 1 after experimenting extensively

with variations around them and looking at the resulting classification of technology

categories and the associated patents. Relative to the original list of technologies given

in the Survey of Manufacturing Technologies (Doms, Dunne and Troske, 1997), we did

not include keywords related to information network, as these seem less related to the

automation of the production process and the patents containing words such as “local

area network” do not appear related to automation. We also did not count all laser

patents as they are not all related to automation—but we obtain patents related to

automation using laser technologies thanks to our other keywords.

A.2.2 Statistics on the classification at the technology category level

Table A.18: Summary statistics on the prevalence of keywords

C/IPC6 C/IPC4 + (G05 or G06) C/IPC4 pairs

All Robot Automat* CNC Labor All Robot Automat* CNC Labor All Robot Automat* CNC Labor

Mean 0.21 0.04 0.11 0.02 0.06 0.53 0.15 0.32 0.11 0.09 0.18 0.04 0.09 0.02 0.02
SD 0.15 0.08 0.10 0.06 0.04 0.19 0.18 0.11 0.17 0.04 0.16 0.10 0.10 0.05 0.05
25th 0.11 0.01 0.04 0.00 0.03 0.40 0.07 0.27 0.01 0.07 0.08 0.01 0.02 0.00 0.00
50th 0.18 0.02 0.09 0.00 0.05 0.54 0.10 0.32 0.03 0.10 0.14 0.02 0.05 0.00 0.00
75th 0.27 0.05 0.15 0.02 0.08 0.64 0.16 0.40 0.15 0.11 0.23 0.04 0.11 0.01 0.01
90th 0.40 0.09 0.24 0.06 0.11 0.78 0.36 0.43 0.38 0.15 0.37 0.09 0.22 0.04 0.04
95th 0.48 0.14 0.30 0.13 0.13 0.86 0.44 0.45 0.55 0.16 0.52 0.15 0.31 0.08 0.08
995th 0.76 0.60 0.46 0.33 0.18 0.90 0.83 0.60 0.57 0.18 0.84 0.59 0.45 0.22 0.22

Notes: This table computes summary statistics on the share of patents with any automation keywords, robot keywords, automat* keywords, CNC keywords or labor
keywords for each type of technological categories (6-digit C/IPC codes, pairs of 4-digit C/IPC codes and combinations of 4-digit C/IPC codes with G05 or G06) within
machinery with at least 100 patents.

Table A.18 gives summary statistics on the prevalence of automation keywords across

technology categories in machinery, p(t), and the prevalence of the 4 main subgroups

of keywords: automat*, robot, numerical control (CNC) and labor. The 95th and 90th

percentile for the prevalence of automation keywords for 6-digit codes in machinery define

the thresholds used to categorize auto95 and auto90 patents. The distributions are quite
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similar for the C/IPC 6-digit codes and for pairs of IPC 4-digit codes and shifted to the

right for combinations of C/IPC 4-digit codes with G05/G06 (see also the histograms

below). All prevalence measures are right-skewed, particularly for 6-digit codes and 4-

digit pairs, and even more for the robot and CNC patents. The automat* keywords are

more frequently used than the other keywords but the difference narrows in the right

tail: the 95th percentile for 6-digit codes is 30% for automat* and 14% and 13% for

robot and CNC. In fact, we chose the thresholds (5 and 2) used in the definition of the

automat* keywords so that the distributions of the prevalence measures are somewhat

comparable. The right tails of the distribution are similar for the prevalence of the robot

and CNC keywords.

Table A.19: Correlation between the main prevalence measures

Keywords Automat Robot CNC Labor

Automat 1.000
Robot 0.380 1.000
CNC 0.210 0.205 1.000
Labor 0.394 0.225 0.084 1.000

Notes: This table shows the correlation between
the prevalence of the main keywords, computed
for C/IPC 6-digit codes.

Table A.19 shows the correlation between the prevalence of the 4 mains keyword

categories (automat*, robot, CNC and labour) for 6-digit C/IPC codes. These measures

are positively correlated with a coefficient above 0.2 in all cases except CNC and labour.

The broadest category, automat*, is the one with the highest correlation coefficients.

Figure A.6.a gives the histograms of the prevalence of automation keywords for ma-

chinery technology categories which are pairs of C/IPC 4-digit codes. The histograms

are very similar to those of C/IPC 6-digit codes in Figure 1. Figure A.6.b shows the

histograms for all combinations of machinery C/IPC 4-digit codes with G05 or G06.

The distribution is considerably shifted to the right. This is in line with expectations as

G05 proxies for control and G06 for algorithmic, two set of technologies which have been

used heavily in automation. There are, however, many fewer combination of these types,

and accordingly fewer patents can be characterized as automation innovations this way.

Overall, we classify 50 6-digit codes, 15 combination of 4-digit codes with GO5/GO6

and 63 pairs of 4-digit codes as auto95.
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Figure A.6: Histograms of the prevalence of automation keywords.
Notes: We only include technology categories with at least 100 patents. The p90 and p95 lines, based on the 6-digit
distribution, mark the thresholds used to define auto90 and auto95 technology categories.

Table A.20: Identification of automation technology categories

(a) Type of C/IPC codes identifying
auto90 and auto95 patents

IPC codes / Patents Auto90 Auto95

Matches C/IPC6 82.1% 83.3%
Matches C/IPC4 pair 40.7% 41.9%
Matches C/IPC4 - G05/G06 combination 16.4% 22.8%

Notes: This table shows the share of innovations classified as au-
tomation innovation through 6-digit C/IPC codes, 4-digit C/IPC
pairs or 4-digit C/IPC - G05/G06 pairs. The statistics are com-
puted on biadic patents from 1997-2011.

(b) Auto patents and subcate-
gories of automation inno-
vations

Sources / Patents Auto80 Auto90 Auto95

Auto80 100.0% 100.0% 100.0%
Automat*80 35.8% 53.6% 71.2%
CNC80 5.0% 8.4% 13.3%
Robot80 12.2% 20.3% 34.4%
Auto90 60.0% 100.0% 100.0%
Automat*90 10.6% 17.7% 27.1%
CNC90 1.8% 2.9% 5.0%
Robot90 7.3% 12.2% 20.8%
Auto95 35.2% 58.6% 100.0%
Automat*95 3.3% 5.5% 9.3%
CNC95 1.6% 2.6% 4.4%
Robot95 6.6% 10.9% 18.6%

Notes: This table shows the share of innovations
classified as automation innovation through 6-digit
C/IPC codes, 4-digit C/IPC pairs or 4-digit C/IPC
- G05/G06 pairs. The statistics are computed on
biadic patents from 1997-2011.
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Table A.21: Correlation between the prevalence of automation keywords for different periods

Prevalence of automation keywords by period

Keywords 1978-2017 1997-2011 1978-1997 1998-2017

1978-2017 1.000
1997-2011 0.958 1.000
1978-1997 0.907 0.854 1.000
1998-2017 0.971 0.981 0.845 1.000

Notes: Correlation between the prevalence of the main key-
words, computed for C/IPC 6-digit codes.

A.2.3 How are auto90 and auto95 patents identified?

Given that our classification procedure is relatively complex, we assess here which fea-

tures dominate. To do so, we focus on biadic patent families in 1997-2011, the set of

innovations which we use for our main regressions. There are 61,497 auto95 biadic patent

families and 104,886 auto90 ones. Table A.20.a gives the share of biadic patents which

are identified through a C/IPC 6-digit code, a pair of 4-digit codes or a combination of

4-digit code with G05/G06 (the shares sum up to more than 100% since patents may be

identified as automation innovations in several ways). 6-digit codes are the most relevant

since they identify more than 80% of either auto90 or auto95 patents alone.

Similarly, one may wonder which keywords are the most important in identifying

automation patents. To assess that, we define robot95 patents as patents which contain

a technology category with a prevalence of “robot” keywords above the threshold used

to define auto95 (namely 0.480). Therefore, those patents are a subset of the auto95

patents. We define CNC85, automat*95, robot90, CNC90, automat*90, robot80, CNC80

and automat*80 similarly. The other keywords are much less common. Table A.20.b

reports the share of auto95, auto90 and auto80 patents which belong to each subcategory.

“Automat*” is the most important keyword: 71% of auto95 patents are also automat*80

patents. “Robot” matters as well with 34% of auto95 patents which are robot80 and 19%

which are even robot95 (more than automat*95). CNC does not matter much: only 13%

of auto95 patents are CNC80.

A.2.4 Stability of the classification

To assess the stability of our classification, we redo exactly the same exercise but instead

of using EPO patents from 1978 to 2017, we restrict attention to EPO patents from the

first half of the sample (1978-1997), the second half (1998-2017) or the period of our main
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Table A.22: Confusion table for different classification periods

Classification
periods

First half
1978-1997

Second half
1998-2017

Regression period
1997-2011 Total

Yes No Yes No Yes No

Baseline
1978-2017

Yes 51 243 10 254 55 290 6207 52 027 9470 61 497
No 4378 480 858 5243 479 993 5752 479 484 485 236

Total 55 621 491 112 60 533 486 200 57 779 488 954 546 733

Notes: This table classifies all biadic patent families from 1997-2011 as auto95 or not using
EPO patents from different time periods. Our baseline measure uses all patents from 1978-
2017, while the other measures use patents from the first half of the sample, the second half,
or the regression period time.

Table A.23: Examples of 6-digit C/IPC codes in machinery

Code Description # Patents Any Rank Robot Automat* CNC Labor

High Prevalence Codes
B25J5 Manipulators mounted on wheels or on carriages 504 0.91 1 0.87 0.27 0.01 0.10
B25J9 Programme-controlled manipulators 2809 0.86 4 0.78 0.29 0.29 0.08

B23Q15 Automatic control or regulation of feed movement,
cutting velocity or position of tool or work 591 0.79 7 0.09 0.36 0.36 0.06

A01J7 Accessories for milking machines or devices 395 0.77 9 0.62 0.52 0.52 0.10
G05B19 Programme-control systems 7133 0.70 17 0.22 0.39 0.39 0.08
B65G1 Storing articles, individually or in orderly

arrangement, in warehouses or magazines
1064 0.58 30 0.18 0.46 0.46 0.11

Low Prevalence Codes
B23P6 Restoring or reconditioning objects 613 0.26 262 0.07 0.06 0.05 0.09
A01B63 Lifting or adjusting devices or arrangements for

agricultural machines or implements
264 0.24 301 0.01 0.20 0.00 0.04

B66D3 Portable or mobile lifting or hauling appliances 215 0.13 665 0.02 0.07 0.00 0.06

Notes: This table reports the prevalence of automation keywords for examples of 6-digit C/IPC codes. ’Any’ is the share of patents
with any of the keywords. ’Rank’ is the rank of the code among 986 6-digit C/IPC codes in machinery with at least 100 patents.
’Robot’ , ’Automat*’, ’CNC’ and ’labor’ are the shares of patents with at least one keyword from these categories.

regression analysis (1997-2011). There is a very modest increase in the share of patents

with automation keywords within each technology category. The unweighted share of

patents with an automation keyword increases on average from 0.192 in the first half of

the sample to 0.217 in the second half for 6-digit C/IPC codes in machinery (weighing

by the number of patents, the increase is from 0.202 to 0.207). Moreover, the ranking of

codes is remarkably stable as shown in Table A.21 which reports the correlations of the

prevalence measures for the different time periods.

Further, focusing on the same set of biadic machinery patent families in 1997-2011,

Table A.22 shows confusion tables on the classification of patents as auto95 according

to each of the classification period. Regardless of the time period used, the set of

automation patents stays roughly the same. In particular, 84.6% of the baseline auto95

patents are still auto95 if we run the classification over the years 1997-2011. This common

set of patents then represent 90% of all biadic patents classified as auto95 patents when

using the period 1997-2011 instead of the full sample.
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Figure A.7: Example of an automation patent

A.2.5 Examples

To better illustrate our approach, we now give a few examples. First, Table A.23 shows

a few 6-digit C/IPC codes in machinery with their prevalence of automation keywords

p(t), their rank according to that measure and the prevalence of the most important sub-

categories (automat*, robots, CNC, and labor). C/IPC codes associated with robotics

(B25J) have the highest prevalence numbers (91% for B25J5). There are also codes

associated with machine tools at the top of the distribution such as B23Q15 and codes

associated with devices used in the agricultural sector such as A01J7. The last three

C/IPC codes are examples with a low prevalence of automation keywords: machine-tools

and processes for repairing or reconditioning objects (B23P6), devices typically mounted

on tractors (A01B63), and lifting or hauling appliances such as hoists (B66D3), which do

not replace workers in new tasks. The table also shows that the different sub-measures

do not capture the same technologies: the robotic codes are ranked highly thanks to

the prevalence of “robot” keyword, B23Q15 thanks to its CNC prevalence, and B65G1

thanks to its “automat*” prevalence.
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Figure A.7 shows an automated storage cabinet patent. We classify it as automation

because it contains the 6-digit code B65G 1 which has a high prevalence measure (0.58,

see Table A.23). This patent itself contains several keywords: a sentence with the words

“automatic” and “storing,” and another sentence with “robot”. Figure A.8 shows an

automation patent of a similar storage cabinet that belongs to the same C/IPC code but

does not contain any keywords and still describes a labor-saving innovation. Appendix

B.1 provides more examples.

Figure A.8: Example of an automation patent without keywords

A.2.6 Comparison with Mann and Püttmann (2021)

In this section, we compare our classification of automation patents with that of Mann

and Püttmann (2021, henceforth MP). We first show that our classifications are corre-

lated though ours is generally stricter than theirs. Then, we focus on outlier technologies

to understand where the differences come from.

We considered the 737,711 US machinery patents (according to our definition) of

MP and classified them as auto95 or not. We have a lower share of automation patents

(9.4% for auto95) than MP who have 29.8%. 70% of our auto95 patents are classified

as automation patents by MP (to analyze this number, it is useful to note that their

algorithm has a 17% false negative error rate on the training set), while we classify
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Table A.24: Confusion table for MP’s and our classification

Machinery
patents

MP
Automation

Total
(%)

Yes (%) No (%)

DHOZ
Automation

Yes (%) 6.6 2.8 9.4
No (%) 23.2 67.4 90.6

Total (%) 29.8 70.2 100.0

Notes: This table reports the shares of machinery patents
that we (auto95) or Mann and Puettmann classify as au-
tomation. The sample is the set of US patents analyzed
by Mann and Puettmann.

22% of their automation patents as auto95 (see Table A.24). Therefore, our measure of

automation is generally stricter than theirs although it is not a perfect subset.

To get a sense of where our classifications differ the most, we look for outlier C/IPC

codes: we compute the difference between our prevalence measure and their share of

automation patents and look at the codes with the highest and lowest values (focusing

on codes with at least 100 patents in both their dataset and our EPO dataset). Table

A.25 lists the 6 codes with the largest positive difference among auto95 codes, which

correspond to codes that we more strongly identify as automation than MP do, and the

6 codes with the largest (in absolute value) negative difference among non-auto90 codes,

which correspond to codes that MP more strongly identify as automation than we do.50

Three of the codes with a high difference belong to the manipulator subclass (B25J):

joints (B25J17), gripping heads (B25J15) and accessories of manipulators (B25J19). MP

classify a large share of these patents as automation but our prevalence number is even

higher. In their definition of automation patents, MP specify that they exclude innova-

tions which only refer to parts of a machine. This accounts for some of the patents in

these codes that they do not classify as automation. D01H9 corresponds to “arrange-

ments for replacing or removing bobbins, cores, receptacles, or completed packages at

paying-out or take-up stations” for textile machines. The share of automation patents

in MP is low at 38%, however their “raw share” (computed before they exclude certain

patents) is quite high at 71%. The excluded patents are not chemical or pharmaceu-

tical patents (as emphasized in the paper), but belong to the “other” technology field

(according to the Hall-Jaffe-Trajtenberg classification). The same situation occurs for

B65B2210 (which is about packaging machines) where their raw automation score is

50We identify outliers using our prevalence measure at the 6-digit level instead of our share of au-
tomation patents because by construction, our share of automation patents is 100% for all auto95 codes
so doing so would mask some of the underlying heterogeneity in our approaches. Table A.25 reports the
share of auto95 patents for each code for clarity. Codes with a low prevalence score still feature some
auto95 patents since a patent in a code with a low prevalence score can also have an auto95 code.
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Table A.25: Outliers 6-digit C/IPC codes in the comparison between our measure and MP’s
measure

Code Simplified description DHOZ
Keyword prevalence

DHOZ
Share auto95

MP
Share auto95

Positive outliers among auto95 codes
B25J17 Manipulators (joints) 0.84 1.00 0.54
D01H9 Textile machines (arrangements for replacing or removing various elements) 0.62 1.00 0.38
B25J15 Manipulators (gripping heads) 0.71 1.00 0.50
B23P23 Metal working machines (specified combinations n.e.c) 0.67 1.00 0.46
B25J19 Manipulators (accessories) 0.89 1.00 0.69
B33Y70 3D printing materials 0.52 1.00 0.32
Negative outliers among non-auto90 codes
B66B2201 Control systems of elevators 0.19 0.01 0.97
B66B3 Elevators (signalling and indicating device applications) 0.19 0.03 0.92
B41J23 Typerwriters / printing machines (power drive) 0.08 0.11 0.82
B66B1 Elevators (control systems) 0.16 0.02 0.89
B41J19 Typerwriters / printing machines (characters and line spacing mechanisms) 0.14 0.04 0.84
B41J5 Typerwriters / printing machines (controlling character selection) 0.21 0.09 0.91

Notes: This table lists the 6 auto95 codes with the largest positive difference between the prevalence of automation keywords based on our clas-
sification and the share of automation patents according to MP in their data; and the 6 non-auto90 codes with the largest negative difference
between the two measures. We additionaly list the share of patents classified auto95 according to our definition. We restrict attention to codes
with at least 100 patents in both datasets.

actually at 63% and the patents excluded by MP are not chemical. B23P23 is a machine

tool subclass (specifically “Machines or arrangements of machines for performing spec-

ified combinations of different metal-working operations not covered by a single other

subclass”) which often involves CNC technologies.

The non-auto90 codes where MP find a high share of automation patents but for

which we have a comparatively low prevalence measure are of two types. Among the top

6, half are in the subclass B66B which corresponds to elevators and the other half are in

the subclass B41J which corresponds to typewriters and printing machines. In fact, the

first 32 6-digit C/IPC codes belong to either B66B, B41J or the subclass B65H which

is about handling thin or filamentary material and also involves patents associated with

printing machines. It is not surprising that our classifications differ for these types of

innovation, since they do correspond to processes performed independently of human

action (in line with MP’s criterion); yet elevators and printers do not (or at least, no

longer) replace humans in existing tasks.

A.3 Reproducing ALM

We detail how we build the variables used in Section 2.8 and provide further results.
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A.3.1 Data for the ALM exercise

Except for the automation and labor share measures, we take the variables directly

from ALM. We refer the reader to that paper for a detailed explanation. The task

measures are computed using the 1977 Dictionary of Occupational Titles (DOT) which

measure the tasks content of occupations. Occupations are then matched to industries

using the Census Integrated Public Micro Samples 1% extracts for 1960, 1970, and

1980 (IPUMS) and the CPS Merged Outgoing Rotation Group files for 1980, 1990,

and 1998 (MORG). The task change measure at the industry level reflects changes in

occupations holding the task content of each occupation constant, which ALM refer

to as the extensive margin. Since tasks measures do not have a natural scale, ALM

convert them into percentile values corresponding to their rank in the 1960 distribution

of tasks across sectors. Therefore, the employment-weighted means of all tasks measure

across sectors in 1960 is 50. Our analysis starts in 1980 and drops a few sectors but

we keep the original ALM measure to facilitate comparison. As in ALM, the dependent

variable in Table 3 corresponds to 10 times the annualized change in industry’s tasks

inputs. Computerization ∆Cj is measured as the change per decade in the percentage of

industry workers using a computer at their jobs between 1984 and 1997 (estimated from

the October Current Population Survey supplements). For all regressions, observations

are weighed by the employment share in each sector.

To map patents to sectors we proceed in 4 steps. First, we build a mapping between

C/IPC 4-digit codes and the SIC sector that holds the patent (inventing sector). To do

that, we use Autor et al. (2020) who match 72% of domestic USPTO corporate patents

to firms in Compustat. This allows us to assign a 4-digit SIC sector to this subset of

patents. We match the USPTO patents to our patent family data from PATSTAT,

which we use to get the full set of C/IPC codes of the family. We then restrict attention

to granted patents in machinery applied for in the period 1976-2010. Each patent family

for which we have a sector creates a link between its C/IPC codes and that sector. We

weigh that link inversely to the number of 6-digit C/IPC codes in the patent. Counting

these connections allows us to build a weighted concordance table between 656 4-digit

C/IPC codes and 397 SIC codes (at different levels of aggregation), where the industries

refer to the industry of invention / manufacturing.

Second, to obtain the sector of use we rely on the 1997 “investment by using indus-

tries” table from the BEA (at the most disaggregated level, 180 commodities for 123

industries) which gives the flows of investment from commodities to industry available
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at www.bea.gov/industry/capital-flow-data. Since machines are a capital input, this is

the appropriate equivalent of a standard IO table. Beforehand, we assign commodities

to industries using the 1997 make table at the detailed level from the BEA (available at

www.bea.gov/industry/historical-benchmark-input-output-tables) which gives the com-

modities produced by each industry.51 We dropped commodities associated with the

construction sector which are structures. Combining the two BEA tables, we obtain an

investment flow table at the industry level. We then combine that table with the table

mapping C/IPC to industry of manufacturing in order to obtain a mapping between

C/IPC codes and (932 SIC) industries of use.

Third, we allocate patent families fractionally to their C/IPC 4-digit codes and use

the previous table to assign them to an industry of use in the SIC classification (having

restricted attention to the C/IPC codes which appear in the table). Fourth, we use

a concordance table from the US Census Bureau from SIC industries to the Census

industries from 1990 (ind90) given by Scopp (2003) and ALM concordance table from

ind90 to consistent Census industries (ind6090) in order to allocate patents to their

industry of use in ALM’s classification.

Finally, for each sector, we compute the sums of automation patents and machin-

ery patents over the time period 1980-1998 and take the ratio to be our measure of

automation intensity.

To compute the share of automation patents in machinery according to the industry

of manufacturing / invention, we proceed as above but skip step 3 with the investment

flow table. Once patents are assigned to a SIC industry of manufacturing, we use the

same concordance tables to assign patents to an ind6090 industry of manufacturing.

We source our labor share data from the NBER manufacturing database and the

BEA. In the NBER manufacturing database, we calculate the labor share as total payroll

/ value-added and apply the concordance procedure described in step 3 above to go from

the 4-digit SIC industries to the consistent Census industries. The database is limited

to industries in the manufacturing sector. The BEA provides labor share data for more

aggregate SIC industries for the whole economy. We calculate the labor share as total

51Since our industries are in SIC 1987, we use concordance tables from the IO industries to NAICS
1997 provided by the BEA and then the weighed concordance table between NAICS 1997 and SIC 1987
from David Dorn’s website https://www.ddorn.net/data.htm which we complete with a concordance ta-
ble from the Census available here (www.census.gov/eos/www/naics/concordances/concordances.html).
To generate weights in the mapping between IO industries and NAICS 1997 and to dis-
aggregate the NAICS industries from the capital flow table, we use CBP data from 1998
(https://www.census.gov/data/datasets/1998/econ/cbp/1998-cpb.html).
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compensation / value-added and build a crosswalk from the 4-digit SIC level to these

more aggregate industries to map our patents.

Finally, in robustness checks, we also use an alternative mapping from patents to

sectors based on Lybbert and Zolas (2014) who provide a concordance table between IPC

codes at the 4-digit level and NAICS 1997 6-digit industry codes. The concordance table

is probabilistic (so that each code is associated with a sector with a certain probability).

The Lybbert and Zolas concordance tables are derived by matching patent texts with

industry descriptions, and as such they cannot a priori distinguish between sector of

use and industry of manufacturing. We checked, however, that patents associated with

“textile and paper machines” for instance are associated with the textile and paper

sectors and not with the equipment sector. Therefore, we think of this mapping as

rather corresponding to the using sector as well for our set of technologies. In addition,

it has the advantage of providing a much more direct mapping between C/IPC codes

and industries. We attribute patents to sectors fractionally in function of their C/IPC

codes. To assign patents to the consistent Census industry codes used by ALM, we first

use a Census concordance table (https://www.census.gov/topics/employment/industry-

occupation/guidance/code-lists.html) to go from NAICS 1997 to Census industry codes

1990, and then again use ALM concordance table.

A.3.2 Additional results

We now provide a few additional results which complements those in the main text. As

discussed in the text, machinery patents tend to be used by the same sectors whether

they are automation or non-automation patents. Figure A.9.a shows the (employment-

weighted) correlation between the log of auto95 patents and the log of pauto90 (i.e. non-

automation) patents across US sectors. The very strong correlation reflects our procedure

which allocates patents according to capital purchases by sector. To remove this partly

mechanical effect, Figure A.9.b shows the correlation between the ratio of auto95 patents

over capital purchases and pauto90 patents over capital purchases. There is still a

substantial correlation 0.76, showing that automation and non-automation patents tend

to be used by the same sectors even controlling for the amount of capital purchased.

Nevertheless, the sectoral variation is sufficient to enable us to look at the effect of the

share of automation among machinery patents across sectors.

Figure A.10 shows scatter plots of the change in routine tasks and skill composition

and the share of automation patents in 1980-1998. This figure shows the raw data
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Figure A.9: Correlation between counts of auto95 and pauto90 patents at the sectoral level.
Notes: Panel (a) shows the log counts and Panel (b) shows counts scaled by capital purchases. Sectors are employment-
weighted.

130

172

186

220

261

311

381

621
650

706

Coef. -139.6 (40.5)
Corr.    -0.42-20

-10

0

10

Δ 
R

ou
tin

e 
co

gn
iti

ve

.04 .06 .08 .1 .12

Share automation

(a)  Δ Routine cognitive

140

186

252

31

381

441

621

650

711

721

Coef. -110.8 (33.9)
Corr.    -0.33-20

-10

0

10

Δ 
R

ou
tin

e 
m

an
ua

l

.04 .06 .08 .1 .12

Share automation

(b)  Δ Routine manual

186

220252261

710

721

756

841

856

882

Coef.  3.1 (2.4)
Corr.  0.23-.5

0

.5

1

1.5
Δ 

H
ig

h 
/ l

ow
 sk

ill
 w

or
ke

rs

.04 .06 .08 .1 .12

Share automation

(c)  Δ High / low skill workers

100

111

166

172

186

200

221

270 351

380

Coef.  -1.3 (0.9)
Corr.   0.23-.2

-.1

0

.1

Δ 
La

bo
r s

ha
re

.04 .06 .08 .1 .12

Share automation

(d)  Δ Labor share (NBER)

15

16

17

19

38

43

48

54
57 61

Coef.  -3.9 (1.7)
Corr.   0.25

-.5

0

.5

Δ 
La

bo
r s

ha
re

.04 .06 .08 .1 .12

Share automation

(e)  Δ Labor share (BEA)

Industries Linear fit

Figure A.10: Scatter plots of changes in routine tasks, skill composition, and the labor share
versus the share of automation patents (auto95) in machinery patents used by
the industry in 1980-1998.

74



underlying the regressions in Columns (1), (3), (5), (7) and (9) of Table 3 – but the

figure does not control for computerization or the manufacturing dummy.

Table A.26: Robustness checks for the sectoral analysis

∆ Routine cognitive ∆ Routine manual ∆ High/low skill workers ∆ Labor Share (NBER)

Biadic Auto90
Lybbert
and Zolas Biadic Auto90

Lybbert
and Zolas Biadic Auto90

Lybbert
and Zolas Biadic Auto90

Lybbert
and Zolas

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Share automation −121.08∗∗∗ −71.73∗∗∗ −23.13∗∗∗ −102.91∗∗∗ −60.54∗∗∗ −13.51∗∗ 2.45 1.78 0.74∗∗ −1.19∗ −0.74∗ −0.27∗∗

(27.39) (20.80) (4.84) (35.68) (21.64) (5.67) (1.85) (1.21) (0.30) (0.62) (0.37) (0.11)
∆ Computer use
(1984-1997)

−21.13∗∗∗ −18.33∗∗ −13.45 −20.91∗∗∗ −18.52∗∗ −7.53 1.01∗∗∗ 0.96∗∗∗ 0.42 0.24∗ 0.26∗∗ 0.23
(7.28) (7.45) (8.93) (7.84) (7.84) (8.38) (0.26) (0.26) (0.28) (0.13) (0.13) (0.14)

Manufacturing −1.71∗ −1.21 −1.66 −0.08 0.33 −1.65∗ 0.03 0.01 0.02
(0.92) (1.02) (1.65) (0.94) (1.03) (0.95) (0.03) (0.03) (0.02)

R2 0.26 0.23 0.40 0.17 0.15 0.32 0.17 0.18 0.43 0.18 0.19 0.27
Industries 133 133 71 133 133 71 133 133 71 56 56 56

Notes: This table provides robustness checks for the effect of automation technologies on tasks, skill composition, and the labor-share. Columns 1, 4, 7, and 10
use biadic auto95 patents: that is, patents applied for in at least two countries. Columns 2, 5, 8, and 11 define automation patents as auto90 patents. In both
cases, patents are allocated to their sector of use. Columns 3, 6, 9, and 12 use auto95 patents (as in the baseline) but allocate patents using a concordance table
between C/IPC codes and industries from Lybbert and Zolas (2014). The regressions are weighed by the mean industry share of total employment in FTEs in
1980 and 1998. Standard errors are clustered at the level of industry groups that have the same automation share by construction and reported in parentheses.
Significance levels at *10%, **5%, ***1%.

We carry a number of robustness checks in Table A.26. In Columns (1), (4), (7) and

(10) we compute the share of automation patents using only granted USPTO patents

which are also biadic. The results are similar to those in Table 3 though less precise for

the skill ratio. In Columns (2), (5), (8) and (11), we use the share of auto90 patents

in machinery to measure automation in the sector of use. The results are similar but

with smaller coefficients than in the regressions using auto95 (and less precise for the

skill ratio), in line with auto95 being a stricter measure of automation. In Columns

(3), (6), (9) and (12) we instead map patents to sectors based on a concordance table

from Lybbert and Zolas (2014) between 4-digit C/IPC codes and sectors. This method

has the advantage of mapping more directly patents to sectors but cannot distinguish

between manufacturing and using sectors. We still find that sectors with a high share of

automation patents experienced a decline in routine tasks. The coefficients are smaller,

but given that the standard deviation of the share of automation patents in that case is

0.086, the standardized coefficients are relatively similar.

Finally, in Table A.27, we look at the effect of the share of automation patents

on total employment and employment by skill type. Panel A looks at all industries.

As already seen in Table 3, automation is associated with a relative decrease in low-

skill employment compared to high-skill labor. The effect on low-skill employment is

negative but non-significant and the effect on total employment is closer to 0 (as there is

a positive non-significant effect on high-skill employment). The results are clearer in the
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manufacturing sector, where an increase in automation is associated with a significant

decrease in both low-skill and total employment.

Table A.27: Changes in employment and automation

∆ Log employment ∆ Log high-skilled ∆ Log low-skilled

(1) (2) (3) (4) (5) (6)

Panel A. All industries
Share automation
(using industry)

−2.24 −1.95 3.20 3.50 −4.36 −4.04
(3.45) (3.69) (3.41) (3.96) (3.99) (4.03)

Share automation
(inventing industry)

1.00 1.05 1.12∗

(0.61) (0.88) (0.61)
∆ Computer use
(1984-1997)

1.45∗ 1.56∗ 1.40∗∗ 1.52∗∗ 0.96 1.08
(0.80) (0.84) (0.68) (0.72) (0.82) (0.85)

R2 0.10 0.12 0.08 0.11 0.07 0.10
Mean dependent variable −2.50 −2.50 0.12 0.12 −2.27 −2.27
Industries 133 133 132 132 133 133

Panel A. Manufacturing industries
Share automation
(using industry)

−4.63∗∗∗ −4.63∗∗ −1.32 −2.37 −6.13∗∗∗ −5.86∗∗

(1.54) (2.29) (1.90) (2.65) (1.77) (2.42)
Share automation
(inventing industry)

0.00 1.06 −0.28
(1.34) (1.17) (1.38)

∆ Computer use
(1984-1997)

1.36∗∗∗ 1.36∗∗∗ 2.01∗∗∗ 1.97∗∗∗ 1.05∗∗ 1.07∗∗

(0.50) (0.51) (0.56) (0.56) (0.52) (0.52)

R2 0.14 0.14 0.15 0.16 0.14 0.14
Mean dependent variable −4.26 −4.26 0.14 0.14 −2.62 −2.62
Industries 58 58 57 57 58 58

Notes: This table shows the effect of automation technologies on employment. Each column represents a sep-
arate OLS regression of the change in log employment between 1980 and 1998 on the share of automation
patents in machinery, the annual percentage point change in industry computer use during 1984-1997, and a
constant. Panel A considers all industries. Panel B focuses on industries in manufacturing. In columns 1–2
the dependent variable is the change in log employment, in columns 2–3 the change in log employment of
high-skilled workers (college graduates), and in columns 3–4 the change in log employment of low-skilled
workers (others). The two automation share measures correspond to a different mapping between C/IPC
codes and industries. Using industries allocates patents to their sector of use while innovating industry –
added in columns 2,4, and 6 – allocates patents to their sector of invention. The regressions are weighed by
the mean industry share of total employment in FTEs in 1980 and 1998. Standard errors are clustered at the
level of industry groups that have the same automation share by construction and reported in parentheses.
Significance levels at *10%, **5%, ***1%.

A.4 A Simple Model

We incorporate the business features described in 3.1 into a simple model built on Hé-

mous and Olsen (2022). A final good is produced with a continuum of intermediate in-

puts according to the Cobb-Douglas production function Y = exp
(∫ 1

0
ln y (i) di

)
, where

y(i) denotes the quantity of intermediate input i. The final good is the numéraire. Each

intermediate input is produced competitively with high-skill labor (h1,i and potentially
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h2,i), low-skill labor, li, and potentially machines, xi, according to:

yi = h1−β
1,i

(
γ (i) li + α (i) νν(1− ν)1−νxνi h

1−ν
2,i

)β
. (6)

γ(i) is the productivity of low-skill workers, α(i) is an index equal to 0 for non-automated

intermediates and to 1 for automated intermediates and ν and β are parameters in

(0, 1). Machines are specific to the intermediate input i. If a machine is invented, it is

produced monopolistically 1 for 1 with the final good so that the monopolist charges a

price px(i) ≥ 1. At the beginning of the period, a potential innovator has the opportunity

to create a specific machine for each non-automated intermediate i. She does so with

probability λ if she spends θλψ+1Y/(ψ + 1) units of the final good with ψ > 0.

For an automated intermediate input (α(i) = 1), the downstream producer is indif-

ferent between using low-skill workers or machines together with high-skill workers in

production whenever wνHp
1−ν
x = wL/γ(i). Therefore, the machine producer is in Bertrand

competition with low-skill workers. As a machine costs 1, the machine producer charges a

price px(i) = max{(wL/γ(i))
1

1−ν w
− ν

1−ν
H , 1} such that machines are used if wL/γ(i) > wνH .

Since the final good is produced according to a Cobb-Douglas production function, we

get p(i)y(i) = Y for all intermediates. We can then derive the profits of the machine

producer as πAi = max
(

1− (γ(i)/wL)
1

1−ν w
ν

1−ν
H , 0

)
νβY .

In turn, at the beginning of the period, the potential innovator solves maxλπAi −
θλψ+1Y/(ψ + 1), giving the equilibrium innovation rate λ =

[
πAi /(θY )

]
1/ψ. As a result,

the number of automation innovations is equal to:

Aut =

(
νβ

θ

)1/ψ ∫ 1

0

(1− α (i))

[
max

((
1−

(
γ(i)

wL

) 1
1−ν

w
ν

1−ν
H

)
, 0

)]1/ψ

di.

This expression is increasing in the low-skill wage wL and decreasing in the high-skill

wage wH with a larger magnitude for a lower ψ. Intuitively, the incentive to replace

low-skill workers with machines (and high-skill workers) increases with low-skill wages,

leading to a higher demand for machines. The reverse holds for high-skill wages. An

upward shift in low-skill worker productivity, γ(i), also reduces the number of automation

innovations. Our empirical analysis aims at computing ∂ lnAut/∂ lnwL.

To contrast automation with other types of innovations, assume that the production
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of an intermediate takes place according to:

yi = (qimi)
δ h1−β−δ

1,i

(
γ (i) li + α (i) νν(1− ν)1−νxνi h

1−ν
2,i

)β
,

where mi denotes non-automation “Hicks” machines with quality qi. Hicks machines

are also produced 1 for 1 with the final good. Each period a potential innovator may

improve on the available quality of Hicks machines for intermediate i by a factor µ by

investing in R&D. If she spends θmλ
ψ+1
m Y/(ψ+1) units of the final good, she is successful

with probability λm. In that case, the innovator becomes the monopolistic provider of

Hicks machine i under the pressure of a competitive fringe which has access to the

previous technology, and the technology diffuses after one period. Otherwise, the good

is produced competitively.

The previous analysis on automation innovations remains identical. A successful

Hicks innovator can charge a mark-up µ leading to profits πHi = (1− µ−1) δY. The

innovation rate is then λm = [(1− µ−1) δ/θm]
1/ψ

, so that the number of Hicks innovations

is a constant given by λm. In contrast to automation innovations, the number of non-

automation innovations is independent of low- or high-skill wages.

A.5 Data Appendix for the main analysis

Here, we provide details on the data and the variable construction for our main analysis.

A.5.1 Macroeconomic variables

Our main source of macroeconomic variables is the World Input Output Database (WIOD)

from Timmer et al. (2015) which contains information on hourly wages (low-skill, middle-

skill and high-skill) for the manufacturing sector and the total economy from 1995 to

2009 for 40 countries. It also contains information on GDP deflators and PPIs, both for

manufacturing and for the whole economy. They employ the ISCED skill-classification,

where categories 1+2 denote low-skill (no high-school diploma in the US) 3+4 denote

middle-skill (high-school but not completed college) and 5+6 denote high-skill (college

and above). Switzerland is not included in the WIOD database and we use data on

skill-dependent wages, productivity growth and price deflators obtained directly from

Federal Statistical Office of Switzerland.

We add data from UNSTAT on exchange rates and GDP (and add Taiwan from

the Taiwanese Statistical office). We calculate the GDP gap as the deviations of log
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GDP from HP-filtered log GDP using a smoothing parameter of 6.25. To compute the

offshoring variable we follow Timmer et al. (2014) and compute the share of foreign

value added in manufacturing from the WIOD 2013 (except for Switzerland where we

use the 2016 release and assign to the years 1995-1999 the same value as in 2000). For

the nominal interest rate, we use the yield on 10-year government bonds with data from

the OECD for AT AU BE CA CH DE DK ES FI FR GB IE IT JP NL PT SE US and

from the IMF for KR GR LU.

The primary data source for the hourly minimum wage data is OECD Statistics.52

For the US, we use data from FRED for state minimum wages and calculate the nation-

level minimum wage as the weighed average of the state-by-state maximum of state

minimum and federal minimum wages, where the weight is the manufacturing employ-

ment in a given state. Further, the UK did not have an official minimum wage until

1999. Before 1993, wage councils set minimum wages in various industries (see Dickens,

Machin and Manning, 1999). We compute an employment-weighed industry average

across manufacturing industries and use the 1993 nominal value for the four years in

our sample (1995-1998) with no minimum wage. Ireland introduced a minimum wage

only in 2000 and we take its value from 2000 from the OECD. For previous years, we

compute a minimum wage backwards by using the percentage wage increases agreed

upon by the social partners (government, unions, employer organizations) in the Irish

Social Partnership agreements, notably the “Partnership 2000” and the “Partnership for

Competitiveness and Work” using data from Baccaro and Simoni (2002). Finally, Ger-

many did not have a minimum wage during the time period we study. Instead, we follow

Dolado et al. (1996) and use the collectively bargained minimum wages in manufactur-

ing which effectively constitute law once they have been implemented. These data come

from personal correspondence with Sabine Lenz at the Statistical Agency of Germany.

Table A.28 shows that low-skill and high-skill wages differ considerably across coun-

tries and that the skill premium also varies for countries of similar development level.

For instance, between 1995 and 2009, the skill premium in the United States rose from

2.46 to 3.02 but slightly declined in Belgium from 1.56 to 1.46.

52Not all countries have government-imposed hourly minimum wages. Spain, for instance, had a
monthly minimum wage of 728 euros in 2009. To convert this into hourly wage we note that Spain has
14“monthly”payments a year. Further, workers have 6 weeks off and the standard work week is 38 hours.
Consequently we calculate the hourly minimum wages as monthly minimum wage×14/ [(52− 6)× 38],
which in 2009 is 5.83 euros per hour. We perform similar calculations, depending on individual work
conditions, for other countries with minimum wages that are not stated per hour: Belgium, Brazil,
Israel, Mexico, Netherlands, Poland and Portugal.
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Table A.28: Low-skill wages and the skill premium in manufacturing for selected countries

Country Low-skill wages
(1995$)

High-skill wages
(1995$)

Skill-premium
(HSW/LSW)

1995 2009 1995 2009 1995 2009

India 0.19 0.28 0.89 1.38 4.79 4.98
Mexico 0.89 0.61 3.46 2.56 3.90 4.21
Bulgaria 1.29 0.71 4.27 1.60 3.32 2.25
United States 11.57 13.67 28.42 41.23 2.46 3.02
Belgium 29.50 41.89 45.98 61.24 1.56 1.46
Sweden 19.92 42.16 34.44 55.92 1.73 1.33
Finland 23.41 43.63 28.10 63.71 1.20 1.46

Notes: Wages data, taken from WIOD. The table shows manufacturing low-skill and
high-skill wages (technically labor costs) deflated by (manufacturing) PPI and con-
verted to USD using average 1995 exchange rates. Skill-premium is the ratio of high-
skill to low-skill wages. The table shows the three countries with the lowest low-skill
wages in 2009, the three with the highest and the US.

A.5.2 Merging Orbis firms

For our analysis, we need to decide the level at which R&D decision are undertaken.

Orbis IP links patent data to companies. For companies in the same business group,

R&D decisions could happen at the group level, though treating a group as one agent is

often too aggressive (as subsidiaries might be in different sectors). Therefore, for firms

within the same business group, we normalize company names by removing non-firm

specific words such as country names or legal entity types and then merge firms with the

same normalized name. All other firms are treated as separate entities. E.g., Siemens

S.A., Siemens Ltd. or Belgian Siemens S.A. are merged, but Primetals Technologies

Germany Gmbh which belongs to the same group remains a separate entity.

A.5.3 Firm-level patent weights

We give further details on the firm level patent weights. As mentioned in the text, we

only count patents in machinery because some of the biggest innovators in automation

technologies are large firms which produce a wide array of products with different spe-

cialization patterns across industries. Further, we exclude firms which have more than

half of their patents in countries for which we do not have wage information.

In Europe, firms can apply both at national patent offices and at the EPO, in which

case they still need to pay a fee for each country where they seek protection. We count a

patent as being protected in a given European country if it is applied for either directly

in the national office or through the EPO. In addition, we take the following steps in

order to deal with EP patents. We assign EP patents to countries when they enter into

the national phase. A firm’s untransferred EP patents are assigned using information
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on where that firm previously transferred its EP patents. If a firm does not have any

already transferred EP patents, we assign the patent based on a firm’s direct patenting

history in EPO countries. Untransferred EP patents that are still left are assigned to

countries based on the EPO-wide distribution of transfers. We also drop a firm if more

than half of its patents are EP patents assigned using the EPO-wide distribution.

Finally, as mentioned in the text, we only count patents in families with at least one

(non self-) citation. Including all patents generally increases the weight of the country

with the most patents, in line with the finding that poor quality patents tend to be

protected in fewer countries. However, further increasing the threshold from 1 to more

citations does not significantly change the distribution of weights.

A.6 Additional results and robustness checks for the main anal-

ysis

This Appendix presents robustness checks linked to our shift-share set-up (Appendix

A.6.1), other robustness checks (Appendix A.6.2), details on the comparison of our

estimates with estimates in the literature found in Section 4.4 (Appendix A.6.3), and

finally details on the simulation exercise presented in Section 4.4 (Appendix A.6.4).

A.6.1 Shift-share analysis

We present a number of additional results related to our shift-share set-up. We first

do a “shock-level” analysis as recommended by BHJ, then we show that our results do

not depend on a single country and include additional shock-level controls, finally, we

address Borusyak and Hull (2021)’s concern regarding the use of a nonlinear shift-share.

Shock-level regressions. BHJ show that identification in a shift-share setting can

be obtained from conditionally randomly allocated shocks. Key to their argument is an

equivalence result between what in our context would be a linear firm-level regression and

a linear regression run at the level of the shocks (country-year). They advise practitioners

to run the shock-level regression and to provide several statistics showing that there are

enough variations in the shocks, that there are sufficiently many shocks, and how the

shocks correlate with other variables.

To follow their approach we need to turn to a linear setting. To do that, we first

replace our dependent variables which are defined as log of averages with average of

logs. In addition, it is easier to map our analysis with theirs if we consider a single
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Table A.29: From firm-level to shock level regressions

Dependent variable Auto95

Firm-level Country-level

(1) (2) (3) (4) (5)

Low-skill / High-skill wages 2.49∗∗∗ 0.40∗∗∗ 0.40∗∗∗ 0.32∗∗ 0.36∗∗∗

(0.87) (0.15) (0.08) (0.16) (0.07)
Labor productivity −0.32

(0.50)
GDP gap −0.30

(1.88)

Estimator Poisson Linear (arcsinh) Linear (arcsinh) Linear (arcsinh) Linear (arcsinh)
Stocks and spillovers Yes Yes Yes Yes No
Firm fixed effects Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes

Observations 47 453 48 495 615 615 615
Firms / Countries 3233 3233 41 41 41

Notes: This table reports shock-level equivalent regressions. The coefficients are estimated with conditional Poisson
fixed effect regressions (HHG) in column 1 and OLS in columns 2–5. The dependent variable in columns 2–5 is the
arcsinh transformation of auto95 innovations. Standard errors are reported in parentheses. Standard errors are clus-
tered at the firm-level in columns 1 and 2 and country-level clustered in columns 3–5. Columns 3–5 run equivalent
shock-level regressions following Borusyak, Hull and Jaravel (2022, BHJ) (see text for details). All regresions include
firm fixed effects, industry-year fixed effects and country-year fixed effects. Significance levels at *10%, **5%, ***1%.

shock. Therefore, given the previous results showing that low- and high- skill wages

often have coefficients of opposite magnitude, we directly look at the effect of the inverse

skill premium. We define it here as:

ISPi,t ≡
∑
c

κi,c ln

(
wL,c,t
wH,c,t

)
. (7)

We also define the other macro variables (GDP per capita, labor productivity, etc) as

average of logs. Second, we switch from a Poisson estimator to a linear one where we use

arcsinh of the count of patents as a dependent variables (the arcsinh is approximately

linear for low values and approximately log for higher values which allows us to deal

with 0s). That is we replace (4) with:

arcsinh (PATAut,i,t) (8)

=
βISP ISPL,i,t−2 + βXXi,t−2 + βKa lnKAut,i,t−2 + βKo lnKother,i,t−2

+βSa lnSPILLAut,i,t−2 + βSo lnSPILLother,i,t−2 + δi + δj,t + δc,t + εi,t
.

Finally, we focus this analysis on total wages (with country-year fixed effects) since this

set-up is more easily transcribed in the BHJ framework.

Table A.29 shows the results. Columns (1) and (2) report regressions at the firm-level.

In Column (1), we only replace the previous definition of the inverse skill premium (the

difference between the log average of low- and high-skill wages) with that of equation (7).
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Figure A.11: Bin-scatter plot of the shock-level regression.
Notes: This figure shows bin-scatter plot regressions of automation on the inverse skill premium. We residualize both
arcsinh(auto95) and the inverse skill premium on firm, industry-year and country-year fixed effects and on stocks and
spillover variables. We then compute weighted average of the residuals at the shock (i.e. country-year) level following
BHJ. We then group observation in 100 bins of the inverse skill premium.

We control for firm, industry-year and country-year fixed effects, stocks and spillovers

but not for any other macro variables in order to focus on the direct effect of the shock

in consideration. We obtain a coefficient much in line with those of Table A.9. Column

(2) runs a linear regression at the firm level as in (8). We obtain a similar result – the

magnitude is smaller as the range of variations for arcsinh is smaller than for log.

Column (3) follows the BHJ approach and runs a shock-level regression. That is,

we first residualize our automation measure on our controls (fixed effects, stocks and

spillovers) and similarly residualize the inverse skill premium measure. We then compute

a weighted average of the residualized automation measure at the country-year level,

where, for each country, we weigh each firm-year observation by the firm-country weight

κi,c. We then run a linear regression of that average measure of automation on the inverse

skill premium at the country-year level. Each country-year observation is weighed by

its average weight at the firm level. As demonstrated by BHJ, we get exactly the

same coefficient. Column (4) adds controls for labor productivity in manufacturing and

Column (5) removes the controls for stocks and spillovers so that the only controls are

the fixed effects. While the original regression looks at the effect of a weighted average

of wages on firms’ innovations, this “shock-level” regression inverts the relationship and

looks at the effect of wages on a weighted average of firms’ innovations. It is important

to realize that this does not mean that our original shift-share approach would simply
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Table A.30: Shock-level summary statistics

(1) (2) (3) (4)

Mean -0.78 0 0 0
Standard deviation (%) 36.4 2.1 0.9 1.0
Interquartile range (%) 55.7 2.9 1.1 1.0
Residualizing on . . .
F fixed effect – Yes Yes Yes
IY+CY fixed effects – – Yes Yes
Stocks/Spillovers – – – Yes

Notes: This table reports summary statistics on the log inverse skill premium
weighted by the average country weight in our regression sample as in Borusyak,
Hull and Jaravel (2022). The log inverse skill premium is residualized on firm
fixed effects (Columns 2, 3 and 4), industry-year and country-year fixed effects
(Columns 3 and 4) and stocks and spillovers (Column 4).

mean re-weighing firm-level variables to run a country-level regression. Our measure

of automation innovation arcsinh (PATAut,i,t) is first residualized on country-year fixed

effects, so that we remove the average contribution of domestic firms to automation

innovation when we run the shock level regression.53

To unpack our regression results, Figure A.11 shows a bin-scatter plot of the residu-

alized measures of automation and the inverse skill premium at the country-year level.

The figure corresponds to the regression of Column (5) in Table A.29 which only controls

for fixed effects. We group observations in 100 bins of equal weights. The overall rela-

tionship between automation and the inverse skill-premium does not seem to be driven

by outliers or specific parts of the inverse skill premium distribution.

Shock-level summary statistics. Table A.30 reports summary statistics on the

shock-level regressions. The standard-deviation of the shock, namely the log inverse

skill premium residualized on firm, industry-year and country-year fixed effects is 0.9%.

This is a significant amount of variation given that the standard deviation of the log

inverse skill premium residualized only on firm fixed effects (i.e. only taking away level

differences across countries) is 2.1% (see also the distribution in Figure A.11 and Table

A.5).

Table 4 reports that the HHI of weights are 0.13 for total weights and 0.09 for foreign

weights at the country level and therefore 0.009 and 0.006 at the country-year level.

The “true” level of variation depends on how much variation there actually is in the time

dimension for a given country. To assess this, Figure 3.c shows the evolution of the inverse

53As already mentioned, we run this analysis at the level of the inverse skill premium because this
allows us to keep track of only one shock. In addition, regressions with arcsinh and separate low- and
high- skill wages do not show a significant effect for low-skill wages when we use the full sample. This
is due to the difference in functional forms between the arcsinh and log. We recover our original result
when we focus on firms with at least 2 patents over the full time period. This result is exactly in line
with our long-difference regressions that also use arcsinh (see Appendix Table A.37).
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Figure A.12: Residualized inverse skill premium in the 6 most important countries.
Notes: This figure reports our identifying shocks, namely the log inverse skill premium residualized on firm fixed effects,
industry-year and country-year fixed effects, stocks and spillovers variable and aggregated at the country level following
BHJ’s methodology.

skill premium for the 6 countries with the largest average weights residualized on country

and year fixed effects. Figure A.12 does the same thing but residualizes the log inverse

skill premium on the full set of fixed effects, stocks and spillovers (i.e. as in Column

3 of Table A.29). The two figures look overall similar: there is a significant amount

of variation both across and within countries. Of course, the inverse skill premium is

correlated from year to year, but after a few years, the correlation is much weaker. We

find no correlation between the log skill premium and its fifth lag, so loosely speaking

one may consider that we have at least 3 “separate observations” for each country.

Shock-level balance tests. In Table A.31, we look at the balance of our shocks

against observables (offshoring is defined below). We regress the macro variables on the

log inverse skill premium at the country-year level. All variables are residualized on our

full set of fixed effects, stocks and spillovers, and observations are weighted following the

BHJ procedure. The only macro variables that are significantly correlated with the skill

premium are the recent innovation variables (there is also a significant coefficient for low-

skill weighted manufacturing size but the effect is small). More automation innovations

are associated with a higher skill premium as one would expect. This is also true for all

other innovations – which include non machinery innovations such as innovations in IT,

for instance. Table 7 shows that controlling for recent innovations does not affect the

effect of wages on automation innovations in our central regressions.
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Table A.31: Shock balance tests

Estimate (SE)
(1) (2)

GDP Gap 0.00 (0.01)
Labor Productivity −0.22 (0.17)
GDP per capita 0.04 (0.19)
Manufacturing size −0.07 (0.10)
Manufacturing size
(low-skill weighted) −0.21∗ (0.12)
Offshoring 0.01 (0.03)
Recent auto95 innovation −1.01∗∗∗ (0.38)
Recent other innovation −1.35∗∗ (0.67)

Stocks and spillovers Yes
Fixed effects F+IY+CY
Number of country-years 615

Notes: This table reports coefficients from sep-
arate regressions of country-level observables
on the log inverse skill premium. The respec-
tive independent variables are residualized on
firm, industry-year, and country-year fixed ef-
fects. Standard errors are reported in Column 2
and clustered at the country-level. Significance
levels at *10%, **5%, ***1%.

Excluding one country at the time. Next, we check whether our results are

driven by a specific country. We go back to our original firm-level Poisson regressions

and we successively remove each country. Excluding a country means that we treat it like

the home country when computing normalized foreign wages. We control for the weight

of the excluded country times a year dummy. Table A.32 reports the results (with foreign

wages) for the six largest countries by average weight (US, JP, DE, GB, FR, IT, and

ES). The coefficient on low-skill wages always remains positive and significant both for

these countries and the reaming ones (among which the biggest difference is for Canada,

where the low-skill wage coefficient drops to 4.93 instead of 5.30).
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Table A.32: Excluding one country at the time

Auto95

Excluded country None US DE JP GB FR IT ES
Average weight 0.21 0.20 0.17 0.09 0.09 0.03 0.03

(0) (1) (2) (3) (4) (5) (6) (7)

Foreign:
Low-skill wage 5.30∗∗∗ 5.69∗∗∗ 3.78∗∗∗ 3.64∗∗∗ 4.97∗∗∗ 3.58∗∗ 5.53∗∗∗ 5.07∗∗∗

(1.57) (1.71) (1.41) (1.34) (1.35) (1.51) (1.48) (1.54)
High-skill wage −2.91∗∗ −2.48∗ −1.76 −1.63 −0.81 −2.20 −4.71∗∗ −2.45

(1.48) (1.47) (1.32) (1.32) (1.36) (1.34) (1.93) (1.51)
GDP gap 2.40 2.40 3.37 2.50 3.20 2.09 2.02 2.09

(4.91) (5.08) (5.63) (3.95) (4.90) (5.05) (5.22) (4.97)
Labor productivity −2.53 −4.01∗∗ −2.51∗ −1.71 −3.62∗∗ −1.84 −1.08 −2.75∗

(1.61) (1.68) (1.39) (1.50) (1.61) (1.49) (1.66) (1.58)

Excluded country weight×year dummy No Yes Yes Yes Yes Yes Yes Yes
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 47 453 46 677 46 984 47 274 47 045 47 393 47 318 47 382
Number of firms 3233 3181 3199 3221 3206 3229 3224 3228

Notes: This table excludes one country at the time. Column 0 reproduces the baseline regression with normalized
foreign wages. Columns 1–7 exclude the country in the column header in addition to the domestic country when
computing the normalized foreign macroeconomic variables. Additionally, columns 1–7 control for the weight of the
excluded country times year dummies. The average weight in the header reports the average country weight for the
firms in the sample of column 1. All columns include firm, industry-year and country-year fixed effects. Standard
errors are clustered at the firm-level and reported in parentheses. Significance levels at *10%, **5%, ***1%.

Additional controls. BHJ also recommend considering other shock-level variables

that may bias results. Increased offshoring in the foreign country might reduce both

wages and the willingness to buy automation technology. We measure offshoring at the

country level as the share of foreign value-added in the gross value-added in manufactur-

ing (Timmer et al., 2014) and compute it at the firm-level as the other macro variables.

The real interest rate may be an important determinant of the cost of purchasing equip-

ment and we control for the real yield on 10-year government bonds.54 Labor costs

could affect inventing firms through their R&D costs. We re-build our firm-specific wage

variables using weights based on the location of inventors instead of patent offices and

control for these inventor-location-weighted wages. Table A.33 reports the results, our

coefficients on total and foreign low-skill wages remain largely stable.

Borusyak and Hull (2021). Borusyak and Hull (2021) show that a regression

using a logged shift-share measure may be biased due to the non-linearity of the log

function. Table A.29 already shows firm-level regressions with a linear independent

variable (the average of log inverse skill premium). Table A.34 implements Borusyak and

54We obtain data for 21 countries (AT AU BE CA CH DE DK ES FI FR GB GR IE IT JP KR LU
NL PT SE US) from the IMF and the OECD and deflate nominal yields using the manufacturing PPI.
We compute the variable at the firm-level using patent weights for these 21 countries only.
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Table A.33: Including additional controls

Dependent variable Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.75∗∗∗ 2.91∗∗∗ 2.69∗∗∗ 3.09∗∗∗ 2.56∗∗ 2.47∗∗ 5.19∗∗∗ 5.28∗∗∗ 6.96∗∗∗

(0.86) (0.89) (0.92) (1.17) (1.16) (1.18) (1.53) (1.56) (1.88)
High-skill wage −2.38∗∗∗ −2.46∗∗∗ −3.09∗∗∗ −1.24 −1.87∗ −2.26∗∗ −2.97∗∗ −2.74∗ −2.99∗

(0.75) (0.80) (0.93) (1.01) (1.07) (1.15) (1.47) (1.46) (1.73)
GDP gap −5.02∗ −3.18 −4.12 5.68 6.20 5.31 3.08 3.05 3.60

(2.77) (2.76) (2.70) (6.89) (7.00) (6.85) (5.33) (4.88) (5.45)
Labor productivity 0.70 0.48 1.07 −2.93∗ −1.66 −1.62 −2.11 −2.76∗ −3.65∗∗

(0.89) (0.98) (0.92) (1.70) (1.79) (1.79) (1.56) (1.59) (1.74)
Offshoring 4.16 11.65∗∗ −1.87

(2.62) (5.47) (4.55)
Long-term interest rate −0.06 0.08 −0.03

(0.07) (0.11) (0.06)
Low-skill wage (iw) −0.13 −0.00 0.05

(0.45) (0.47) (0.55)
High-skill wage (iw) 0.47 0.27 −0.23

(0.39) (0.37) (0.46)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 391 47 050 47 453 47 158 46 693 47 453 47 060 35 248
Number of firms 3236 3209 3185 3233 3209 3181 3233 3205 2413

Notes: This table tests three alternative explanations. Offshoring denotes the log weighted averages of the share
of foreign value added in gross value added in manufacutring. Long-term interest rate denotes the real yield
on 10-year government bonds. Low-skill wages (iw) and high-skill wages (iw) compute log weighted averages of
wages in the countries where the firm’s inventors are located. All columns include firm and industry-year fixed
effects. Columns 4–9 add country-year fixed effects. Columns 7–9 use the normalized foreign variables as defined
in the text. Low-skill wage (iw) and high-skill wage (iw) in Column 9 are still the total wages. Normalized off-
shoring is defined similarly to normalized foreign low-skill wages; normalized foreign long-term interest rate is
defined like normalized foreign GDP gap. Standard errors are clustered at firm-level and reported in parentheses.
Significance levels at *10%, **5%, ***1%.

Hull (2021)’s suggested correction in our default specification to remove the potential

bias.55 The results remain very similar.

55The correction consists in rescaling the original variables as follows: We sample with replacement
the entire path of macroeconomic variables for each firm. We take the average across many draws and
remove it from the original macroeconomic variables.
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Table A.34: Borusyak and Hull (2021)’s correction

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.35∗∗∗ 2.21∗∗∗ 3.81∗∗∗ 1.59∗ 2.20∗∗ 4.20∗∗∗ 5.18∗∗∗ 5.33∗∗∗ 3.37∗∗

(0.77) (0.85) (0.98) (0.95) (1.10) (1.28) (1.43) (1.51) (1.68)
High-skill wage −2.00∗∗∗ −2.23∗∗∗ −0.83 −2.75∗∗∗ −1.40 −1.52 −3.76∗∗∗ −3.58∗∗ −3.83∗∗∗

(0.71) (0.77) (0.81) (0.97) (1.06) (1.06) (1.27) (1.59) (1.25)

GDP gap Yes Yes Yes Yes Yes Yes Yes Yes Yes
Labor productivity No Yes No No Yes No No Yes No
GDP per capita No No Yes No No Yes No No Yes

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 453 47 453 47 453 47 453 47 453 47 453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: This table replicates the baseline regression applying the correction suggested by Borusyak and Hull
(2021). We sample with replacement the entire path of log macroeconomic variables (wages, labor productivity,
GDP per capita, and GDP gap) for each firm with 4000 draws, take the average value, and subtract it from the
original macroeconomic variable. Significance levels at *10%, **5%, ***1%.

A.6.2 Other results and robustness checks

This Appendix presents a number of additional results. We first include additional con-

trol variables, second we consider alternative specifications (long-differences and different

clustering) and third we look at alternative measures of firm-level wages and innovation.

Middle-skill wages. Lewis (2011) focuses on the effect of the low- to middle-skill

ratio on the adoption of automation technologies. Table A.35 looks at the effect of

middle-skill wages on automation innovations. A clear pattern emerges: low-skill wages

always have a positive and significant effect, while middle-skill wages have a positive

effect in regressions without low-skill wages but a negative effect otherwise. This is also

in line with Graetz and Michaels (2018) who find that robots decrease the share of low-

skill labor and increase the share of both high and middle-skill labor (and in contrast

with the literature on IT which tends to finds more negative effects for middle-skill

workers). Nevertheless, we prefer not to over-emphasize these results because low- and

middle-skill wages are strongly correlated (see Table A.5).

Firm-size. Firms of different sizes may be on different trends in automation in-

novation. In Table A.36, we group firms into four bins according to their number of

automation patents in 1995 and allow for bin-year fixed effects. We find similar results.
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Table A.35: Middle-skill wages

Dependent variable Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 5.91∗∗∗ 4.22∗∗∗ 5.80∗∗∗ 4.54∗∗ 8.93∗∗∗ 7.85∗∗

(1.44) (1.36) (2.08) (2.10) (3.14) (3.16)
Middle-skill wage −5.05∗∗∗ 2.78∗∗∗ −2.12 −4.56∗ 2.77∗ −2.69 −5.72 4.99∗∗∗ −3.58

(1.53) (1.07) (1.63) (2.37) (1.44) (2.59) (3.51) (1.87) (3.71)
High-skill wage −3.08∗∗∗ −2.14∗∗ −2.56∗∗ −1.47 −3.42∗∗ −2.18

(0.92) (0.89) (1.18) (1.19) (1.58) (1.55)
GDP gap −3.40 −4.80∗ −4.26 6.04 5.46 5.36 1.96 3.13 1.40

(2.69) (2.69) (2.71) (6.73) (6.90) (6.93) (5.05) (4.97) (5.20)
Labor productivity −0.07 1.30 0.97 −2.95∗ −1.27 −1.82 −2.95∗∗ −2.24 −2.08

(0.88) (0.91) (0.91) (1.62) (1.73) (1.77) (1.46) (1.68) (1.62)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 453 47 453 47 453 47 453 47 453 47 453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: This table reports the effect of middle-skill wages. All columns include firm and industry-year fixed effects.
Columns 4–6 add country-year fixed effects. In Columns 7–9, the macroeconomic variables are the normalized
foreign variables as defined in the text. Standard errors are clustered at the firm-level and reported in parenthe-
ses. Significance levels at *10%, **5%, ***1%.

Table A.36: Firm bin size - year fixed effects

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 3.12∗∗∗ 2.84∗∗∗ 3.63∗∗∗ 2.37∗∗ 2.78∗∗ 3.71∗∗∗ 4.45∗∗∗ 5.71∗∗∗ 4.68∗∗∗

(0.79) (0.85) (0.96) (0.99) (1.13) (1.27) (1.32) (1.56) (1.78)
High-skill wage −2.40∗∗∗ −2.85∗∗∗ −1.89∗∗ −2.89∗∗∗ −2.02∗ −2.01∗ −4.79∗∗∗ −3.03∗∗ −4.66∗∗∗

(0.72) (0.78) (0.81) (0.95) (1.08) (1.05) (1.33) (1.48) (1.42)
GDP gap −2.83 −3.46 −1.67 4.46 5.55 6.75 −0.12 2.50 0.33

(2.72) (2.82) (2.90) (6.77) (6.82) (7.11) (4.66) (4.93) (5.28)
Labor productivity 1.09 −2.00 −2.85∗

(0.91) (1.78) (1.63)
GDP per capita −1.42 −3.28∗ −0.41

(1.34) (1.99) (2.10)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bin×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 453 47 453 47 453 47 453 47 453 47 453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: This table controls for the size of the firms. Firms are classified into five bins by the stock of total patents
in 1995 with 25th, 50th, 75th, and 95th percentiles as four thresholds. All columns include firm, industry-year
and bin-year fixed effects. Columns 4–9 add country-year fixed effects. In Columns 7–9, the macroeconomic
variables are the normalized foreign variables as defined in the text. Standard errors are clustered at the firm-
level and reported in parentheses. Significance levels at *10%, **5%, ***1%.

Long-difference. We now turn to alternative specifications. For most of our anal-

ysis, we follow the large patent literature and rely on a panel setting using the Poisson

estimator, which best handles the count data nature of our dependent variable. In Ta-
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ble A.37, we conduct a long-difference estimation. To allow for zeros in the number of

patents, we use the arcsinh transformation and construct ten 5-year overlapping differ-

ences from our 15 years of data. Columns (1)-(6) focus on firms that patented at least

once over the period considered (now 1995-2013), mirroring what a Poisson regression

would do. We find a positive effect of low-skill wages and a negative effect of high-skill

wages – though, the positive effect of low-skill wages is not always significant. The

inverse skill premium, however, always has a positive and significant effect. The dimin-

ished significance of low-skill wages reflects the noisy behavior of one-time patenters and

the difference in functional forms between the log function and arcsinh for low patent

counts. Columns (7)-(9) restrict attention to firms that have patented at least twice

and recover the same results as in our Poisson regressions. These results suggest that

automation responds to medium-run changes in wages.

Table A.37: Five-year difference estimation

Dependent variable ∆ Arcsinhauto95

Firm restriction At least one auto95 innovation At least two auto95 innovations

Domestic and Foreign Foreign Dom. and Fgn. Fgn.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆ Low-skill wage 1.10∗∗∗ 0.76 0.95 2.10∗∗∗ 1.67∗∗ 2.46∗∗

(0.36) (0.47) (0.67) (0.55) (0.72) (1.02)
∆ High-skill wage −1.03∗∗∗ −1.38∗∗∗ −2.05∗∗∗ −1.65∗∗∗ −2.09∗∗∗ −3.61∗∗∗

(0.31) (0.45) (0.69) (0.47) (0.68) (1.00)
∆ Low-skill / High-skill wages 1.07∗∗∗ 1.05∗∗∗ 1.46∗∗

(0.28) (0.38) (0.59)
∆ GDP gap −0.89 −0.92 0.82 0.95 −0.33 0.33 −1.46 0.63 −0.13

(1.04) (1.04) (1.94) (1.94) (1.65) (1.54) (1.41) (2.76) (2.34)
∆ Labor productivity −0.40 −0.34 0.12 −0.39 0.89 0.03 −0.68 −0.26 1.01

(0.38) (0.30) (0.60) (0.45) (0.64) (0.33) (0.57) (0.90) (0.97)

Spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No Yes Yes Yes Yes No Yes Yes

Observations 32 360 32 360 32 330 32 330 32 330 32 330 21 710 21 690 21 690
Number of firms 3236 3236 3233 3233 3233 3233 2171 2169 2169

Notes: This table conducts five-year difference regressions. Estimation is done by OLS for the years t=2000-2009. The
dependent variable is the difference between the arcsinh of the sum of yearly auto95 patents in t to t+4 and the arcsinh
of the sum of yearly auto95 patents in t-5 to t-1. All independent variables are the sum of yearly counterparts from t-4
to t. Columns 1–6 focus on firms that have at least patented once in 1995–2013 while columns 7–9 restrict attention to
firms that patented at least twice in 1995–2013. All columns include industry-year fixed effects. Columns 3–6 and 8–9 add
country-year fixed effects. In Columns 3, 4, and 9 the macroeconomic variables are normalized foreign variables as defined
in the text. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at *10%, **5%,
***1%.

Clustering level. In the baseline specification, we cluster at the firm level to account

for auto-correlation in errors. Firms that share similar weight distributions may be

affected by common shocks. The best way to address this issue is through the Monte-

Carlo simulations of Table 8. As an alternative, we cluster standard errors at the home

country level in Table A.38. If anything, this tends to reduce the standard error on
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low-skill wages. A potential explanation for the negatively correlated error terms is that

a successful innovator may capture the market thereby discouraging innovation by its

competitors. In addition, standard errors may overstate confidence levels if the number

of clusters is small or the size distribution of clusters is skewed. To address this, Table

A.38 also includes p-values for low-skill wages using the BDM bootstrap-t approach of

Cameron, Gelbach and Miller (2008). All coefficients of interest remain significant.

Table A.38: Baseline regressions for auto95 with country-level clustering

Auto95

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.97∗∗∗ 2.72∗∗∗ 3.64∗∗∗ 2.24∗∗∗ 2.61∗∗∗ 3.64∗∗ 4.19∗∗∗ 5.30∗∗∗ 4.43∗∗

(0.70) (0.77) (1.11) (0.73) (0.55) (1.59) (0.86) (1.65) (1.79)
[0.000 ] [0.000 ] [0.001 ] [0.002 ] [0.000 ] [0.022 ] [0.000 ] [0.001 ] [0.013 ]
{0.025} {0.001} {0.001} {0.039} {0.054} {0.065} {0.015} {0.018} {0.087}

High-skill wage Yes Yes Yes Yes Yes Yes Yes Yes Yes
GDP gap Yes Yes Yes Yes Yes Yes Yes Yes Yes
Labor productivity No Yes No No Yes No No Yes No
GDP per capita No No Yes No No Yes No No Yes

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 453 47 453 47 453 47 453 47 453 47 453
Firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: This table reproduces the baseline table using different inference procedures. The standard errors in parentheses are
clustered at country-level (instead of firm-level). The [ ] brackets report the associated p-values. To account for few clusters, the
{ } brackets report cluster-bootstrapped p-values following Cameron et. al (2008). Significance levels at *10%, **5%, ***1%.

Different weights. We now turn to different measures of firm-level wages. First,

we look at alternatives to pre-multiplying patent weights with GDP 0.35 (see equation

(3)) in Table A.13. We either use patent weights directly, or multiply them by GDP ,

or by total payment to low-skill workers raised to the power of 0.35, (wLL)0.35. These

latter weights may better measure the potential market for technology that automates

low-skill work. The results remain similar.
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Table A.39: Alternative weights

Dependent variable Auto95

Weight market size adj. GDP0 GDP1 (wL · L)0.35

Dom.
and fgn. Fgn. Dom.

and fgn. Fgn. Dom.
and fgn. Fgn.

(1) (2) (3) (4) (5) (6)

LSW 2.75∗∗ 3.61∗∗∗ 2.94∗∗∗ 4.15∗∗∗ 6.15∗∗∗ 5.30∗∗∗

(1.11) (1.20) (1.13) (1.40) (1.71) (1.54)
HSW −3.47∗∗∗ −2.46∗∗ −2.97∗∗∗ −3.62∗∗∗ −3.26∗∗ −3.56∗∗∗

(1.06) (1.06) (1.04) (1.35) (1.63) (1.35)
GDPGAP −5.70 1.55 −3.70 −2.13 −0.76 −0.50

(5.17) (5.21) (5.41) (3.67) (3.89) (3.76)
VAEMP 0.73 0.19 −0.28 −1.60 −1.93 −2.23

(1.54) (1.45) (1.58) (1.44) (1.59) (1.57)

Stocks and spillovers Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes Yes

Observations 47 318 47 457 47 338 47 318 47 457 47 338
Number of firms 3230 3231 3234 3230 3231 3234

Notes: This table varies the market size adjustment in the firm’s country weights. Columns
1-2 do not adjust for GDP in the computation of the weights, Columns 3-4 use GDP
instead of GDP0.35 to adjust for country size and Columns 5-6 replace GDP with total
low-skilled payment wLL in the baseline formula. All regressions include firm, country-year
and industry-year fixed effects. In columns 2, 4, and 6 the macroeconmic variables are the
normalized foreign variables as described in the text. Standard errors are clustered at the
firm-level and reported in parentheses. Significance levels at *10%, **5%, ***1%.

Different deflators and wages. Second, we look at other macro measures of wages

(our baseline regressions use manufacturing wages deflated by local PPI and converted

in USD with the 1995 exchange rate). Table A.40 shows that our results (with foreign

wages and country-year fixed effects) are robust to converting in USD yearly or in another

year (2005), using a GDP deflator or replacing manufacturing wages with total wages.
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Table A.40: Robustness to total wages and different deflators

Dependent variable Auto95

Sector Manufacturing Total

Deflator Manufacturing PPI,
conversion in 2005

US manufacturing PPI,
conversion every year

GDP deflator,
conversion in 1995

Manufacturing PPI,
conversion in 1995

US manufacturing PPI,
conversion every year

(1) (2) (3) (4) (5)

Foreign:
Low-skill wage 5.16∗∗∗ 4.48∗∗∗ 5.12∗∗∗ 5.85∗∗ 5.39∗∗∗

(1.54) (1.43) (1.96) (2.79) (2.06)
High-skill wage −2.63∗ −3.66∗∗ −2.56∗ −2.53 −3.42

(1.40) (1.43) (1.49) (2.34) (2.30)
GDP gap 2.60 1.52 2.52 1.09 0.33

(4.85) (4.91) (4.91) (4.50) (4.64)
Labor productivity −2.71∗ −1.39 −2.70∗ −3.63 −3.01

(1.54) (1.57) (1.64) (3.10) (2.93)

Stocks and spillovers Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes

Observations 47 453 47 453 47 453 47 453 47 453
Number of firms 3233 3233 3233 3233 3233

Notes: This table shows robustness to different wage conversions. Columns 1–3 use manufacturing wages and columns 4 and 5 total wages. In column
1, macroeconomic variables are deflated with the local manufacturing PPI and converted to USD in 2005. In Columns 2 and 5 they are converted to
USD every year and deflated with the US manufacturing PPI. In Column 3, macroeconomic variables are deflated with the local GDP deflator and
converted to USD in 1995. In Column 4, macroeconomic variables are deflated with the local manufacturing PPI and converted to USD in 1995. All
regressions include firm fixed effects, industry-year fixed effects and country-year fixed effects. In all columns, the macroeconomic variables are the
normalized foreign variables as defined in the text. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at
*10%, **5%, ***1%.

Citations. Finally, we look at other measures of innovation. Table A.41 investigates

whether our results are robust to focusing on patents of higher quality and weighs patents

by citations. We add to each patent the number of citations received within 5 years

normalized by technology field, patent office and year of application, and winsorized at

the 75th percentile. We find similar coefficients as in the baseline, which shows that our

results are not driven by low-quality innovations.56

56If we do not winsorize the patent counts at the 75th percentile, we lose significance in columns (4)
and (5). The number of citations is quite right-skewed and one possible interpretation is that conditional
on R&D investment, whether an innovation turns out to be of very high quality is largely random. This
dampens the effect of low-skill wages on (non-winsorized) citations-weighted patents.
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Table A.41: Citations-weighted patents

Dependent variable Citations-weighted auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.47∗∗∗ 2.25∗∗ 3.18∗∗∗ 1.76∗ 2.19∗ 3.27∗∗ 4.03∗∗∗ 5.16∗∗∗ 4.24∗∗

(0.85) (0.92) (1.04) (1.07) (1.25) (1.37) (1.39) (1.56) (1.80)
High-skill wage −2.26∗∗∗ −2.64∗∗∗ −1.53∗ −3.01∗∗∗ −2.09∗ −2.00∗ −4.81∗∗∗ −3.23∗∗ −4.68∗∗∗

(0.82) (0.86) (0.88) (1.08) (1.12) (1.17) (1.34) (1.54) (1.47)
GDP gap −3.41 −3.92 −1.77 3.22 4.40 5.83 −1.67 0.72 −1.26

(2.62) (2.70) (2.78) (6.63) (6.61) (6.93) (4.42) (4.72) (5.02)
Labor productivity 0.89 −2.12 −2.55

(0.94) (1.85) (1.61)
GDP per capita −1.99 −3.73∗ −0.38

(1.37) (2.06) (2.20)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 47 812 47 812 47 812 47 462 47 462 47 462 47 462 47 462 47 462
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: This table weighs patents by citations. We add to each auto95 patent the number of citations received
within 5 years normalized by technological field, patent office, and year of application, and winsorized at the
75th percentile. All columns include firm and industry-year fixed effects. Columns 4–9 add country-year fixed
effects. In Columns 7–9 the macroeconomic variables are the normalized foreign variables defined in the text.
Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at *10%, **5%,
***1%.

Innovation types. We look at other definitions or subcategories of automation

innovations in regressions with foreign wages in Table A.42. The results are robust to

excluding the codes that we added to the definition of the machinery technology field

listed in footnote 10 (Column 1). The labor keyword differs from the other in that it

does not refer to a specific technology. We reproduce the entire procedure excluding

this keyword and find that the results are robust (Column 2). Though the coefficients

are smaller, they are also robust to using the laxer auto80 definition of automation

innovations (Column 3). Subcategories of automation innovations are defined by re-

classifying codes according to the prevalence of each category of automation keywords.

We find large effects of low-skill wages on automat* and robot patents; but no significant

effect on CNC patents, for which the sample size is smaller.

A.6.3 Computing automation elasticities from the literature

In this Appendix, we explain how we compute the elasticities reported in Section 4.4.

Lewis (2011) identifies low-skill workers as high-school dropouts and middle-skill work-

ers as high-school graduate, which does not align with our analysis. Nevertheless, he

estimates that a 1 point increase in the ratio of low- to middle-skill workers decreases

the number of technologies adopted by 7.75 (Table V, column 2), decreases ln (wL/wM)
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Table A.42: Innovation categories

Dependent variable Auto95 AutoX95 Auto95_noL Auto80 Automat*90 Automat*80 Robot90 Robot80 CNC90 CNC80

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

Foreign:
Low-skill wage 5.30∗∗∗ 5.42∗∗∗ 5.23∗∗∗ 3.53∗∗∗ 8.97∗∗∗ 6.13∗∗∗ 6.70∗∗ 7.49∗∗∗ 1.68 −1.56

(1.57) (1.62) (1.57) (1.32) (3.04) (1.99) (3.39) (2.54) (4.80) (3.05)
High-skill wage −2.91∗∗ −1.42 −2.81∗ −2.11 −1.14 −2.13 −0.23 −3.06 6.49 1.75

(1.48) (1.63) (1.49) (1.32) (2.95) (1.80) (3.12) (2.37) (6.12) (3.61)
GDP gap 2.40 0.74 2.31 1.97 9.61 4.17 5.87 1.22 −1.69 −1.17

(4.91) (4.58) (4.86) (2.85) (6.30) (4.48) (7.94) (6.79) (13.10) (9.68)
Labor productivity −2.53 −3.87∗∗ −2.58 −1.78 −8.49∗∗∗ −4.53∗∗ −7.75∗∗∗ −5.70∗∗ −8.37 −1.03

(1.61) (1.71) (1.61) (1.22) (2.50) (1.76) (2.94) (2.25) (5.50) (3.25)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 47 453 45 838 47 017 97 449 22 517 48 032 14 433 23 268 6476 13 617
Number of firms 3233 3144 3203 6544 1595 3272 1046 1632 508 1001

Notes: This table analyzes the effect of wages on different automation innovation categories. AutoX95 excludes the C/IPC codes which we added when
defining the machinery technological field. Auto95_noL measures automation with exactly the same procedure as auto95 but excluding the labor keywords
from the list in automation keywords. Auto80 lowers the threshold to define automation innovation to the 80th percentile of the C/IPC 6-digit distribu-
tion. Automat*90 and Automat*80 only count words associated with automat. Robot90 and Robot80 only count words associated with robot. CNC90
and CNC80 words associated with CNC. 90 and 80 refer to the thresholds used to define the corresponding technology categories, which are the 90th and
80th percentile of the distribution of automation keywords for 6-digit C/IPC codes. The macroeconomic variables are the normalized foreign variables
as defined in the text. Stocks and spillovers are computed with respect to the dependent variable. All regressions include firm fixed effects, industry-year,
and country-year fixed effects. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at *10%, **5%, ***1%.

by 0.199 (Table VIII, column 2) and increases ln (wH/wM) by 0.474 (Table VIII, column

5), so that ln (wL/wH) decreases by −0.673. The mean number of adopted technologies

is 3.09, while the mean change in the ratio of low- to middle-skill workers is −0.03 (Ta-

ble I). From this, we can back an elasticity of automation adoption with respect to the

inverse skill premium of [ln(3.09− 7.75× 0.03)− ln(3.09)] /[0.673× 0.03] = 3.6.

Acemoglu and Restrepo (2022) measure aging as the predicted change in the ratio of

above 56 to below 56 workers between 1995 and 2025. They find that aging leads to an

increase in the log ratio of robot imports over all intermediate imports of 1.96 (Table 4,

column 3) and an increase in the log number of robotics over all patents of 0.75 (Table

5, column 3). They also report that aging between 1990 and 2015 is associated with

a relative increase of blue-collar manufacturing wages compared to average wages of

0.418 across US commuting zones (Table A.20, Panel B, column 4). Taking ratios and

adjusting for the different time lengths gives an elasticity of 1.96
0.418

25
30

= 3.9 for adoption

and 0.75
0.418

25
30

= 1.5 for innovation.

Finally, we report on elasticities in the adoption of new technologies in footnote 44.

Baptista (2000) studies the adoption of CNC machines in the UK. He estimates the

effect of the number of previous adopters in an area on the hazard rate of adoption.

Using the coefficient from their Table 3 and the mean number of adopters from Table
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2, one gets that a 1% increase in the number of local adopters reduces the hazard rate

of adoption by 0.08%. No (2008) looks at the adoption of advanced manufacturing

technologies in Canada and reports elasticities with respect to the number of previous

adopters in similar industries between 0.0012 and 0.0015 (their Table 3 and 4). Finally,

Bekes and Harasztozi (2020) shows that Hungarian firms are more likely to import

specific machines when a nearby peer already imports the same machine. Combining

the coefficient of Table 7 (0.003—coefficients in the table are multiplied by 100) with

the probability that there is a peer (0.2 from their Table 4) and an average hazard rate

of importing of 1%, we get an elasticity of 0.06.

A.6.4 Macroeconomic interpretation of the regression coefficients

This section provides details on the simulation results of Section 4.4. Table A.43 shows

the exact regression that supports our simulations. We jointly estimate the effect of

the inverse skill premium on auto95 and pauto95 innovations (without restricting atten-

tion to the sample of firms of the baseline regression). This requires that we compute

separately the stocks and spillovers of auto95 innovations, pauto95 innovations and non-

machinery innovations. The coefficients on knowledge spillovers in log linear regressions

are greater than 1 leading to an explosive behavior. To prevent this, we include quadratic

terms for the knowledge spillovers.57

Recomputing the spillover variables involves two complications. First, our model

applies only to the number of innovations, not their location. To allocate innovations

to countries, we assign the simulated innovations proportionally to contemporaneous

inventor weights of the firms (while the spillover variables are computed using pre-

determined inventor weights). These contemporaneous weights reflect the distribution

of where firms’ innovators are located in the respective year (or the closest year if there’s

no patenting).

Second, our regression dataset does not include all firms with biadic innovations but

57Coefficients on the knowledge spillover squares are significant for pauto95 which justifies the inclu-
sion of the square terms. We also use ln(1+) to compute stocks and spillovers in this exercise. This
has no effect on the regression results but ensures a more stable behavior in the simulations. Finally,
Samsung has an outsize effect on Korea’s innovation stock, which in turn has a big effect on Samsung’s
innovation: this feedback loop can generate an explosive behavior for Korea, so that our simulation
(with no wage change) and the data diverge significantly toward the end of the of the simulation period
if Samsung does not match the data well at the beginning. To ensure that this is the case, we add
Samsung-year-technology dummies: as a result, data on Samsung are not used to identify the coeffi-
cients of interest, and we can match the behavior of Samsung well in the simulations. Adding these
dummies has no effect on the regression coefficients.
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our spillover variables are computed using country-level stocks of biadic innovations.

To account for this, we assume that out-of-sample firms respond similarly to in-sample

firms. When assigning simulated innovations to countries, we increase the innovations by

those of out-of-sample firms so that the ratio of in-sample to out-of-sample innovations

in that country-year remains the same as in the data. We make this adjustment for

countries with at least 10 in-sample machinery patents.

Table A.43: Regression supporting the simulation of Figure 4

Dependent variable Auto95 Pauto95

(1) (2)

Low-skill / High-skill wages 2.55∗∗∗ 0.52
(0.70) (0.52)

Stock automation −0.15∗∗∗ 0.13∗∗∗

(0.05) (0.03)
Stock non-automation 0.34∗∗∗ 0.26∗∗∗

(0.06) (0.03)
Spillovers automation 2.17∗∗ −0.90

(0.97) (0.61)
Spillovers non-automation 5.00∗ 4.96∗∗∗

(2.55) (1.51)
Spillovers automation squared −0.08 0.04

(0.06) (0.04)
Spillovers non-automation squared −0.22∗ −0.17∗∗

(0.13) (0.08)

GDP gap Yes Yes
Non-machinery stock Yes Yes
Non-machinery spillovers Yes Yes
Non-machinery spillovers squared Yes Yes

Firm fixed effects Yes Yes
Industry×year fixed effects Yes Yes
Country×year fixed effects No No
Samsung×year×technology dummies Yes Yes

Observations 47 812 155 183
Number of firms 3236 10 382

Notes: This table shows regressions of automation (column 1)
and non-automation machinery innovations (column 2) on the
inverse skill-premium, the GDP gap, and firm-level stock and
spillover variables. We consider automation, non-automation,
and non-machinery stocks and spillovers separately and in-
clude squared spillovers. Stocks and spillovers are computed
as log(1+). The regressions include firm and year-industry
fixed effects as well as dummy variables for Samsung×year×
technology. Standard errors are clustered at the firm-level and
reported in parentheses. Significance levels at *10%, **5%,
***1%.

Even without any change in the skill premium, the noise in the Poisson process means

that the exact number of patents in each country can vary from one simulation to the

next. If the spillover variables are kept as in the data, the average effect of this noise is

null, and the average simulation (with no change in the skill premium) looks exactly like

the data series. However, when the spillover variables at time t are updated to reflect

the simulated innovations in the years before t− 2, the predicted number of innovations
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at t may be different from that in the data. This is why the baseline curve in Figure

4 slightly differs from the data series and why the total effect of the change in the skill

premium should be computed as the difference between the baseline + total effect curve

and the baseline curve. Figure 4 displays the median simulation.
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B Supplemental material

B.1 Additional examples

We provide a few additional examples of automation and non-automation patents. Fig-

ure B.1 shows the example of a robot with a patent containing the IPC code B25J9.

The patent describes a multi-axis robot with a plurality of tools which can change the

working range of each arm. This essentially increases the flexibility of the robot. Figure

B.2 shows an automation innovation used in the dairy industry. The patent contains the

code A01J7 which is a high automation code (see Table A.23). It describes a system in-

volving a robotic arm to disinfect the teats of cows after milking. The patent argues that

this reduces the need for human labor and therefore saves costs. Figure B.3 describes an

automated machining device – yet another example of a high automation innovation –

which contains the code B23Q15 (a high automation code described in Table A.23). The

devices features a built-in compensation system to correct for errors thereby reducing

the need for a “labor-intensive adjustment process”. Figure B.4 describes another high

automation patent belonging to the same IPC code as well as to G05B19. This is also

a machining device. The patent explains that innovations in machining have aimed at

making the process as automated as possible by involving some feedback mechanism (as

in the previous older patent). This invention aims at better predicting the machining

requirements in the first place.

In contrast, Figure B.5 describes a low automation innovation in machinery (none

of the codes are above the 90th percentile in the 6-digit C/IPC distribution). The

innovation relates to a “conveying belt assembly for a printing device”, which is about

the circulation of paper in the printing machine. This innovation does not directly

involve automation. Similarly Figure B.6 describes a winch to raise and lower people,

another low-automation innovation in machinery. This innovation seems rather low-skill

labor complementary as its goal is to enable workers to move in a plurality of directions.

Finally, Figure B.7 describes a harvester (which also counts as a machinery innovation

since the code A01B63 belongs to other special machinery). This is also a low-automation

innovation as its goal is to ensure that the harvester can both operate in the field and

travel on roads.
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Figure B.1: Example of a high automation patent: an industrial robot
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Figure B.2: Example of a high automation patent: a milking robot
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Figure B.3: Example of a high automation patent: an automated machining device
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Figure B.4: Example of a high automation patent: another automated machining device

Figure B.5: Example of a low automation patent: a printer
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Figure B.6: Example of a low automation patent: a winch

Figure B.7: Example of a low automation patent: a harvester

B.2 Validating our weights approach

We compare our firm-level weights to bilateral trade flows and show that they are

strongly correlated. The first step is to compute patent-based weights at the coun-

try level. For this exercise (and this exercise only), we define the home country D of

a firm based on the location of its headquarters according to the country code of its
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(b) Trade from the 6 largest countries

Figure B.8: Bilateral patent flows and trade flows in machinery.
Notes: Panel (a) plots log patent based weights, which are a weighted average of the destination country’s weights in the
(foreign) patent portfolio of firms from the origin country, against export shares in machinery over the years 1995-2009.
The size of each circle represents the product of the GDP of both countries, which is used as a weight in the regression.
Panel (b) focuses on the weights from the listed countries and observations are weighted by the GDP of the partner
country.

identifier in the Orbis database. For firms which we merged, we keep the country code

of the largest entity by biadic machinery patents in 1997-2011. We compute the foreign

weights for each firm i by excluding the home country. Therefore, the foreign weight for

country c 6= D for firm i is given by κi,c/(1−κi,D) (recall that these weights are computed

based on patenting from 1971 to 1994). We then build the foreign patent-based weight

in country c for country D as a weighted average of the foreign weights in country c

of the firms from country D, where each firm is weighted according to the number of

machinery biadic patents in 1997-2011.

The second step is to build similar weights based on exports. To do that, we collect

sectoral bilateral trade flow from UN Comtrade data between between 1995 and 2009 for

40 countries (Taiwan is not included in the data). To obtain trade flows in machinery, we

use the Eurostat concordance table between 4-digit IPC codes and 2 or 3-digits NACE

Rev 2 codes (van Looy, Vereyen, and Schmoch, 2014): this concordance table matches

IPC codes to the industry of manufacturing. The concordance table assigns a unique

industry to each IPC code. Then, for each industry, we compute the share of biadic

patents over the period 1995-2009 that are in machinery according to our definition.58

This gives us a machinery weight for each industry code and each country. We then

multiply sectoral trade flows (after having aggregated the original data to the NACE

58To do that we use a fractional approach: each patent is allocated NACE sectoral weights (and
machinery weights) depending on the share of IPC codes associated with a NACE sector or machinery.
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Figure B.9: Foreign low-skill wages for each country computed either with patent-based
weights or with trade-based weights.

Notes: Wages are computed for the years 1995-2009. Panel (a) plots log foreign low-skill wages using either patent-based
weights or trade-based weights. Panel (b) plots the residuals of foreign wages according to both methods controlling for
country and year fixed effects. Observations are weighted by the number of biadic machinery patents by firms from the
country over the years 1997-2011.

Rev 2 codes used in the concordance table) by this weight to get bilateral trade in

machinery. We then compute the export share in machinery across destinations. We

compute trade based weights for each year in 1995-2009 and take the average (there are

a few missing observations for 1995).

Figure B.8 plots the patent-based weights against the trade-based weights. Panel (b)

focuses on a few origin countries while Panel (a) plots all countries together. We find a

strong correlation between the two measures with a regression coefficient of 0.94 (when

observations are weighted by the trade flow in 1996).

Figure B.9 goes further and compares low-skill wages computed with either sets of

weights. For each country, we compute “foreign low-skill wages” as a weighted average of

foreign wages where the weights are either the patent-based weights or the trade-based

weights derived above. Foreign wages are deflated with the local PPI and converted

in USD in 1995 as in our main analysis. Panel (a) then reports foreign log low-skill

wages according to both types of weights in 1995-2009 and finds that they are strongly

correlated. Panel (b) reports the same foreign log low-skill wages but taking away

country and year fixed effects. The regression coefficient is 0.56, when observations are

weighed by the number of machinery patents in the country between 1997 and 2011.

Overall, this exercise shows that there is tight relationship between our patent-based

weights and (future) trade flows, suggesting that we can use these patent-based weights

as proxies for firms’ markets exposure.
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