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A Main Appendix

A.1 Additional Figures and Tables
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Figure A.1: Share of biadic patent applications in the different technical fields in 1997-2011.
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Figure A.2: Trends in automation patents.
Notes: Panel (a) reports the share of automation patents (auto90 or auto95) in machinery out of total patents according to
the auto90 and auto95 definitions. Panel (b) reports the raw number of automation patents (auto90 or auto95) worldwide.
We restrict attention to biadic families.
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Figure A.3: Distribution of coefficients in Monte-Carlo simulations.
Notes: We run Monte-Carlo simulations where for each country, we sample with replacement the entire path of macroe-
conomics variables (wages, labor productivity and GDP gap) from the existing set of countries. We then re-run our
regressions 4000 times. Panels a), b) and c) report histograms on the distribution of low-skill wage coefficients. The
vertical red lines correspond to the coefficients of the true regressions. We then carry a symmetric exercise, where for
each firm, we sample with replacement the set of country-weights from the existing set of firms within the same country.
We re-run our regressions 4000 times and panels d), e) and f) report histograms on the distribution of low-skill wage
coefficients. Each panel corresponds to a different column in Table 8.
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Figure A.4: Lag and leads.
Notes: This figure reports regression coefficients on low-skill and high-skill wages at different lags and leads. Each panel
and each year corresponds to a different Poisson regression of auto95 innovations on wages, GDP gap, labor productivity,
stocks, spillovers, firm fixed effects, industry-year fixed effects, and country-year fixed effects. Explanatory variables
are computed at year t + the year marked on the x-axis except the stocks for which we keep the same lag of 2 years
throughout. Panel a consider the total macroeconomic variables while Panel b looks at the normalized foreign variables
previously defined. The shaded area represent 95% confidence interval, standard errors are clustered at the firm level.
Panel a, year -2 corresponds to Column 5 of our baseline Table 5, and Panel b, year -2 corresponds to Column 8. The
leads test for the presence of pre-trends.
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Figure A.5: Effect of the Hartz reforms on labor costs and the inverse skill premium.

Notes: Panel a) shows log low-skill and high-skill labor costs (denoted wages) in Germany and in the rest of the world.
Panel b) shows the inverse skill premium. The rest of the world series is computed as a weighted average using the weights
(excluding Germany) of the firms included in the regression of Figure 5.a

Table A.1: Summary statistics on the industry level regressions

Mean SD Min P10 P50 P90 Max N

Share automation (using industry) 0.075 0.013 0.042 0.059 0.079 0.088 0.111 133
Share automation (inventing industry) 0.081 0.060 0.011 0.027 0.076 0.166 0.382 126
∆ Computer use (1984-1997) 0.192 0.072 -0.159 0.104 0.187 0.280 0.412 133
∆ Routine cognitive -2.493 4.216 -21.667 -8.286 -2.710 4.020 9.666 133
∆ Routine manual -2.308 4.336 -23.283 -9.330 -1.435 3.073 12.516 133
∆ High/low skill workers 0.123 0.176 -0.105 -0.003 0.070 0.318 1.132 133
∆ Labor share (NBER manufacturing) -0.093 0.063 -0.230 -0.179 -0.084 -0.040 0.035 56
∆ Labor share (BEA) -0.046 0.121 -0.616 -0.191 -0.015 0.045 0.327 60

Notes: This table shows summary statistics for the variables in our industry level regression. Share automation
(using industry) represents the share of automation patents among machinery patents used by an industry.
Share automation (inventing industry) represents the share of automation patents among machinery patents
invented by an industry. Patents are USPTO granted patents over the years 1980-1998. ∆ Computer use is the
change in computer per-employee between 1997 and 1984. ∆ routine cognitive, routine manual and high/low
skill workers denote changes in these variables between 1980-1998. ∆ labor share (NBER manufacutring) is
the change in payroll / value added in the NBER-CES manufacuring industry database. ∆ Labor Share (BEA)
is the change in total compensation / value added in 60 aggregated industries. Industries are weighed by mean
industry employment in 1980 and 1998.
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Table A.2: Industry of innovators

Industry Share auto95 (%) Share firms (%)

20 Manufacture of chemicals and chemical products 2.13 3.41
25 Manufacture of fabricated metal products, except machinery and equipment 1.18 4.42
26 Manufacture of computer, electronic and optical products 23.20 7.62
27 Manufacture of electrical equipment 9.45 2.89
28 Manufacture of machinery and equipment n.e.c. 24.36 21.20
29 Manufacture of motor vehicles, trailers and semi-trailers 5.30 3.53
30 Manufacture of other transport equipment 4.57 1.17
46 Wholesale trade, except of motor vehicles and motorcycles 1.32 3.29
64 Financial service activities, except insurance and pension funding 1.69 0.98
72 Scientific research and development 2.04 2.37

Other industries 12.99 26.82
No information on industry 11.79 22.27

Notes: The table reports the industry of patenting firms included in our baseline regression with industry-year fixed effects
at the NACEv2 division level, and the share of biadic auto95 families for each industry. Industries representing less than
1% of patents are summed up in the ’Other industries’ category.

Table A.3: Coverage of the regression sample

Applications Families Biadic Families Firms

Patstat 1997-2011 432 095 179 954 61 699 –
Matched with Orbis 348 342 140 707 52 331 4251
Firms in sample 206 959 86 030 33 025 3255

Notes: This table reports the number of auto95 patent applications, families,
biadic families, and firms (that do at least one auto95 biadic innovation) for
the time period 1997-2011 for three different samples based on PATSTAT:
the whole sample, the sample of firms observed in ORBIS and the sample of
firms included in our baseline regression.

53



Table A.4: Descriptive statistics on innovation

(a) Top 10 auto95 innova-
tors in our sample

Company Auto95’s
in 1997-2011

Siemens Aktiengesellschaft 1781
Honda Motor Co., Ltd. 815
Fanuc Co. 779
Samsung Electronics Co., Ltd. 718
Robert Bosch Gmbh 673
Mitsubishi Electric Co. 669
Tokyo Electron Limited 583
Murata Machinery, Ltd. 502
Kabushiki Kaisha Toshiba 491
Panasonic I.P.M Co., Ltd. 460

Notes: This table reports the 10 firms with the
highest number of biadic auto95 patents in our
baseline sample.

(b) Summary statistics on auto95 and
pauto90 innovation

Sample Baseline Restricted

Auto95 Auto95 Pauto90

(1) (2) (3) (4)

Number of patents
Yearly 1997-2011 1997-2011 1997-2011

Mean 1 12 13 83
SD 4 54 57 313
P50 0 2 2 15
P75 0 6 7 49
P90 2 20 24 166
P95 3 43 50 335
P99 14 194 200 1184

Average citations
received in 5 years 9.4 9.2 7.6

Number of firms 3255 2859

Notes: This table presents summary statistics for the firms’ patenting
activity. Columns 1 and 2 show statistics for the baseline regression
sample. Columns 3 and 4 describe the restricted sample in which we
include non-automation machinery (pauto90) patents. Average cita-
tions are calculated as the average number of citations received by
a patent within 5 years after the application. The firms are the non-
domestic firms that patent at least once before 1995 and during the
sample period 1997-2011.

Table A.5: Summary statistics on the firm-level macro variables

Low-skill
wage

Middle-skill
wage

High-skill
wage

GDP
gap

GDP per
capita

Labor
productivity

Low-skill wage 1.000
Middle-skill wage 0.942 1.000
High-skill wage 0.609 0.750 1.000
GDP gap −0.063 −0.051 −0.032 1.000
GDP per capita 0.709 0.804 0.732 0.114 1.000
Labor productivity 0.674 0.736 0.772 0.039 0.668 1.000

Standard deviation 0.032 0.029 0.034 0.004 0.026 0.026

Notes: This table shows the correlation of residuals for the auto95 baseline regression sample,
controlling for firm and year-industry fixed effects. The last row shows the standard deviation of
the residual variables.
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Table A.6: Baseline regressions with fewer controls

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 3.42∗∗∗ 2.65∗∗∗ 3.00∗∗∗ 2.74∗∗∗ 2.65∗∗∗ 2.25∗∗ 4.69∗∗∗ 4.20∗∗∗ 4.20∗∗∗

(0.75) (0.76) (0.79) (0.98) (0.76) (1.00) (1.32) (1.31) (1.33)
High-skill wage −1.57∗∗ −1.51∗∗ −2.20∗∗∗ −2.72∗∗∗ −1.51∗∗ −2.81∗∗∗ −4.94∗∗∗ −4.50∗∗∗ −4.46∗∗∗

(0.68) (0.65) (0.72) (0.92) (0.65) (0.96) (1.38) (1.32) (1.31)
Stock automation −0.11∗∗∗ −0.12∗∗∗ −0.11∗∗∗ −0.12∗∗∗ −0.12∗∗∗ −0.13∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Stock other 0.52∗∗∗ 0.51∗∗∗ 0.52∗∗∗ 0.52∗∗∗ 0.50∗∗∗ 0.51∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Spillovers automation 0.58∗ 1.35∗∗∗ 1.33∗∗∗

(0.29) (0.47) (0.46)
Spillovers other −0.19 −0.97∗∗∗ −0.98∗∗∗

(0.22) (0.36) (0.35)
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 48 091 48 091 48 091 47 741 48 091 47 741 47 741 47 741 47 741
Number of firms 3255 3255 3255 3252 3255 3252 3252 3252 3252

Notes: This table shows our baseline regressions with fewer controls. All columns include firm and industry-year
fixed effects. Columns 4–9 add country-year fixed effects. In Columns 7–9, the macroeconomic variables are the
normalized foreign variables as defined in the text. Significance levels at *10%, **5%, ***1%.

Table A.7: Auto90 innovations

Dependent variable Auto90

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.35∗∗∗ 2.07∗∗∗ 3.31∗∗∗ 1.71∗∗ 1.73∗ 2.82∗∗∗ 3.30∗∗∗ 3.88∗∗∗ 3.90∗∗∗

(0.66) (0.68) (0.79) (0.82) (0.89) (1.06) (1.13) (1.32) (1.45)
High-skill wage −1.96∗∗∗ −2.46∗∗∗ −0.92 −1.80∗∗ −1.75∗ −1.06 −3.80∗∗∗ −2.95∗∗ −3.45∗∗∗

(0.60) (0.65) (0.66) (0.81) (0.92) (0.86) (1.17) (1.30) (1.23)
GDP gap −3.61∗ −4.29∗∗ −1.20 3.77 3.84 5.66 −0.30 0.93 0.87

(2.09) (2.14) (2.24) (5.25) (5.33) (5.43) (3.26) (3.52) (3.69)
Labor productivity 1.15 −0.13 −1.35

(0.73) (1.30) (1.33)
GDP per capita −2.72∗∗ −2.72∗ −1.07

(1.06) (1.49) (1.56)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 72 196 72 196 72 196 71 905 71 905 71 905 71 905 71 905 71 905
Number of firms 4857 4857 4857 4854 4854 4854 4854 4854 4854

Notes: This table shows our baseline regression using a weaker measure of automation (auto90). All columns
include firm and industry-year fixed effects. Columns 4–9 add country-year fixed effects. In Columns 7–9, the
macroeconomic variables are the normalized foreign variables as defined in the text. Stock and spillover variables
are calculated with respect to the dependent variable (auto90). Standard errors are clustered at the firm-level
and reported in parentheses. Significance levels at *10%, **5%, ***1%.
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Table A.8: Effect of the inverse skill premium on auto95 innovations

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill / High-skill wages 2.51∗∗∗ 2.67∗∗∗ 2.51∗∗∗ 2.53∗∗∗ 2.39∗∗∗ 2.63∗∗∗ 4.38∗∗∗ 4.20∗∗∗ 4.36∗∗∗

(0.69) (0.69) (0.69) (0.88) (0.88) (0.88) (1.27) (1.24) (1.26)
GDP gap −4.06 −4.35∗ −4.08 4.67 5.03 5.39 −0.17 0.49 0.25

(2.58) (2.61) (2.60) (6.80) (6.75) (6.86) (4.61) (4.64) (4.69)
Labor productivity 1.03 −1.16 −0.58

(0.64) (1.10) (0.73)
GDP per capita 0.03 −1.62 −0.33

(0.71) (1.13) (0.89)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 48 091 48 091 48 091 47 741 47 741 47 741 47 741 47 741 47 741
Number of firms 3255 3255 3255 3252 3252 3252 3252 3252 3252

Notes: This table shows the effect of the skillpremium on automation innovations. All columns include firm and
industry-year fixed effects. Columns 4–9 add country-year fixed effects. Columns 7–9 compute the normalized
foreign (log) inverse skill premium as the difference between the normalized (log) foreign low-skill wages and the
normalized (log) foreign high-skill wages as defined in the text. In these columns, GDP gap, GDP per capita
and labor productivity also correspond to their normalized foreign values. Standard errors are clustered at the
firm-level and reported in parentheses. Significance levels at *10%, **5%, ***1%.

Table A.9: Additional regressions with non-automation patents

Dependent variable Pauto90 refined Pauto90 Pauto95

Dom. and Fgn. Fgn. Dom. and Fgn. Fgn. Dom. and Fgn. Fgn.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 0.97 1.17 2.05 0.72 0.32 0.98 0.97 0.48 1.56
(0.90) (1.21) (1.70) (0.59) (0.77) (1.21) (0.75) (0.99) (1.61)

High-skill wage −1.18 0.82 1.33 −0.20 −0.35 −0.61 −0.43 −0.45 −0.76
(0.85) (1.32) (1.93) (0.56) (0.86) (1.26) (0.73) (1.17) (1.71)

GDP gap −3.05 0.39 −2.47 −3.03∗∗ 1.35 0.36 −2.04 3.62 0.86
(2.13) (4.35) (3.31) (1.35) (3.39) (2.34) (1.57) (4.13) (2.85)

Labor productivity 1.42∗ −1.62 −3.01∗ −0.12 0.03 −0.88 −0.13 −0.59 −1.15
(0.80) (1.51) (1.67) (0.60) (0.96) (1.01) (0.70) (1.21) (1.34)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No Yes Yes No Yes Yes No Yes Yes

Observations 35 678 35 500 35 500 149 250 149 015 149 015 44 094 43 971 43 971
Number of firms 2399 2397 2397 9990 9987 9987 2951 2948 2948

Notes: This table presents additional regressions using non-automation innovations. In columns 1–3 the dependent
variable is refined pauto90 (non-auto90 machinery patents that list at least one 4-digit C/IPC code containing a 6-
digit code classified auto95), and the sample is restricted to the firms in the baseline auto95 regressions. In columns
4–6 the dependent variable is pauto90 (machinery patents excluding auto90) but the sample is unrestricted. In
columns 7–9 the dependent variable is pauto95 (machinery patents excluding auto95), and the sample is again
restricted to the firms in the baseline auto95 regression. All columns include firm and industry-year fixed effects,
Columns 2, 3, 5, 6, 8 and 9 add country-year fixed effects. In Columns 3, 6, and 9 the macroeconomic variables are
the normalized foreign variables as defined in the text. Stocks and spillovers are defined in terms of the respective
dependent variable. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels
at *10%, **5%, ***1%.
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Table A.10: Wages and the direction of innovation

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.12∗∗∗ 2.13∗∗∗ 2.01∗∗ 2.39∗∗ 2.40∗∗ 2.59∗∗ 4.81∗∗∗ 4.80∗∗∗ 5.06∗∗∗

(0.73) (0.73) (0.80) (0.98) (0.98) (1.04) (1.34) (1.34) (1.48)
High-skill wage −2.13∗∗∗ −2.14∗∗∗ −1.94∗∗∗ −2.11∗∗ −2.12∗∗ −2.23∗∗ −2.89∗∗ −2.92∗∗ −3.04∗∗

(0.66) (0.66) (0.72) (0.97) (0.98) (1.08) (1.32) (1.33) (1.52)
GDP gap −2.37 −2.37 −2.25 2.48 2.68 −0.81 3.78 3.69 5.01

(2.25) (2.27) (2.29) (5.54) (5.59) (5.30) (4.20) (4.20) (5.20)
Labor productivity 0.89 0.89 0.80 −1.44 −1.41 −1.42 −1.99 −1.94 −1.95

(0.84) (0.84) (0.93) (1.61) (1.61) (1.71) (1.40) (1.41) (1.56)
Arcsinh pauto90 0.51∗∗∗ 0.51∗∗∗ 0.51∗∗∗

(0.02) (0.02) (0.02)
Log pauto90 0.48∗∗∗ 1.00 0.48∗∗∗ 1.00 0.48∗∗∗ 1.00

(0.02) (0.02) (0.02)
Any pauto90 0.42∗∗∗ 0.09∗ 0.43∗∗∗ 0.10∗ 0.42∗∗∗ 0.09∗

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 48 091 48 091 48 091 47 741 47 741 47 741 47 741 47 741 47 741
Number of firms 3255 3255 3255 3252 3252 3252 3252 3252 3252

Notes: This table shows regressions with a control for non-automation machinery innovations (pauto90). Columns
1, 4, and 7 control for the arcsinh of pauto90 patent flow. Columns 2, 5, and 8 control for log pauto90 and a
dummy variable indicating at least 1 pauto90 innovation. Columns 3, 6, and 9 constrain the coefficient on log
pauto90 to 1. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at
*10%, **5%, ***1%.

Table A.11: Predicting weights using subsequent wages

Weight Foreign weight

(1) (2) (3) (4) (5) (6)

Growth in low-skill wages, 1995-2000 −0.14 −0.26 −0.13 −0.10 −0.31 −0.33
(0.12) (0.28) (0.29) (0.11) (0.26) (0.30)

Growth in high-skill wages, 1995-2000 0.13 0.01 0.20 0.23
(0.24) (0.27) (0.21) (0.24)

Patent weighted No No Yes No No Yes
Observations 133 455 133 455 133 455 130 200 130 200 130 200
Firms 3255 3255 3255 3255 3255 3255

Notes: This table shows OLS regressions of firm-level weights on country growth rates for low-skill and
high-skill wages between 1995 and 2000. Columns 3 and 6 weigh observations by the number of auto95
patents between 1997 and 2011. In columns 4–6, the dependent variable is the the foreign weight compo-
nent only. Standard errors are clustered at the country-level. Significance levels at *10%, **5%, ***1%.
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Table A.12: Alternative weights

Dependent variable Auto95

Weight robustness Pauto95 1971–1989 1985–1994 start 2000

Dom.
and fgn. Fgn. Dom.

and fgn. Fgn. Dom.
and fgn. Fgn. Dom.

and fgn. Fgn.

(1) (2) (3) (4) (5) (6) (7) (8)

Low-skill wage 2.60∗∗ 2.19∗ 2.86∗∗ 3.44∗∗ 5.52∗∗∗ 5.32∗∗∗ 5.15∗∗∗ 6.69∗∗∗

(1.17) (1.28) (1.16) (1.46) (1.71) (1.91) (1.51) (2.11)
High-skill wage −2.07∗ −2.39∗∗ −1.20 −2.03 −2.86∗ −3.39∗∗ −1.37 −2.99

(1.07) (1.21) (1.14) (1.62) (1.65) (1.69) (1.54) (2.04)
GDP gap −3.06 3.80 3.92 −0.84 7.15∗ 0.94 3.32 0.55

(5.70) (6.72) (6.62) (6.76) (4.08) (4.14) (4.82) (3.90)
Labor productivity −0.36 0.20 −3.13∗ 0.45 −2.65∗ −2.46 −3.90∗∗ −4.84∗∗∗

(1.63) (1.89) (1.77) (2.16) (1.54) (1.78) (1.61) (1.77)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 44 936 33 959 43 548 26 020 44 936 33 959 43 548 26 020
Number of firms 3075 2333 2968 2640 3075 2333 2968 2640

Notes: This table uses alternative weights to compute firm’s macroeconomic variables. In Columns 1–2 the
firm’s country weights are calculated using pauto95 patents (machinery patents excluding auto95). Columns
2–4 compute the weights over the period 1971–1989 and Columns 5–6 over the period 1985–1994. Columns 7–8
use the baseline pre-sample period of 1971–1994 to compute weights but restrict the regression sample to the
years 2000–2009. In columns 2, 4, 6, and 8 the macroeconmic variables are the normalized foreign variables as
described in the text. Standard errors are clustered at the firm-level and reported in parentheses. Significance
levels at *10%, **5%, ***1%.
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Table A.13: Horse-race regressions between 2 year lags and other lags / leads

Dependent variable Auto95

Macrovars lag j -6 -5 -4 -3 -2 -1 0 1 2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Domestic and Foreign
Low-skill wage (L2) 3.37∗∗∗ 2.68∗∗ 2.53∗∗ 2.51∗∗ 2.61∗∗ 8.14∗∗∗ 4.25∗∗ 3.37∗∗ 2.06

(1.21) (1.29) (1.25) (1.27) (1.14) (2.23) (1.91) (1.68) (1.72)
Low-skill wage Lj −0.62 −0.01 0.07 −0.05 −4.83∗∗ −1.03 −0.02 −0.21

(0.45) (0.52) (0.52) (0.65) (1.99) (1.65) (1.60) (1.70)
High-skill wage (L2) −3.19∗∗∗ −1.94∗ −2.43∗∗ −2.97∗∗ −2.04∗ −1.99 −0.86 −2.03 −1.52

(1.18) (1.08) (1.15) (1.38) (1.07) (1.95) (1.76) (1.83) (1.85)
High-skill wage Lj 0.56 −0.67 0.61 0.50 −0.49 −2.13∗ −1.16 0.02

(1.07) (1.26) (1.28) (1.54) (1.56) (1.28) (1.28) (1.61)

Observations 47 741 47 741 47 741 47 741 47 741 43 160 38 835 34 749 30 816
Number of firms 3252 3252 3252 3252 3252 3148 3050 2958 2862

Panel B. Foreign

Low-skill wage (L2) 5.69∗∗∗ 5.19∗∗∗ 5.13∗∗∗ 4.67∗∗∗ 5.32∗∗∗ 10.62∗∗∗ 8.19∗∗∗ 7.02∗∗∗ 5.00∗∗

(1.60) (1.65) (1.60) (1.69) (1.56) (2.84) (2.50) (2.44) (2.42)
Low-skill wage Lj −0.47 0.15 0.16 0.57 −4.92∗∗ −2.44 −1.37 −0.38

(0.57) (0.61) (0.64) (0.91) (2.37) (2.17) (2.32) (2.47)
High-skill wage (L2) −3.31∗∗ −2.20 −2.34 −1.53 −2.87∗ −2.62 −1.53 −2.76 −3.11

(1.65) (1.66) (1.73) (1.83) (1.47) (2.07) (1.89) (1.94) (2.30)
High-skill wage Lj 0.45 −1.24 −0.67 −1.76 −1.44 −3.61∗∗ −2.70 −0.20

(1.20) (1.49) (1.50) (1.76) (1.93) (1.74) (1.69) (2.02)

Observations 47 341 47 429 47 539 47 651 47 741 43 160 38 835 34 749 30 816
Number of firms 3241 3243 3246 3250 3252 3148 3050 2958 2862

GDP gap Yes Yes Yes Yes Yes Yes Yes Yes Yes
Labor productivity Yes Yes Yes Yes Yes Yes Yes Yes Yes
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table runs a horserace regressions between different lag of wages. The wages variables are included
twice: lagged by two periods (as in the baseline) and shifted as indicated by lag j in the header. All columns
include controls for labor productivity and the business cycle, firm and industry-year fixed effects, and country-
year fixed effects. In Panel B, the macroeconomic variables are the normalized foreign variables as defined in
the text. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at *10%,
**5%, ***1%.
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Table A.14: Predicted wages

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.45∗∗∗ 1.84∗∗ 2.47∗∗∗ 1.66∗ 1.55 1.66∗ 3.83∗∗∗ 4.24∗∗∗ 3.82∗∗∗

(0.81) (0.82) (0.82) (0.93) (1.02) (0.93) (1.30) (1.40) (1.30)
High-skill wage −2.78∗∗∗ −4.75∗∗∗ −2.82∗∗∗ −3.29∗∗∗ −3.59∗∗ −3.30∗∗∗ −4.51∗∗∗ −3.57∗∗ −4.50∗∗∗

(0.82) (1.07) (0.83) (1.03) (1.40) (1.03) (1.33) (1.52) (1.34)
GDP gap −4.34∗ −3.71 −4.39∗ 4.58 4.57 4.59 −0.28 0.56 −0.24

(2.60) (2.56) (2.60) (6.81) (6.82) (6.81) (4.55) (4.59) (4.59)
Labor productivity 2.86∗∗∗ 0.45 −1.55

(0.94) (1.56) (1.49)
GDP per capita 0.14 0.02 −0.02

(0.10) (0.12) (0.14)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 48 091 48 091 48 091 47 741 47 741 47 741 47 741 47 741 47 741
Number of firms 3255 3255 3255 3252 3252 3252 3252 3252 3252

Notes: This table uses predicted wages as main RHS variables. We estimate for each country an AR(1) process
with time trends for wages, labor productivity, and GDP per capita. We then use the estimated process to pre-
dict with the information available at time t-2 the average values between the years t+2 and t+7, which are
in turn the independent variables in these regressions. All columns include firm and industry-year fixed effects.
Columns 4–9 add country-year fixed effects. In Columns 7–9, the macroeconomic variables are the normalized
foreign variables as defined in the text. Standard errors are clustered at the firm-level and reported in parenthe-
ses. Significance levels at *10%, **5%, ***1%.

Table A.15: Addressing Nickell’s bias

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6)

Low-skill wage 2.67∗∗∗ 2.26∗∗∗ 2.70∗∗ 2.60∗∗ 4.83∗∗∗ 3.91∗∗∗

(0.79) (0.78) (1.06) (1.02) (1.45) (1.39)
High-skill wage −2.54∗∗∗ −1.14 −2.22∗∗ −1.74∗ −2.72∗ −2.16

(0.77) (0.79) (1.01) (1.00) (1.40) (1.46)
GDP gap −4.26 −2.93 4.83 6.15 1.67 0.70

(2.76) (3.45) (7.06) (7.31) (4.98) (5.24)
Labor productivity 0.84 0.47 −1.46 −1.14 −1.96 −0.94

(0.90) (0.98) (1.68) (1.44) (1.50) (1.49)

Stock automation No Yes No Yes No Yes
Stock other Yes Yes Yes Yes Yes Yes
Spillovers Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No Yes Yes Yes Yes
Estimator HHG BGVR HHG BGVR HHG BGVR

Observations 48 091 48 091 47 741 47 741 47 741 47 741
Number of firms 3255 3255 3252 3252 3252 3252

Notes: This table addresses potential Nickell’s bias. The coefficients are estimated with
conditional Poisson regressions fixed-effects (HHG) in columns 1, 3, and 5. In columns 2,
4, and 6, the coefficients are estimated with Poisson regressions where the firm fixed ef-
fects are replaced by the pre-sample mean, following Blundell, Griffith and Van Reenen
(1999, BGVR). All columns include firm and industry-year fixed effects. Columns 3–6
add country-year fixed effects. In Columns 5 and 6 the macroeconomic variables are
the normalized foreign variables as defined in the text. Standard errors are clustered at
the firm-level and reported in parentheses. Significance levels at *10%, **5%, ***1%.
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A.2 Appendix on the classification of automation patents

This Appendix provides additional information on our classification of automation patents

in machinery. First, we report details on our approach not contained in the main text in

Appendix A.2.1. Then, we show additional statistics at the technology category level in

Appendix A.2.2 and at the patent level in Appendix A.2.3. Appendix A.2.4 shows that

our classification is stable. Finally, Appendix A.2.5 gives the prevalence of automation

keywords for a few technology categories and examples of automation patents.

A.2.1 Additional details on our classification

We derived the exact list of keywords in Table 1 after experimenting extensively with

variations around them and looking at the resulting classification of technology cate-

gories and the associated patents. Relative to the original list of technologies given in

the Survey of Manufacturing Technologies (Doms, Dunne and Troske, 1997), we did not

include keywords related to information network, as these seem less related to the au-

tomation of the production process and the patents containing words such as “local area

network” do not appear related to automation. We also did not count all laser patents

as they are not all related to automation—but we obtain patents related to automation

using laser technologies thanks to our other keywords. Furthermore, the Y section of the

CPC classification is organized differently from the rest and is only designed to provide

additional information. As a result, we ignore Y codes.

As mentioned in the text, we focus on the technology fields: “machine tools”, “han-

dling”, “textile and paper machines”, and “other special machines” with a few adjust-

ments. First, we exclude F41 and F42, which correspond to weapons and ammunition

and are in “other special machines”. Moreover, we include B42C which corresponds

to machines for book production and B07C which corresponds to machines for postal

sorting as both correspond to equipment technologies and contain 6-digit codes with a

high prevalence of automation keywords. We further include the 6-digit codes G05B19

and G05B2219, which correspond to “programme-control systems” and contain many

computer numerically controlled machine tool patents without C/IPC codes from the

machine tools technology field. Finally, we include the 6-digit code B62D65 which deals

with engine manufacturing (though the rest of the B62D code deals with the vehicle

parts themselves). We verify that these additional codes do not affect our results.
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A.2.2 Statistics on the classification at the technology category level

Table A.16: Summary statistics on the prevalence of keywords

C/IPC6 C/IPC4 + (G05 or G06) C/IPC4 pairs

All Robot Automat* CNC Labor All Robot Automat* CNC Labor All Robot Automat* CNC Labor

Mean 0.21 0.04 0.11 0.02 0.06 0.53 0.15 0.32 0.11 0.09 0.18 0.04 0.09 0.02 0.02
SD 0.14 0.08 0.09 0.06 0.04 0.19 0.18 0.11 0.17 0.04 0.16 0.10 0.10 0.05 0.05
25th 0.10 0.01 0.04 0.00 0.03 0.40 0.07 0.27 0.01 0.07 0.08 0.01 0.02 0.00 0.00
50th 0.18 0.02 0.09 0.00 0.05 0.54 0.10 0.32 0.03 0.10 0.14 0.02 0.05 0.00 0.00
75th 0.27 0.05 0.15 0.02 0.08 0.64 0.16 0.40 0.15 0.11 0.23 0.04 0.11 0.01 0.01
90th 0.39 0.09 0.24 0.06 0.10 0.78 0.36 0.43 0.38 0.15 0.37 0.09 0.22 0.04 0.04
95th 0.48 0.14 0.29 0.13 0.13 0.86 0.44 0.45 0.55 0.16 0.52 0.15 0.31 0.08 0.08
995th 0.75 0.36 0.44 0.33 0.18 0.90 0.83 0.60 0.57 0.18 0.84 0.59 0.45 0.22 0.22

Notes: This table computes summary statistics on the share of patents with any automation keywords, robot keywords, automat* keywords, CNC keywords or labor
keywords for each type of technological categories (6-digit C/IPC codes, pairs of 4-digit C/IPC codes and combinations of 4-digit C/IPC codes with G05 or G06) within
machinery with at least 100 patents.

Table A.16 gives summary statistics on the prevalence of automation keywords across

technology categories in machinery, p(t), and the prevalence of the 4 main subgroups

of keywords: automat*, robot, numerical control (CNC) and labor. The 95th and 90th

percentile for the prevalence of automation keywords for 6-digit codes in machinery define

the thresholds used to categorize auto95 and auto90 patents. The distributions are quite

similar for the C/IPC 6-digit codes and for pairs of IPC 4-digit codes and shifted to the

right for combinations of C/IPC 4-digit codes with G05/G06 (see also the histograms

below). All prevalence measures are right-skewed, particularly for 6-digit codes and 4-

digit pairs, and even more for the robot and CNC patents. The automat* keywords are

more frequently used than the other keywords but the difference narrows in the right

tail: the 95th percentile for 6-digit codes is 29% for automat* and 14% and 13% for

robot and CNC. In fact, we chose the thresholds (5 and 2) used in the definition of the

automat* keywords so that the distributions of the prevalence measures are somewhat

comparable. The right tails of the distribution are similar for the prevalence of the robot

and CNC keywords.

Table A.17: Correlation between the main prevalence measures

Keywords Automat Robot CNC Labor

Automat 1.000
Robot 0.383 1.000
CNC 0.215 0.206 1.000
Labor 0.391 0.225 0.090 1.000

Notes: This table shows the correlation between
the prevalence of the main keywords, computed
for C/IPC 6-digit codes.

Table A.17 shows the correlation between the prevalence of the 4 mains keyword
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Figure A.6: Histograms of the prevalence of automation keywords.
Notes: We only include technology categories with at least 100 patents. The p90 and p95 lines, based on the 6-digit
distribution, mark the thresholds used to define auto90 and auto95 technology categories.

categories (automat*, robot, CNC and labour) for 6-digit C/IPC codes. These measures

are positively correlated with a coefficient above 0.2 in all cases except CNC and labour.

The broadest category, automat*, is the one with the highest correlation coefficients.

Figure A.6.a gives the histograms of the prevalence of automation keywords for ma-

chinery technology categories which are pairs of C/IPC 4-digit codes. The histograms

are very similar to those of C/IPC 6-digit codes in Figure 1. Figure A.6.b shows the

histograms for all combinations of machinery C/IPC 4-digit codes with G05 or G06.

The distribution is considerably shifted to the right. This is in line with expectations as

G05 proxies for control and G06 for algorithmic, two set of technologies which have been

used heavily in automation. There are, however, many fewer combination of these types,

and accordingly fewer patents can be characterized as automation innovations this way.

Overall, we classify 51 6-digit codes, 15 combination of 4-digit codes with GO5/GO6

and 63 pairs of 4-digit codes as auto95.

A.2.3 How are auto90 and auto95 patents identified?

Given that our classification procedure is relatively complex, we assess here which fea-

tures dominate. To do so, we focus on biadic patent families in 1997-2011, the set of

innovations which we use for our main regressions. There are 61,699 auto95 biadic patent

families and 106,538 auto90 ones. Table A.18.a gives the share of biadic patents which

are identified through a C/IPC 6-digit code, a pair of 4-digit codes or a combination of
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Table A.18: Identification of automation technology categories

(a) Type of C/IPC codes identifying
auto90 and auto95 patents

IPC codes / Patents Auto90 Auto95

Matches C/IPC6 82.1% 83.4%
Matches C/IPC4 pair 41.3% 41.8%
Matches C/IPC4 - G05/G06 combination 16.1% 22.7%

Notes: This table shows the share of innovations classified as au-
tomation innovation through 6-digit C/IPC codes, 4-digit C/IPC
pairs or 4-digit C/IPC - G05/G06 pairs. The statistics are com-
puted on biadic patents from 1997-2011.

(b) Auto patents and subcate-
gories of automation inno-
vations

Sources / Patents Auto80 Auto90 Auto95

Auto80 100.0% 100.0% 100.0%
Automat*80 36.4% 54.1% 72.2%
CNC80 5.0% 8.3% 13.2%
Robot80 12.1% 20.0% 34.3%
Auto90 60.7% 100.0% 100.0%
Automat*90 22.2% 36.5% 58.1%
CNC90 2.1% 3.4% 5.8%
Robot90 7.8% 12.8% 22.1%
Auto95 35.2% 57.9% 100.0%
Automat*95 3.3% 5.4% 9.3%
CNC95 1.5% 2.5% 4.4%
Robot95 6.5% 10.8% 18.6%

Notes: This table shows the share of innovations
classified as automation innovation through 6-digit
C/IPC codes, 4-digit C/IPC pairs or 4-digit C/IPC
- G05/G06 pairs. The statistics are computed on
biadic patents from 1997-2011.

4-digit code with G05/G06 (the shares sum up to more than 100% since patents may be

identified as automation innovations in several ways). 6-digit codes are the most relevant

since they identify more than 80% of either auto90 or auto95 patents alone.

Similarly, one may wonder which keywords are the most important in identifying

automation patents. To assess that, we define robot95 patents as patents which contain

a technology category with a prevalence of “robot” keywords above the threshold used

to define auto95 (namely 0.480). Therefore, those patents are a subset of the auto95

patents. We define CNC85, automat*95, robot90, CNC90, automat*90, robot80, CNC80

and automat*80 similarly. The other keywords are much less common. Table A.18.b

reports the share of auto95, auto90 and auto80 patents which belong to each subcategory.

“Automat*” is the most important keyword: 72% of auto95 patents are also automat*80

patents. “Robot” matters as well with 34% of auto95 patents which are robot80 and 19%

which are even robot95 (more than automat*95). CNC does not matter much: only 13%

of auto95 patents are CNC80.

A.2.4 Stability of the classification

To assess the stability of our classification, we redo exactly the same exercise but instead

of using EPO patents from 1978 to 2017, we restrict attention to EPO patents from the

first half of the sample (1978-1997), the second half (1998-2017) or the period of our
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Table A.19: Correlation between the prevalence of automation keywords for different periods

Prevalence of automation keywords by period

Keywords 1978-2017 1997-2011 1978-1997 1998-2017

1978-2017 1.000
1997-2011 0.960 1.000
1978-1997 0.913 0.858 1.000
1998-2017 0.973 0.981 0.849 1.000

Notes: Correlation between the prevalence of the main key-
words, computed for C/IPC 6-digit codes.

Table A.20: Confusion table for different classification periods

Classification
periods

First half
1978-1997

Second half
1998-2017

Regression period
1997-2011 Total

Yes No Yes No Yes No

Baseline
1978-2017

Yes 51 812 9887 55 820 5879 54 021 7678 61 699
No 7698 3 118 139 5041 3 120 796 5550 3 120 287 3 125 837

Total 59 510 3 128 026 60 861 3 126 675 59 571 3 127 965 3 187 536

Notes: This table classifies all biadic patent families from 1997-2011 as auto95 or not using EPO
patents from different time periods. Our baseline measure uses all patents from 1978-2017, while
the other measures use patents from the first half of the sample, the second half, or the regression
period time.

main regression analysis (1997-2011). There is a modest increase in the share of patents

with automation keywords within each technology category. The share of patents with

an automation keyword increases on average from 0.191 in the first half of the sample

to 0.216 in the second half. Nevertheless, the ranking of codes is remarkably stable as

shown in Table A.19 which reports the correlations of the prevalence measures for the

different time periods.

Further, focusing on the same set of biadic patent families in 1997-2011, Table A.20

shows confusion tables on the classification of patents as auto95 according to each of the

classification period. Regardless of the time period used, the set of automation patents

stays roughly the same. In particular, 87.6% of the baseline auto95 patents are still

auto95 if we run the classification over the years 1997-2011. This common set of patents

then represent 90.7% of all biadic patents classified as auto95 patents when using the

period 1997-2011 instead of the full sample.

A.2.5 Examples

To better illustrate our approach, we now give a few examples. First, Table A.21 shows

a few 6-digit C/IPC codes in machinery with their prevalence of automation keywords

p(t), their rank according to that measure and the prevalence of the most important sub-
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Table A.21: Examples of 6-digit C/IPC codes in machinery

Code Description # Patents Any Rank Robot Automat* CNC Labor

High Prevalence Codes
B25J5 Manipulators mounted on wheels or on carriages 504 0.91 1 0.87 0.27 0.01 0.10
B25J9 Programme-controlled manipulators 2809 0.86 4 0.78 0.29 0.29 0.08

B23Q15 Automatic control or regulation of feed movement,
cutting velocity or position of tool or work 591 0.79 7 0.09 0.36 0.36 0.06

A01J7 Accessories for milking machines or devices 395 0.77 9 0.62 0.52 0.52 0.10
G05B19 Programme-control systems 7133 0.70 17 0.22 0.39 0.39 0.08
B65G1 Storing articles, individually or in orderly

arrangement, in warehouses or magazines
1064 0.58 30 0.18 0.46 0.46 0.11

Low Prevalence Codes
B23P6 Restoring or reconditioning objects 613 0.26 267 0.07 0.06 0.05 0.09
A01B63 Lifting or adjusting devices or arrangements for

agricultural machines or implements
264 0.24 307 0.01 0.20 0.00 0.04

B66D3 Portable or mobile lifting or hauling appliances 215 0.13 678 0.02 0.07 0.00 0.06

Notes: This table reports the prevalence of automation keywords for examples of 6-digit C/IPC codes. ’Any’ is the share of patents
with any of the keywords. ’Rank’ is the rank of the code among 986 6-digit C/IPC codes in machinery with at least 100 patents.
’Robot’ , ’Automat*’, ’CNC’ and ’labor’ are the shares of patents with at least one keyword from these categories.

categories (automat*, robots, CNC, and labor). C/IPC codes associated with robotics

(B25J) have the highest prevalence numbers (91% for B25J5). There are also codes

associated with machine tools at the top of the distribution such as B23Q15 and codes

associated with devices used in the agricultural sector such as A01J7. The last three

C/IPC codes are examples with a low prevalence of automation keywords: machine-tools

and processes for repairing or reconditioning objects (B23P6), devices typically mounted

on tractors (A01B63), and lifting or hauling appliances such as hoists (B66D3), which do

not replace workers in new tasks. The table also shows that the different sub-measures

do not capture the same technologies: the robotic codes are ranked highly thanks to

the prevalence of “robot” keyword, B23Q15 thanks to its CNC prevalence, and B65G1

thanks to its “automat*” prevalence.

Figure A.7 shows an automated storage cabinet patent. We classify it as automation

because it contains the 6-digit code B65G 1 which has a high prevalence measure (0.58,

see Table A.21). This patent itself contains several keywords: a sentence with the words

“automatic” and “storing,” and another sentence with “robot”. Figure A.8 shows an

automation patent of a similar storage cabinet that belongs to the same C/IPC code but

does not contain any keywords and still describes a labor-saving innovation. Appendix

B.1 provides more examples.
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Figure A.7: Example of an automation patent
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Figure A.8: Example of an automation patent without keywords

A.2.6 Comparison with Mann and Püttmann (2021)

In this section, we compare our classification of automation patents with that of Mann

and Püttmann (2021, henceforth MP). We first show that our classifications are corre-

lated though ours is generally stricter than theirs. Then, we focus on outlier technologies

to understand where the differences come from.

We considered the 737,711 US machinery patents (according to our definition) of

MP and classified them as auto95 or not. We have a lower share of automation patents

(9.4% for auto95) than MP who have 29.8%. 70% of our auto95 patents are classified

as automation patents by MP (to analyze this number, it is useful to note that their

algorithm has a 17% false negative error rate on the training set), while we classify

22% of their automation patents as auto95 (see Table A.22). Therefore, our measure of

automation is generally stricter than theirs although it is not a perfect subset.

To get a sense of where our classifications differ the most, we look for outlier C/IPC

codes: we compute the difference between our prevalence measure and their share of

automation patents and look at the codes with the highest and lowest values (focusing

on codes with at least 100 patents in both their dataset and our EPO dataset). Table

A.23 lists the 6 codes with the largest positive difference among auto95 codes, which

correspond to codes that we more strongly identify as automation than MP do, and the
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Table A.22: Confusion table for MP’s and our classification

Machinery
patents

MP
Automation

Total
(%)

Yes (%) No (%)

DHOZ
Automation

Yes (%) 6.6 2.8 9.4
No (%) 23.2 67.4 90.6

Total (%) 29.8 70.2 100.0

Notes: This table reports the shares of machinery patents
that we (auto95) or Mann and Puettmann classify as au-
tomation. The sample is the set of US patents analyzed
by Mann and Puettmann.

6 codes with the largest (in absolute value) negative difference among non-auto90 codes,

which correspond to codes that MP more strongly identify as automation than we do.47

Three of the codes with a high difference belong to the manipulator subclass (B25J):

joints (B25J17), gripping heads (B25J15) and accessories of manipulators (B25J19). MP

classify a large share of these patents as automation but our prevalence number is even

higher. In their definition of automation patents, MP specify that they exclude innova-

tions which only refer to parts of a machine. This accounts for some of the patents in

these codes that they do not classify as automation. D01H9 corresponds to “arrange-

ments for replacing or removing bobbins, cores, receptacles, or completed packages at

paying-out or take-up stations” for textile machines. The share of automation patents

in MP is low at 38%, however their “raw share” (computed before they exclude certain

patents) is quite high at 71%. The excluded patents are not chemical or pharmaceu-

tical patents (as emphasized in the paper), but belong to the “other” technology field

(according to the Hall-Jaffe-Trajtenberg classification). The same situation occurs for

B65B2210 (which is about packaging machines) where their raw automation score is

actually at 63% and the patents excluded by MP are not chemical. B23P23 is a machine

tool subclass (specifically “Machines or arrangements of machines for performing spec-

ified combinations of different metal-working operations not covered by a single other

subclass”) which often involves CNC technologies.

The non-auto90 codes where MP find a high share of automation patents but for

which we have a comparatively low prevalence measure are of two types. Among the top

6, half are in the subclass B66B which corresponds to elevators and the other half are in

the subclass B41J which corresponds to typewriters and printing machines. In fact, the

47We identify outliers using our prevalence measure at the 6-digit level instead of our share of au-
tomation patents because by construction, our share of automation patents is 100% for all auto95 codes
so doing so would mask some of the underlying heterogeneity in our approaches. Table A.23 reports the
share of auto95 patents for each code for clarity. Codes with a low prevalence score still feature some
auto95 patents since a patent in a code with a low prevalence score can also have an auto95 code.
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Table A.23: Outliers 6-digit C/IPC codes in the comparison between our measure and MP’s
measure

Code Simplified description DHOZ
Keyword prevalence

DHOZ
Share auto95

MP
Share auto95

Positive outliers among auto95 codes
B25J17 Manipulators (joints) 0.84 1.00 0.54
D01H9 Textile machines (arrangements for replacing or removing various elements) 0.62 1.00 0.38
B65B2210 Manipulators (gripping heads) 0.48 1.00 0.25
B25J15 Metal working machines (specified combinations n.e.c) 0.71 1.00 0.50
B23P23 Manipulators (accessories) 0.67 1.00 0.46
B25J19 ‘B33Y70descr′ 0.89 1.00 0.69

Negative outliers among non-auto90 codes
B66B2201 Control systems of elevators 0.19 0.01 0.97
B66B3 Elevators (signalling and indicating device applications) 0.19 0.03 0.92
B41J23 Typerwriters / printing machines (power drive) 0.08 0.11 0.82
B66B1 Elevators (control systems) 0.16 0.02 0.89
B41J19 Typerwriters / printing machines (characters and line spacing mechanisms) 0.14 0.04 0.84
B41J5 Typerwriters / printing machines (controlling character selection) 0.21 0.09 0.91

Notes: This table lists the 6 auto95 codes with the largest positive difference between the prevalence of automation keywords based on our clas-
sification and the share of automation patents according to MP in their data; and the 6 non-auto90 codes with the largest negative difference
between the two measures. We additionaly list the share of patents classified auto95 according to our definition. We restrict attention to codes
with at least 100 patents in both datasets.

first 32 6-digit C/IPC codes belong to either B66B, B41J or the subclass B65H which

is about handling thin or filamentary material and also involves patents associated with

printing machines. It is not surprising that our classifications differ for these types of

innovation, since they do correspond to processes performed independently of human

action (in line with MP’s criterion); yet elevators and printers do not (or at least, no

longer) replace humans in existing tasks.

A.3 Reproducing ALM

We detail how we build the variables used in Section 2.7 and provide further results.

A.3.1 Data for the ALM exercise

Except for the automation and labor share measures, we take the variables directly

from ALM. We refer the reader to that paper for a detailed explanation. The task

measures are computed using the 1977 Dictionary of Occupational Titles (DOT) which

measure the tasks content of occupations. Occupations are then matched to industries

using the Census Integrated Public Micro Samples 1% extracts for 1960, 1970, and

1980 (IPUMS) and the CPS Merged Outgoing Rotation Group files for 1980, 1990,

and 1998 (MORG). The task change measure at the industry level reflects changes in

occupations holding the task content of each occupation constant, which ALM refer
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to as the extensive margin. Since tasks measures do not have a natural scale, ALM

convert them into percentile values corresponding to their rank in the 1960 distribution

of tasks across sectors. Therefore, the employment-weighted means of all tasks measure

across sectors in 1960 is 50. Our analysis starts in 1980 and drops a few sectors but

we keep the original ALM measure to facilitate comparison. As in ALM, the dependent

variable in Table 3 corresponds to 10 times the annualized change in industry’s tasks

inputs. Computerization ∆Cj is measured as the change per decade in the percentage of

industry workers using a computer at their jobs between 1984 and 1997 (estimated from

the October Current Population Survey supplements). For all regressions, observations

are weighed by the employment share in each sector.

To map patents to sectors we proceed in 4 steps. First, we build a mapping between

C/IPC 4-digit codes and the SIC sector that holds the patent (inventing sector). To do

that, we use Autor et al. (2020) who match 72% of domestic USPTO corporate patents

to firms in Compustat. This allows us to assign a 4-digit SIC sector to this subset of

patents. We match the USPTO patents to our patent family data from PATSTAT,

which we use to get the full set of C/IPC codes of the family. We then restrict attention

to granted patents in machinery applied for in the period 1976-2010. Each patent family

for which we have a sector creates a link between its C/IPC codes and that sector. We

weigh that link inversely to the number of 6-digit C/IPC codes in the patent. Counting

these connections allows us to build a weighted concordance table between 656 4-digit

C/IPC codes and 397 SIC codes (at different levels of aggregation), where the industries

refer to the industry of invention / manufacturing.

Second, to obtain the sector of use we rely on the 1997 “investment by using indus-

tries” table from the BEA (at the most disaggregated level, 180 commodities for 123

industries) which gives the flows of investment from commodities to industry available

at www.bea.gov/industry/capital-flow-data. Since machines are a capital input, this is

the appropriate equivalent of a standard IO table. Beforehand, we assign commodities

to industries using the 1997 make table at the detailed level from the BEA (available at

www.bea.gov/industry/historical-benchmark-input-output-tables) which gives the com-

modities produced by each industry.48 We dropped commodities associated with the

48Since our industries are in SIC 1987, we use concordance tables from the IO industries to NAICS
1997 provided by the BEA and then the weighed concordance table between NAICS 1997 and SIC 1987
from David Dorn’s website https://www.ddorn.net/data.htm which we complete with a concordance ta-
ble from the Census available here (www.census.gov/eos/www/naics/concordances/concordances.html).
To generate weights in the mapping between IO industries and NAICS 1997 and to dis-
aggregate the NAICS industries from the capital flow table, we use CBP data from 1998
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construction sector which are structures. Combining the two BEA tables, we obtain an

investment flow table at the industry level. We then combine that table with the table

mapping C/IPC to industry of manufacturing in order to obtain a mapping between

C/IPC codes and (932 SIC) industries of use.

Third, we allocate patent families fractionally to their C/IPC 4-digit codes and use

the previous table to assign them to an industry of use in the SIC classification (having

restricted attention to the C/IPC codes which appear in the table). Fourth, we use

a concordance table from the US Census Bureau from SIC industries to the Census

industries from 1990 (ind90) given by Scopp (2003) and ALM concordance table from

ind90 to consistent Census industries (ind6090) in order to allocate patents to their

industry of use in ALM’s classification.

Finally, for each sector, we compute the sums of automation patents and machin-

ery patents over the time period 1980-1998 and take the ratio to be our measure of

automation intensity.

To compute the share of automation patents in machinery according to the industry

of manufacturing / invention, we proceed as above but skip step 3 with the investment

flow table. Once patents are assigned to a SIC industry of manufacturing, we use the

same concordance tables to assign patents to an ind6090 industry of manufacturing.

We source our labor share data from the NBER manufacturing database and the

BEA. In the NBER manufacturing database, we calculate the labor share as total payroll

/ value-added and apply the concordance procedure described in step 3 above to go from

the 4-digit SIC industries to the consistent Census industries. The database is limited

to industries in the manufacturing sector. The BEA provides labor share data for more

aggregate SIC industries for the whole economy. We calculate the labor share as total

compensation / value-added and build a crosswalk from the 4-digit SIC level to these

more aggregate industries to map our patents.

Finally, in robustness checks, we also use an alternative mapping from patents to

sectors based on Lybbert and Zolas (2014) who provide a concordance table between IPC

codes at the 4-digit level and NAICS 1997 6-digit industry codes. The concordance table

is probabilistic (so that each code is associated with a sector with a certain probability).

The Lybbert and Zolas concordance tables are derived by matching patent texts with

industry descriptions, and as such they cannot a priori distinguish between sector of

use and industry of manufacturing. We checked, however, that patents associated with

(https://www.census.gov/data/datasets/1998/econ/cbp/1998-cpb.html).
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Figure A.9: Correlation between counts of auto95 and pauto90 patents at the sectoral level.
Notes: Panel (a) shows the log counts and Panel (b) shows counts scaled by capital purchases. Sectors are employment-
weighted.

“textile and paper machines” for instance are associated with the textile and paper

sectors and not with the equipment sector. Therefore, we think of this mapping as

rather corresponding to the using sector as well for our set of technologies. In addition,

it has the advantage of providing a much more direct mapping between C/IPC codes

and industries. We attribute patents to sectors fractionally in function of their C/IPC

codes. To assign patents to the consistent Census industry codes used by ALM, we first

use a Census concordance table (https://www.census.gov/topics/employment/industry-

occupation/guidance/code-lists.html) to go from NAICS 1997 to Census industry codes

1990, and then again use ALM concordance table.

A.3.2 Additional results

We now provide a few additional results which complements those in the main text. As

discussed in the text, machinery patents tend to be used by the same sectors whether

they are automation or non-automation patents. Figure A.9.a shows the (employment-

weighted) correlation between the log of auto95 patents and the log of pauto90 (i.e. non-

automation) patents across US sectors. The very strong correlation reflects our procedure

which allocates patents according to capital purchases by sector. To remove this partly
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Figure A.10: Scatter plots of changes in routine tasks, skill composition, and the labor share
versus the share of automation patents (auto95) in machinery patents used by
the industry in 1980-1998.

mechanical effect, Figure A.9.b shows the correlation between the ratio of auto95 patents

over capital purchases and pauto90 patents over capital purchases. There is still a

substantial correlation 0.76, showing that automation and non-automation patents tend

to be used by the same sectors even controlling for the amount of capital purchased.

Nevertheless, the sectoral variation is sufficient to enable us to look at the effect of the

share of automation among machinery patents across sectors.

Figure A.10 shows scatter plots of the change in routine tasks and skill composition

and the share of automation patents in 1980-1998. This figure shows the raw data

underlying the regressions in Columns (1), (3), (5), (7) and (9) of Table 3 – but the

figure does not control for computerization or the manufacturing dummy.

We carry a number of robustness checks in Table A.24. In Columns (1), (4), (7) and

(10) we compute the share of automation patents using only granted USPTO patents

which are also biadic. The results are similar to those in Table 3 though less precise for

the skill ratio. In Columns (2), (5), (8) and (11), we use the share of auto90 patents

in machinery to measure automation in the sector of use. The results are similar but

with smaller coefficients than in the regressions using auto95 (and less precise for the
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Table A.24: Robustness checks for the sectoral analysis

∆ Routine cognitive ∆ Routine manual ∆ High/low skill workers ∆ Labor Share (NBER)

Biadic Auto90
Lybbert

and Zolas Biadic Auto90
Lybbert

and Zolas Biadic Auto90
Lybbert

and Zolas Biadic Auto90
Lybbert

and Zolas
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Share automation −120.82∗∗∗ −69.67∗∗∗ −23.10∗∗∗ −102.55∗∗∗ −58.55∗∗∗ −13.48∗∗ 2.45 1.72 0.74∗∗ −1.19∗ −0.73∗ −0.27∗∗

(27.51) (20.22) (4.85) (35.70) (20.81) (5.68) (1.85) (1.18) (0.30) (0.62) (0.37) (0.11)
∆ Computer use
(1984-1997)

−21.12∗∗∗ −18.41∗∗ −13.45 −20.90∗∗∗ −18.58∗∗ −7.53 1.01∗∗∗ 0.96∗∗∗ 0.42 0.24∗ 0.26∗∗ 0.23
(7.29) (7.44) (8.93) (7.81) (7.81) (8.38) (0.26) (0.27) (0.28) (0.13) (0.13) (0.14)

Manufacturing −1.70∗ −1.20 −1.66 −0.07 0.34 −1.65∗ 0.03 0.01 0.02
(0.93) (1.02) (1.65) (0.94) (1.03) (0.96) (0.03) (0.03) (0.02)

R2 0.26 0.23 0.40 0.17 0.15 0.32 0.17 0.18 0.43 0.18 0.19 0.27
Industries 133 133 71 133 133 71 133 133 71 56 56 56

Notes: This table provides robustness checks for the effect of automation technologies on tasks, skill composition, and the labor-share. Columns 1, 4, 7, and 10 use
biadic auto95 patents: that is, patents applied for in at least two countries. Columns 2, 5, 8, and 11 define automation patents as auto90 patents. In both cases, patents
are allocated to their sector of use. Columns 3, 6, 9, and 12 use auto95 patents (as in the baseline) but allocate patents using a concordance table between C/IPC
codes and industries from Lybbert and Zolas (2014). The regressions are weighed by the mean industry share of total employment in FTEs in 1980 and 1998. Standard
errors are clustered at the level of industry groups that have the same automation share by construction and reported in parentheses. Significance levels at *10%,
**5%, ***1%.

skill ratio), in line with auto95 being a stricter measure of automation. In Columns

(3), (6), (9) and (12) we instead map patents to sectors based on a concordance table

from Lybbert and Zolas (2014) between 4-digit C/IPC codes and sectors. This method

has the advantage of mapping more directly patents to sectors but cannot distinguish

between manufacturing and using sectors. We still find that sectors with a high share of

automation patents experienced a decline in routine tasks. The coefficients are smaller,

but given that the standard deviation of the share of automation patents in that case is

0.086, the standardized coefficients are relatively similar.

Finally, in Table A.25, we look at the effect of the share of automation patents

on total employment and employment by skill type. Panel A looks at all industries.

As already seen in Table 3, automation is associated with a relative decrease in low-

skill employment compared to high-skill labor. The effect on low-skill employment is

negative but non-significant and the effect on total employment is closer to 0 (as there is

a positive non-significant effect on high-skill employment). The results are clearer in the

manufacturing sector, where an increase in automation is associated with a significant

decrease in both low-skill and total employment.

A.4 A Simple Model

We incorporate the business features described in 3.1 into a simple model built on Hé-

mous and Olsen (2022). A final good is produced with a continuum of intermediate in-

puts according to the Cobb-Douglas production function Y = exp
(∫ 1

0
ln y (i) di

)
, where

y(i) denotes the quantity of intermediate input i. The final good is the numéraire. Each
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Table A.25: Changes in employment and automation

∆ Log employment ∆ Log high-skilled ∆ Log low-skilled

(1) (2) (3) (4) (5) (6)

Panel A. All industries
Share automation
(using industry)

−2.31 −2.02 3.15 3.46 −4.44 −4.11
(3.45) (3.69) (3.42) (3.98) (3.98) (4.03)

Share automation
(inventing industry)

0.99 1.05 1.11∗

(0.62) (0.88) (0.61)
∆ Computer use
(1984-1997)

1.45∗ 1.56∗ 1.40∗∗ 1.52∗∗ 0.96 1.08
(0.80) (0.84) (0.68) (0.72) (0.82) (0.85)

R2 0.10 0.12 0.08 0.11 0.07 0.10
Mean dependent variable −2.50 −2.50 0.12 0.12 −2.27 −2.27
Industries 133 133 132 132 133 133

Panel B. Manufacturing industries

Share automation
(using industry)

−4.67∗∗∗ −4.67∗∗ −1.36 −2.41 −6.17∗∗∗ −5.90∗∗

(1.54) (2.29) (1.91) (2.66) (1.77) (2.42)
Share automation
(inventing industry)

0.01 1.06 −0.28
(1.34) (1.17) (1.38)

∆ Computer use
(1984-1997)

1.37∗∗∗ 1.37∗∗∗ 2.01∗∗∗ 1.97∗∗∗ 1.06∗∗ 1.07∗∗

(0.50) (0.51) (0.56) (0.57) (0.52) (0.52)

R2 0.14 0.14 0.15 0.16 0.14 0.14
Mean dependent variable −4.26 −4.26 0.14 0.14 −2.62 −2.62
Industries 58 58 57 57 58 58

Notes: This table shows the effect of automation technologies on employment. Each column repre-
sents a separate OLS regression of the change in log employment between 1980 and 1998 on the
share of automation patents in machinery, the annual percentage point change in industry com-
puter use during 1984-1997, and a constant. Panel A considers all industries. Panel B focuses on
industries in manufacturing. In columns 1–2 the dependent variable is the change in log employ-
ment, in columns 2–3 the change in log employment of high-skilled workers (college graduates), and
in columns 3–4 the change in log employment of low-skilled workers (others). The two automation
share measures correspond to a different mapping between C/IPC codes and industries. Using in-
dustries allocates patents to their sector of use while innovating industry – added in columns 2,4,
and 6 – allocates patents to their sector of invention. The regressions are weighed by the mean
industry share of total employment in FTEs in 1980 and 1998. Standard errors are clustered at
the level of industry groups that have the same automation share by construction and reported in
parentheses. Significance levels at *10%, **5%, ***1%.
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intermediate input is produced competitively with high-skill labor (h1,i and potentially

h2,i), low-skill labor, li, and potentially machines, xi, according to:

yi = h1−β
1,i

(
γ (i) li + α (i) νν(1− ν)1−νxνi h

1−ν
2,i

)β
. (6)

γ(i) is the productivity of low-skill workers, α(i) is an index equal to 0 for non-automated

intermediates and to 1 for automated intermediates and ν and β are parameters in

(0, 1). Machines are specific to the intermediate input i. If a machine is invented, it is

produced monopolistically 1 for 1 with the final good so that the monopolist charges a

price px(i) ≥ 1. At the beginning of the period, a potential innovator has the opportunity

to create a specific machine for each non-automated intermediate i. She does so with

probability λ if she spends θλψ+1Y/(ψ + 1) units of the final good with ψ > 0.

For an automated intermediate input (α(i) = 1), the downstream producer is indif-

ferent between using low-skill workers or machines together with high-skill workers in

production whenever wνHp
1−ν
x = wL/γ(i). Therefore, the machine producer is in Bertrand

competition with low-skill workers. As a machine costs 1, the machine producer charges a

price px(i) = max{(wL/γ(i))
1

1−ν w
− ν

1−ν
H , 1} such that machines are used if wL/γ(i) > wνH .

Since the final good is produced according to a Cobb-Douglas production function, we

get p(i)y(i) = Y for all intermediates. We can then derive the profits of the machine

producer as πAi = max
(

1− (γ(i)/wL)
1

1−ν w
ν

1−ν
H , 0

)
νβY .

In turn, at the beginning of the period, the potential innovator solves maxλπAi −
θλψ+1Y/(ψ + 1), giving the equilibrium innovation rate λ =

[
πAi /(θY )

]
1/ψ. As a result,

the number of automation innovations is equal to:

Aut =

(
νβ

θ

)1/ψ ∫ 1

0

(1− α (i))

[
max

((
1−

(
γ(i)

wL

) 1
1−ν

w
ν

1−ν
H

)
, 0

)]1/ψ

di.

This expression is increasing in the low-skill wage wL and decreasing in the high-skill

wage wH with a larger magnitude for a lower ψ. Intuitively, the incentive to replace

low-skill workers with machines (and high-skill workers) increases with low-skill wages,

leading to a higher demand for machines. The reverse holds for high-skill wages. An

upward shift in low-skill worker productivity, γ(i), also reduces the number of automation

innovations. Our empirical analysis aims at computing ∂ lnAut/∂ lnwL.

To contrast automation with other types of innovations, assume that the production
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of an intermediate takes place according to:

yi = (qimi)
δ h1−β−δ

1,i

(
γ (i) li + α (i) νν(1− ν)1−νxνi h

1−ν
2,i

)β
,

where mi denotes non-automation “Hicks” machines with quality qi. Hicks machines

are also produced 1 for 1 with the final good. Each period a potential innovator may

improve on the available quality of Hicks machines for intermediate i by a factor µ by

investing in R&D. If she spends θmλ
ψ+1
m Y/(ψ+1) units of the final good, she is successful

with probability λm. In that case, the innovator becomes the monopolistic provider of

Hicks machine i under the pressure of a competitive fringe which has access to the

previous technology, and the technology diffuses after one period. Otherwise, the good

is produced competitively.

The previous analysis on automation innovations remains identical. A successful

Hicks innovator can charge a mark-up µ leading to profits πHi = (1− µ−1) δY. The

innovation rate is then λm = [(1− µ−1) δ/θm]
1/ψ

, so that the number of Hicks innovations

is a constant given by λm. In contrast to automation innovations, the number of non-

automation innovations is independent of low- or high-skill wages.

A.5 Data Appendix for the main analysis

Here, we provide details on the data and the variable construction for our main analysis.

A.5.1 Macroeconomic variables

Our main source of macroeconomic variables is the World Input Output Database (WIOD)

from Timmer et al. (2015) which contains information on hourly wages (low-skill, middle-

skill and high-skill) for the manufacturing sector and the total economy from 1995 to

2009 for 40 countries. It also contains information on GDP deflators and PPIs, both for

manufacturing and for the whole economy. They employ the ISCED skill-classification,

where categories 1+2 denote low-skill (no high-school diploma in the US) 3+4 denote

middle-skill (high-school but not completed college) and 5+6 denote high-skill (college

and above). Switzerland is not included in the WIOD database and we use data on

skill-dependent wages, productivity growth and price deflators obtained directly from

Federal Statistical Office of Switzerland.

We add data from UNSTAT on exchange rates and GDP (and add Taiwan from

the Taiwanese Statistical office). We calculate the GDP gap as the deviations of log
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GDP from HP-filtered log GDP using a smoothing parameter of 6.25. To compute the

offshoring variable we follow Timmer et al. (2014) and compute the share of foreign

value added in manufacturing from the WIOD 2013 (except for Switzerland where we

use the 2016 release and assign to the years 1995-1999 the same value as in 2000). For

the nominal interest rate, we use the yield on 10-year government bonds with data from

the OECD for AT AU BE CA CH DE DK ES FI FR GB IE IT JP NL PT SE US and

from the IMF for KR GR LU.

The primary data source for the hourly minimum wage data is OECD Statistics.49 For

the US, we use data from FRED for state minimum wages and calculate the nation-level

minimum wage as the weighed average of the state-by-state maximum of state minimum

and federal minimum wages, where the weight is the manufacturing employment in

a given state. Further, the UK did not have an official minimum wage until 1999.

Before 1993, wage councils set minimum wages in various industries (see Dickens, Machin

and Manning, 1999). We compute an employment-weighed industry average across

manufacturing industries and use the 1993 nominal value for the four years in our sample

(1995-1998) with no minimum wage. Finally, Germany did not have a minimum wage

during the time period we study. Instead, we follow Dolado et al. (1996) and use the

collectively bargained minimum wages in manufacturing which effectively constitute law

once they have been implemented. These data come from personal correspondence with

Sabine Lenz at the Statistical Agency of Germany.

Table A.26 shows that low-skill and high-skill wages differ considerably across coun-

tries and that the skill premium also varies for countries of similar development level.

For instance, between 1995 and 2009, the skill premium in the United States rose from

2.46 to 3.02 but slightly declined in Belgium from 1.56 to 1.46.

A.5.2 Merging Orbis firms

For our analysis, we need to decide the level at which R&D decision are undertaken.

Orbis IP links patent data to companies. For companies in the same business group,

R&D decisions could happen at the group level, though treating a group as one agent is

49Not all countries have government-imposed hourly minimum wages. Spain, for instance, had a
monthly minimum wage of 728 euros in 2009. To convert this into hourly wage we note that Spain has
14“monthly”payments a year. Further, workers have 6 weeks off and the standard work week is 38 hours.
Consequently we calculate the hourly minimum wages as monthly minimum wage×14/ [(52− 6)× 38],
which in 2009 is 5.83 euros per hour. We perform similar calculations, depending on individual work
conditions, for other countries with minimum wages that are not stated per hour: Belgium, Brazil,
Israel, Mexico, Netherlands, Poland and Portugal.
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Table A.26: Low-skill wages and the skill premium in manufacturing for selected countries

Country Low-skill wages
(1995$)

High-skill wages
(1995$)

Skill-premium
(HSW/LSW)

1995 2009 1995 2009 1995 2009

India 0.19 0.28 0.89 1.38 4.79 4.98
Mexico 0.89 0.61 3.46 2.56 3.90 4.21
Bulgaria 1.29 0.71 4.27 1.60 3.32 2.25
United States 11.57 13.67 28.42 41.23 2.46 3.02
Belgium 29.50 41.89 45.98 61.24 1.56 1.46
Sweden 19.92 42.16 34.44 55.92 1.73 1.33
Finland 23.41 43.63 28.10 63.71 1.20 1.46

Notes: Wages data, taken from WIOD. The table shows manufacturing
low-skill and high-skill wages (technically labor costs) deflated by (man-
ufacturing) PPI and converted to USD using average 1995 exchange
rates. Skill-premium is the ratio of high-skill to low-skill wages. The
table shows the three countries with the lowest low-skill wages in 2009,
the three with the highest and the US.

often too aggressive (as subsidiaries might be in different sectors). Therefore, for firms

within the same business group, we normalize company names by removing non-firm

specific words such as country names or legal entity types and then merge firms with the

same normalized name. All other firms are treated as separate entities. E.g., Siemens

S.A., Siemens Ltd. or Belgian Siemens S.A. are merged, but Primetals Technologies

Germany Gmbh which belongs to the same group remains a separate entity.

A.5.3 Firm-level patent weights

We give further details on the firm level patent weights. As mentioned in the text, we

only count patents in machinery because some of the biggest innovators in automation

technologies are large firms which produce a wide array of products with different spe-

cialization patterns across industries. Further, we exclude firms which have more than

half of their patents in countries for which we do not have wage information.

In Europe, firms can apply both at national patent offices and at the EPO, in which

case they still need to pay a fee for each country where they seek protection. We count a

patent as being protected in a given European country if it is applied for either directly

in the national office or through the EPO. In addition, we take the following steps in

order to deal with EP patents. We assign EP patents to countries when they enter into

the national phase. A firm’s untransferred EP patents are assigned using information

on where that firm previously transferred its EP patents. If a firm does not have any

already transferred EP patents, we assign the patent based on a firm’s direct patenting

history in EPO countries. Untransferred EP patents that are still left are assigned to

countries based on the EPO-wide distribution of transfers. We also drop a firm if more

than half of its patents are EP patents assigned using the EPO-wide distribution.
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Finally, as mentioned in the text, we only count patents in families with at least one

(non self-) citation. Including all patents generally increases the weight of the country

with the most patents, in line with the finding that poor quality patents tend to be

protected in fewer countries. However, further increasing the threshold from 1 to more

citations does not significantly change the distribution of weights.

A.6 Additional results and robustness checks for the main anal-

ysis

This Appendix presents robustness checks linked to our shift-share set-up (Appendix

A.6.1), other robustness checks (Appendix A.6.2), details on the comparison of our

estimates with estimates in the literature found in Section 4.4 (Appendix A.6.3), and

finally details on the simulation exercise presented in Section 4.4 (Appendix A.6.4).

A.6.1 Shift-share analysis

We present a number of additional results related to our shift-share set-up. We first

do a “shock-level” analysis as recommended by BHJ, then we show that our results do

not depend on a single country and include additional shock-level controls, finally, we

address Borusyak and Hull (2021)’s concern regarding the use of a nonlinear shift-share.

Shock-level regressions. BHJ show that identification in a shift-share setting can

be obtained from conditionally randomly allocated shocks. Key to their argument is an

equivalence result between what in our context would be a linear firm-level regression and

a linear regression run at the level of the shocks (country-year). They advise practitioners

to run the shock-level regression and to provide several statistics showing that there are

enough variations in the shocks, that there are sufficiently many shocks, and how the

shocks correlate with other variables.

To follow their approach we need to turn to a linear setting. To do that, we first

replace our dependent variables which are defined as log of averages with average of

logs. In addition, it is easier to map our analysis with theirs if we consider a single

shock. Therefore, given the previous results showing that low- and high- skill wages

often have coefficients of opposite magnitude, we directly look at the effect of the inverse

skill premium. We define it here as:

ISPi,t ≡
∑
c

κi,c ln

(
wL,c,t
wH,c,t

)
. (7)
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Table A.27: From firm-level to shock level regressions

Dependent variable Auto95

Firm-level Country-level

(1) (2) (3) (4) (5)

Low-skill / High-skill wages 2.49∗∗∗ 0.40∗∗∗ 0.40∗∗∗ 0.33∗∗ 0.37∗∗∗

(0.86) (0.15) (0.07) (0.16) (0.07)
Labor productivity −0.31

(0.50)
GDP gap −0.32

(1.82)

Estimator Poisson Linear (arcsinh) Linear (arcsinh) Linear (arcsinh) Linear (arcsinh)
Stocks and spillovers Yes Yes Yes Yes No
Firm fixed effects Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes

Observations 47 741 48 780 615 615 615
Firms / Countries 3252 3252 41 41 41

Notes: This table reports shock-level equivalent regressions. The coefficients are estimated with conditional Poisson
fixed effect regressions (HHG) in column 1 and OLS in columns 2–5. The dependent variable in columns 2–5 is the
arcsinh transformation of auto95 innovations. Standard errors are reported in parentheses. Standard errors are clus-
tered at the firm-level in columns 1 and 2 and country-level clustered in columns 3–5. Columns 3–5 run equivalent
shock-level regressions following Borusyak, Hull and Jaravel (2022, BHJ) (see text for details). All regresions include
firm fixed effects, industry-year fixed effects and country-year fixed effects. Significance levels at *10%, **5%, ***1%.

We also define the other macro variables (GDP per capita, labor productivity, etc) as

average of logs. Second, we switch from a Poisson estimator to a linear one where we use

arcsinh of the count of patents as a dependent variables (the arcsinh is approximately

linear for low values and approximately log for higher values which allows us to deal

with 0s). That is we replace (4) with:

arcsinh (PATAut,i,t) (8)

=
βISP ISPL,i,t−2 + βXXi,t−2 + βKa lnKAut,i,t−2 + βKo lnKother,i,t−2

+βSa lnSPILLAut,i,t−2 + βSo lnSPILLother,i,t−2 + δi + δj,t + δc,t + εi,t
.

Finally, we focus this analysis on total wages (with country-year fixed effects) since this

set-up is more easily transcribed in the BHJ framework.

Table A.27 shows the results. Columns (1) and (2) report regressions at the firm-level.

In Column (1), we only replace the previous definition of the inverse skill premium (the

difference between the log average of low- and high-skill wages) with that of equation (7).

We control for firm, industry-year and country-year fixed effects, stocks and spillovers

but not for any other macro variables in order to focus on the direct effect of the shock

in consideration. We obtain a coefficient much in line with those of Table A.8. Column

(2) runs a linear regression at the firm level as in (8). We obtain a similar result – the

magnitude is smaller as the range of variations for arcsinh is smaller than for log.

Column (3) follows the BHJ approach and runs a shock-level regression. That is,
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Figure A.11: Bin-scatter plot of the shock-level regression.
Notes: This figure shows bin-scatter plot regressions of automation on the inverse skill premium. We residualize both
arcsinh(auto95) and the inverse skill premium on firm, industry-year and country-year fixed effects and on stocks and
spillover variables. We then compute weighted average of the residuals at the shock (i.e. country-year) level following
BHJ. We then group observation in 100 bins of the inverse skill premium.

we first residualize our automation measure on our controls (fixed effects, stocks and

spillovers) and similarly residualize the inverse skill premium measure. We then compute

a weighted average of the residualized automation measure at the country-year level,

where, for each country, we weigh each firm-year observation by the firm-country weight

κi,c. We then run a linear regression of that average measure of automation on the inverse

skill premium at the country-year level. Each country-year observation is weighed by

its average weight at the firm level. As demonstrated by BHJ, we get exactly the

same coefficient. Column (4) adds controls for labor productivity in manufacturing and

Column (5) removes the controls for stocks and spillovers so that the only controls are

the fixed effects. While the original regression looks at the effect of a weighted average

of wages on firms’ innovations, this “shock-level” regression inverts the relationship and

looks at the effect of wages on a weighted average of firms’ innovations. It is important

to realize that this does not mean that our original shift-share approach would simply

mean re-weighing firm-level variables to run a country-level regression. Our measure

of automation innovation arcsinh (PATAut,i,t) is first residualized on country-year fixed

effects, so that we remove the average contribution of domestic firms to automation

innovation when we run the shock level regression.50

50As already mentioned, we run this analysis at the level of the inverse skill premium because this
allows us to keep track of only one shock. In addition, regressions with arcsinh and separate low- and
high- skill wages do not show a significant effect for low-skill wages when we use the full sample. This
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Table A.28: Shock-level summary statistics

(1) (2) (3) (4)

Mean -0.78 0 0 0
Standard deviation (%) 36.4 2.1 0.9 1.0
Interquartile range (%) 55.7 2.9 1.0 1.0
Residualizing on . . .
F fixed effect – Yes Yes Yes
IY+CY fixed effects – – Yes Yes
Stocks/Spillovers – – – Yes

Notes: This table reports summary statistics on the log inverse skill premium
weighted by the average country weight in our regression sample as in Borusyak,
Hull and Jaravel (2022). The log inverse skill premium is residualized on firm
fixed effects (Columns 2, 3 and 4), industry-year and country-year fixed effects
(Columns 3 and 4) and stocks and spillovers (Column 4).

To unpack our regression results, Figure A.11 shows a bin-scatter plot of the residu-

alized measures of automation and the inverse skill premium at the country-year level.

The figure corresponds to the regression of Column (5) in Table A.27 which only controls

for fixed effects. We group observations in 100 bins of equal weights. The overall rela-

tionship between automation and the inverse skill-premium does not seem to be driven

by outliers or specific parts of the inverse skill premium distribution.

Shock-level summary statistics. Table A.28 reports summary statistics on the

shock-level regressions. The standard-deviation of the shock, namely the log inverse

skill premium residualized on firm, industry-year and country-year fixed effects is 0.9%.

This is a significant amount of variation given that the standard deviation of the log

inverse skill premium residualized only on firm fixed effects (i.e. only taking away level

differences across countries) is 2.1% (see also the distribution in Figure A.11 and Table

A.5).

Table 4 reports that the HHI of weights are 0.13 for total weights and 0.09 for foreign

weights at the country level and therefore 0.009 and 0.006 at the country-year level.

The “true” level of variation depends on how much variation there actually is in the time

dimension for a given country. To assess this, Figure 3.c shows the evolution of the inverse

skill premium for the 6 countries with the largest average weights residualized on country

and year fixed effects. Figure A.12 does the same thing but residualizes the log inverse

skill premium on the full set of fixed effects, stocks and spillovers (i.e. as in Column

3 of Table A.27). The two figures look overall similar: there is a significant amount

of variation both across and within countries. Of course, the inverse skill premium is

correlated from year to year, but after a few years, the correlation is much weaker. We

is due to the difference in functional forms between the arcsinh and log. We recover our original result
when we focus on firms with at least 2 patents over the full time period. This result is exactly in line
with our long-difference regressions that also use arcsinh (see Appendix Table A.35).
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Figure A.12: Residualized inverse skill premium in the 6 most important countries.
Notes: This figure reports our identifying shocks, namely the log inverse skill premium residualized on firm fixed effects,
industry-year and country-year fixed effects, stocks and spillovers variable and aggregated at the country level following
BHJ’s methodology.

find no correlation between the log skill premium and its fifth lag, so loosely speaking

one may consider that we have at least 3 “separate observations” for each country.

Shock-level balance tests. In Table A.29, we look at the balance of our shocks

against observables (offshoring is defined below). We regress the macro variables on the

log inverse skill premium at the country-year level. All variables are residualized on our

full set of fixed effects, stocks and spillovers, and observations are weighted following the

BHJ procedure. The only macro variables that are significantly correlated with the skill

premium are the recent innovation variables (there is also a significant coefficient for low-

skill weighted manufacturing size but the effect is small). More automation innovations

are associated with a higher skill premium as one would expect. This is also true for all

other innovations – which include non machinery innovations such as innovations in IT,

for instance. Table 7 shows that controlling for recent innovations does not affect the

effect of wages on automation innovations in our central regressions.

Excluding one country at the time. Next, we check whether our results are

driven by a specific country. We go back to our original firm-level Poisson regressions.

We successively remove the six largest countries by average weight (US, JP, DE, GB,

FR, IT, and ES). Excluding a country means that we treat it like the home country

when computing normalized foreign wages. We control for the weight of the excluded

country times a year dummy. Table A.30 reports the results (with foreign wages). The

coefficient on low-skill wages always remains positive and significant.51

51Goldsmith-Pinkham, Sorkin and Swift (2020) suggest carrying out a similar exercise by excluding
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Table A.29: Shock balance tests

Estimate (SE)
(1) (2)

GDP Gap 0.00 (0.01)
Labor Productivity −0.23 (0.17)
GDP per capita 0.04 (0.19)
Manufacturing size −0.07 (0.10)
Manufacturing size
(low-skill weighted) −0.21∗ (0.12)
Offshoring 0.01 (0.03)
Recent auto95 innovation −1.00∗∗∗ (0.39)
Recent other innovation −1.34∗∗ (0.67)

Stocks and spillovers Yes
Fixed effects F+IY+CY
Number of country-years 615

Notes: This table reports coefficients from sep-
arate regressions of country-level observables
on the log inverse skill premium. The respec-
tive independent variables are residualized on
firm, industry-year, and country-year fixed ef-
fects. Standard errors are reported in Column 2
and clustered at the country-level. Significance
levels at *10%, **5%, ***1%.

Table A.30: Excluding one country at the time

Auto95

Excluded country None US DE JP GB FR IT ES
Average weight 0.21 0.20 0.17 0.09 0.09 0.03 0.03

(0) (1) (2) (3) (4) (5) (6) (7)

Foreign:
Low-skill wage 5.32∗∗∗ 5.75∗∗∗ 3.84∗∗∗ 3.67∗∗∗ 4.95∗∗∗ 3.62∗∗ 5.53∗∗∗ 5.10∗∗∗

(1.56) (1.70) (1.40) (1.34) (1.34) (1.50) (1.48) (1.53)
High-skill wage −2.87∗ −2.55∗ −1.74 −1.58 −0.82 −2.16 −4.61∗∗ −2.46

(1.47) (1.46) (1.31) (1.31) (1.35) (1.33) (1.92) (1.50)
GDP gap 2.28 2.23 3.33 2.55 3.09 1.91 1.98 1.97

(4.92) (5.13) (5.63) (3.96) (4.90) (5.06) (5.22) (4.98)
Labor productivity −2.57 −3.99∗∗ −2.56∗ −1.76 −3.61∗∗ −1.87 −1.15 −2.75∗

(1.60) (1.68) (1.38) (1.49) (1.60) (1.49) (1.65) (1.58)

Excluded country weight×year dummy No Yes Yes Yes Yes Yes Yes Yes
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 47 741 46 984 47 272 47 562 47 333 47 681 47 606 47 670
Number of firms 3252 3200 3218 3240 3225 3248 3243 3247

Notes: This table excludes one country at the time. Column 0 reproduces the baseline regression with normalized
foreign wages. Columns 1–7 exclude the country in the column header in addition to the domestic country when
computing the normalized foreign macroeconomic variables. Additionally, columns 1–7 control for the weight of the
excluded country times year dummies. The average weight in the header reports the average country weight for the
firms in the sample of column 1. All columns include firm, industry-year and country-year fixed effects. Standard
errors are clustered at the firm-level and reported in parentheses. Significance levels at *10%, **5%, ***1%.

Additional controls. BHJ also recommend considering other shock-level variables

countries with a large Rotemberg weight. Rotemberg weights require a linear shift-share instrument.
When wages are computed as average of logs, the six countries with the largest Rotemberg weights are
the UK, FR, SE, DE, US, and BE. Our results are also robust to excluding Belgium and Sweden.
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Table A.31: Including additional controls

Dependent variable Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.75∗∗∗ 2.90∗∗∗ 2.70∗∗∗ 3.09∗∗∗ 2.56∗∗ 2.48∗∗ 5.22∗∗∗ 5.30∗∗∗ 6.95∗∗∗

(0.86) (0.88) (0.92) (1.17) (1.15) (1.18) (1.52) (1.55) (1.87)
High-skill wage −2.37∗∗∗ −2.44∗∗∗ −3.06∗∗∗ −1.24 −1.86∗ −2.25∗ −2.93∗∗ −2.69∗ −2.90∗

(0.74) (0.80) (0.92) (1.00) (1.06) (1.15) (1.46) (1.45) (1.73)
GDP gap −4.96∗ −3.15 −4.08 5.57 6.07 5.21 2.96 2.94 3.50

(2.76) (2.75) (2.70) (6.90) (7.02) (6.87) (5.33) (4.88) (5.45)
Labor productivity 0.70 0.49 1.06 −2.89∗ −1.62 −1.58 −2.14 −2.80∗ −3.72∗∗

(0.89) (0.98) (0.92) (1.69) (1.78) (1.78) (1.55) (1.59) (1.73)
Offshoring 4.15 11.62∗∗ −1.88

(2.62) (5.45) (4.53)
Long-term interest rate −0.05 0.09 −0.03

(0.07) (0.11) (0.06)
Low-skill wage (iw) −0.14 −0.00 0.05

(0.45) (0.46) (0.54)
High-skill wage (iw) 0.45 0.25 −0.23

(0.39) (0.37) (0.46)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 48 091 47 670 47 329 47 741 47 446 46 981 47 741 47 348 35 485
Number of firms 3255 3228 3204 3252 3228 3200 3252 3224 2429

Notes: This table tests three alternative explanations. Offshoring denotes the log weighted averages of the share
of foreign value added in gross value added in manufacutring. Long-term interest rate denotes the real yield
on 10-year government bonds. Low-skill wages (iw) and high-skill wages (iw) compute log weighted averages of
wages in the countries where the firm’s inventors are located. All columns include firm and industry-year fixed
effects. Columns 4–9 add country-year fixed effects. Columns 7–9 use the normalized foreign variables as defined
in the text. Low-skill wage (iw) and high-skill wage (iw) in Column 9 are still the total wages. Normalized off-
shoring is defined similarly to normalized foreign low-skill wages; normalized foreign long-term interest rate is
defined like normalized foreign GDP gap. Standard errors are clustered at firm-level and reported in parentheses.
Significance levels at *10%, **5%, ***1%.

that may bias results. Increased offshoring in the foreign country might reduce both

wages and the willingness to buy automation technology. We measure offshoring at the

country level as the share of foreign value-added in the gross value-added in manufactur-

ing (Timmer et al., 2014) and compute it at the firm-level as the other macro variables.

The real interest rate may be an important determinant of the cost of purchasing equip-

ment and we control for the real yield on 10-year government bonds.52 Labor costs

could affect inventing firms through their R&D costs. We re-build our firm-specific wage

variables using weights based on the location of inventors instead of patent offices and

control for these inventor-location-weighted wages. Table A.31 reports the results, our

coefficients on total and foreign low-skill wages remain largely stable.

Borusyak and Hull (2021). Borusyak and Hull (2021) show that a regression

52We obtain data for 21 countries (AT AU BE CA CH DE DK ES FI FR GB GR IE IT JP KR LU
NL PT SE US) from the IMF and the OECD and deflate nominal yields using the manufacturing PPI.
We compute the variable at the firm-level using patent weights for these 21 countries only.
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using a logged shift-share measure may be biased due to the non-linearity of the log

function. Table A.27 already shows firm-level regressions with a linear independent

variable (the average of log inverse skill premium). Table A.32 implements Borusyak and

Hull (2021)’s suggested correction in our default specification to remove the potential

bias.53 The results remain very similar.

Table A.32: Borusyak and Hull (2021)’s correction

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.35∗∗∗ 2.21∗∗∗ 3.83∗∗∗ 1.61∗ 2.21∗∗ 4.24∗∗∗ 5.18∗∗∗ 5.33∗∗∗ 3.43∗∗

(0.77) (0.84) (0.97) (0.95) (1.10) (1.27) (1.42) (1.51) (1.67)
High-skill wage −1.99∗∗∗ −2.22∗∗∗ −0.80 −2.73∗∗∗ −1.41 −1.49 −3.72∗∗∗ −3.53∗∗ −3.78∗∗∗

(0.71) (0.77) (0.81) (0.96) (1.06) (1.05) (1.26) (1.58) (1.25)

GDP gap Yes Yes Yes Yes Yes Yes Yes Yes Yes
Labor productivity No Yes No No Yes No No Yes No
GDP per capita No No Yes No No Yes No No Yes

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 48 091 48 091 48 091 47 741 47 741 47 741 47 741 47 741 47 741
Number of firms 3255 3255 3255 3252 3252 3252 3252 3252 3252

Notes: This table replicates the baseline regression applying the correction suggested by Borusyak and Hull
(2021). We sample with replacement the entire path of log macroeconomic variables (wages, labor productivity,
GDP per capita, and GDP gap) for each firm with 4000 draws, take the average value, and subtract it from the
original macroeconomic variable. Significance levels at *10%, **5%, ***1%.

A.6.2 Other results and robustness checks

This Appendix presents a number of additional results. We first include additional con-

trol variables, second we consider alternative specifications (long-differences and different

clustering) and third we look at alternative measures of firm-level wages and innovation.

Middle-skill wages. Lewis (2011) focuses on the effect of the low- to middle-skill

ratio on the adoption of automation technologies. Table A.33 looks at the effect of

middle-skill wages on automation innovations. A clear pattern emerges: low-skill wages

always have a positive and significant effect, while middle-skill wages have a positive

effect in regressions without low-skill wages but a negative effect otherwise. This is also

in line with Graetz and Michaels (2018) who find that robots decrease the share of low-

skill labor and increase the share of both high and middle-skill labor (and in contrast

53The correction consists in rescaling the original variables as follows: We sample with replacement
the entire path of macroeconomic variables for each firm. We take the average across many draws and
remove it from the original macroeconomic variables.
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Table A.33: Middle-skill wages

Dependent variable Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 5.88∗∗∗ 4.18∗∗∗ 5.72∗∗∗ 4.44∗∗ 8.89∗∗∗ 7.83∗∗

(1.44) (1.36) (2.08) (2.10) (3.13) (3.15)
Middle-skill wage −5.01∗∗∗ 2.78∗∗∗ −2.08 −4.45∗ 2.80∗ −2.54 −5.63 5.02∗∗∗ −3.52

(1.53) (1.06) (1.63) (2.37) (1.44) (2.59) (3.51) (1.86) (3.70)
High-skill wage −3.06∗∗∗ −2.14∗∗ −2.56∗∗ −1.50 −3.39∗∗ −2.16

(0.92) (0.88) (1.17) (1.18) (1.57) (1.54)
GDP gap −3.35 −4.74∗ −4.20 5.95 5.35 5.26 1.86 3.02 1.30

(2.68) (2.68) (2.71) (6.73) (6.92) (6.94) (5.05) (4.98) (5.20)
Labor productivity −0.07 1.29 0.97 −2.94∗ −1.24 −1.78 −2.99∗∗ −2.29 −2.13

(0.88) (0.91) (0.91) (1.62) (1.72) (1.77) (1.45) (1.67) (1.61)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 48 091 48 091 48 091 47 741 47 741 47 741 47 741 47 741 47 741
Number of firms 3255 3255 3255 3252 3252 3252 3252 3252 3252

Notes: This table reports the effect of middle-skill wages. All columns include firm and industry-year fixed effects.
Columns 4–6 add country-year fixed effects. In Columns 7–9, the macroeconomic variables are the normalized
foreign variables as defined in the text. Standard errors are clustered at the firm-level and reported in parenthe-
ses. Significance levels at *10%, **5%, ***1%.

with the literature on IT which tends to finds more negative effects for middle-skill

workers). Nevertheless, we prefer not to over-emphasize these results because low- and

middle-skill wages are strongly correlated (see Table A.5).

Firm-size. Firms of different sizes may be on different trends in automation in-

novation. In Table A.34, we group firms into four bins according to their number of

automation patents in 1995 and allow for bin-year fixed effects. We find similar results.
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Table A.34: Firm bin size - year fixed effects

Auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 3.11∗∗∗ 2.83∗∗∗ 3.63∗∗∗ 2.38∗∗ 2.78∗∗ 3.75∗∗∗ 4.45∗∗∗ 5.73∗∗∗ 4.78∗∗∗

(0.79) (0.84) (0.96) (0.98) (1.12) (1.26) (1.31) (1.55) (1.77)
High-skill wage −2.38∗∗∗ −2.83∗∗∗ −1.86∗∗ −2.87∗∗∗ −2.01∗ −1.96∗ −4.78∗∗∗ −2.98∗∗ −4.59∗∗∗

(0.71) (0.78) (0.81) (0.95) (1.08) (1.04) (1.32) (1.48) (1.41)
GDP gap −2.79 −3.41 −1.60 4.39 5.46 6.74 −0.28 2.39 0.34

(2.72) (2.82) (2.89) (6.78) (6.83) (7.11) (4.66) (4.93) (5.28)
Labor productivity 1.08 −1.96 −2.91∗

(0.91) (1.77) (1.62)
GDP per capita −1.45 −3.36∗ −0.58

(1.33) (1.97) (2.08)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bin×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 48 091 48 091 48 091 47 741 47 741 47 741 47 741 47 741 47 741
Number of firms 3255 3255 3255 3252 3252 3252 3252 3252 3252

Notes: This table controls for the size of the firms. Firms are classified into five bins by the stock of total patents
in 1995 with 25th, 50th, 75th, and 95th percentiles as four thresholds. All columns include firm, industry-year
and bin-year fixed effects. Columns 4–9 add country-year fixed effects. In Columns 7–9, the macroeconomic
variables are the normalized foreign variables as defined in the text. Standard errors are clustered at the firm-
level and reported in parentheses. Significance levels at *10%, **5%, ***1%.

Long-difference. We now turn to alternative specifications. For most of our anal-

ysis, we follow the large patent literature and rely on a panel setting using the Poisson

estimator, which best handles the count data nature of our dependent variable. In Ta-

ble A.35, we conduct a long-difference estimation. To allow for zeros in the number

of patents, we use the arcsinh transformation and construct ten 5-year overlapping dif-

ferences from our 15 years of data. Columns (1)-(6) focus on firms that patented at

least once over the period considered (now 1995-2013), mirroring what a Poisson re-

gression would do. We find a positive effect of low-skill wages and a negative effect of

high-skill wages – though, in one specification, the positive effect of low-skill wages is

non-significant. The inverse skill premium, however, always has a positive and signif-

icant effect. The diminished significance of low-skill wages reflects the noisy behavior

of one-time patenters and the difference in functional forms between the log function

and arcsinh for low patent counts. Columns (7)-(9) restrict attention to firms that have

patented at least twice and recover the same results as in our Poisson regressions. These

results suggest that automation responds to medium-run changes in wages.
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Table A.35: Five-year difference estimation

Dependent variable ∆ Arcsinhauto95

Firm restriction At least one auto95 innovation At least two auto95 innovations

Domestic and Foreign Foreign Dom. and Fgn. Fgn.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆ Low-skill wage 1.14∗∗∗ 0.81∗ 1.00 2.14∗∗∗ 1.71∗∗ 2.45∗∗

(0.36) (0.47) (0.67) (0.55) (0.72) (1.01)
∆ High-skill wage −1.05∗∗∗ −1.40∗∗∗ −2.05∗∗∗ −1.67∗∗∗ −2.13∗∗∗ −3.57∗∗∗

(0.31) (0.45) (0.68) (0.47) (0.68) (0.99)
∆ Low-skill / High-skill wages 1.09∗∗∗ 1.08∗∗∗ 1.49∗∗

(0.28) (0.38) (0.59)
∆ GDP gap −0.82 −0.86 0.87 1.00 −0.31 0.32 −1.39 0.96 −0.03

(1.04) (1.04) (1.93) (1.93) (1.65) (1.53) (1.41) (2.75) (2.33)
∆ Labor productivity −0.39 −0.32 0.14 −0.34 0.88 0.06 −0.67 −0.19 1.06

(0.38) (0.30) (0.60) (0.45) (0.64) (0.33) (0.56) (0.90) (0.96)

Spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No Yes Yes Yes Yes No Yes Yes

Observations 32 550 32 550 32 520 32 520 32 520 32 520 21 890 21 870 21 870
Number of firms 3255 3255 3252 3252 3252 3252 2189 2187 2187

Notes: This table conducts five-year difference regressions. Estimation is done by OLS for the years t=2000-2009. The
dependent variable is the difference between the arcsinh of the sum of yearly auto95 patents in t to t+4 and the arcsinh
of the sum of yearly auto95 patents in t-5 to t-1. All independent variables are the sum of yearly counterparts from t-4
to t. Columns 1–6 focus on firms that have at least patented once in 1995–2013 while columns 7–9 restrict attention to
firms that patented at least twice in 1995–2013. All columns include industry-year fixed effects. Columns 3–6 and 8–9 add
country-year fixed effects. In Columns 3, 4, and 9 the macroeconomic variables are normalized foreign variables as defined
in the text. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at *10%, **5%,
***1%.

Clustering level. In the baseline specification, we cluster at the firm level to account

for auto-correlation in errors. Firms that share similar weight distributions may be

affected by common shocks. The best way to address this issue is through the Monte-

Carlo simulations of Table 8. As an alternative, we cluster standard errors at the home

country level in Table A.36. If anything, this tends to reduce the standard error on

low-skill wages. A potential explanation for the negatively correlated error terms is that

a successful innovator may capture the market thereby discouraging innovation by its

competitors. In addition, standard errors may overstate confidence levels if the number

of clusters is small or the size distribution of clusters is skewed. To address this, Table

A.36 also includes p-values for low-skill wages using the BDM bootstrap-t approach of

Cameron, Gelbach and Miller (2008). All coefficients of interest remain significant.

Different weights. We now turn to different measures of firm-level wages. First,

we look at alternatives to pre-multiplying patent weights with GDP 0.35 (see equation

(3)) in Table A.12. We either use patent weights directly, or multiply them by GDP ,

or by total payment to low-skill workers raised to the power of 0.35, (wLL)0.35. These

latter weights may better measure the potential market for technology that automates
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Table A.36: Baseline regressions for auto95 with country-level clustering

Auto95

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.96∗∗∗ 2.71∗∗∗ 3.65∗∗∗ 2.26∗∗∗ 2.61∗∗∗ 3.70∗∗ 4.20∗∗∗ 5.32∗∗∗ 4.53∗∗

(0.68) (0.75) (1.09) (0.72) (0.55) (1.57) (0.84) (1.64) (1.76)
[0.000] [0.000] [0.001] [0.002] [0.000] [0.019] [0.000] [0.001] [0.010]
{0.018} {0.000} {0.001} {0.036} {0.057} {0.065} {0.015} {0.016} {0.007}

High-skill wage Yes Yes Yes Yes Yes Yes Yes Yes Yes
GDP gap Yes Yes Yes Yes Yes Yes Yes Yes Yes
Labor productivity No Yes No No Yes No No Yes No
GDP per capita No No Yes No No Yes No No Yes

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 48 091 48 091 48 091 47 741 47 741 47 741 47 741 47 741 47 741
Firms 3255 3255 3255 3252 3252 3252 3252 3252 3252

Notes: This table reproduces the baseline table using different inference procedures. The standard errors in
parentheses are clustered at country-level (instead of firm-level). The [ ] brackets report the associated p-values.
To account for few clusters, the { } brackets report cluster-bootstrapped p-values following Cameron et. al
(2008). Significance levels at *10%, **5%, ***1%.

low-skill work. The results remain similar.

Table A.37: Alternative weights

Dependent variable Auto95

Weight market size adj. GDP0 GDP1 (wL · L)0.35

Dom.
and fgn. Fgn. Dom.

and fgn. Fgn. Dom.
and fgn. Fgn.

(1) (2) (3) (4) (5) (6)

Low-skill wage 2.74∗∗ 3.62∗∗∗ 2.93∗∗∗ 4.20∗∗∗ 6.10∗∗∗ 5.29∗∗∗

(1.10) (1.19) (1.12) (1.39) (1.70) (1.53)
High-skill wage −3.45∗∗∗ −2.46∗∗ −2.92∗∗∗ −3.62∗∗∗ −3.19∗∗ −3.49∗∗∗

(1.06) (1.06) (1.03) (1.34) (1.62) (1.34)
GDP gap −5.95 1.40 −3.81 −2.43 −0.92 −0.62

(5.15) (5.21) (5.38) (3.65) (3.89) (3.75)
Labor productivity 0.77 0.23 −0.28 −1.61 −1.92 −2.27

(1.53) (1.45) (1.58) (1.42) (1.59) (1.55)

Stocks and spillovers Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes Yes

Observations 47 597 47 730 47 631 47 597 47 730 47 631
Number of firms 3249 3250 3253 3249 3250 3253

Notes: This table varies the market size adjustment in the firm’s country weights. Columns
1–2 do not adjust for GDP in the computation of the weights, Columns 3–4 use GDP
instead of GDP0.35 to adjust for country size and Columns 5–6 replace GDP with total
low-skilled payment wL ∗ L in the baseline formula. All regressions include firm, country-
year and industry-year fixed effects. In columns 2, 4, and 6 the macroeconmic variables are
the normalized foreign variables as described in the text. Standard errors are clustered at
the firm-level and reported in parentheses. Significance levels at *10%, **5%, ***1%.

Different deflators and wages. Second, we look at other macro measures of wages
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(our baseline regressions use manufacturing wages deflated by local PPI and converted

in USD with the 1995 exchange rate). Table A.38 shows that our results (with foreign

wages and country-year fixed effects) are robust to converting in USD yearly or in another

year (2005), using a GDP deflator or replacing manufacturing wages with total wages.

Table A.38: Robustness to total wages and different deflators

Dependent variable Auto95

Sector Manufacturing Total

Deflator Manufacturing PPI,
conversion in 2005

US manufacturing PPI,
conversion every year

GDP deflator,
conversion in 1995

Manufacturing PPI,
conversion in 1995

US manufacturing PPI,
conversion every year

(1) (2) (3) (4) (5)

Foreign:
Low-skill wage 5.18∗∗∗ 4.50∗∗∗ 5.18∗∗∗ 5.91∗∗ 5.40∗∗∗

(1.54) (1.42) (1.95) (2.78) (2.05)
High-skill wage −2.59∗ −3.60∗∗ −2.53∗ −2.50 −3.38

(1.39) (1.43) (1.48) (2.33) (2.30)
GDP gap 2.48 1.42 2.38 0.95 0.20

(4.86) (4.91) (4.92) (4.51) (4.65)
Labor productivity −2.75∗ −1.46 −2.73∗ −3.67 −3.05

(1.53) (1.56) (1.64) (3.08) (2.92)

Stocks and spillovers Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes

Observations 47 741 47 741 47 741 47 741 47 741
Number of firms 3252 3252 3252 3252 3252

Notes: This table shows robustness to different wage conversions. Columns 1–3 use manufacturing wages and columns 4 and 5 total wages. In column
1, macroeconomic variables are deflated with the local manufacturing PPI and converted to USD in 2005. In Columns 2 and 5 they are converted to
USD every year and deflated with the US manufacturing PPI. In Column 3, macroeconomic variables are deflated with the local GDP deflator and
converted to USD in 1995. In Column 4, macroeconomic variables are deflated with the local manufacturing PPI and converted to USD in 1995. All
regressions include firm fixed effects, industry-year fixed effects and country-year fixed effects. In all columns, the macroeconomic variables are the
normalized foreign variables as defined in the text. Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at
*10%, **5%, ***1%.

Citations. Finally, we look at other measures of innovation. Table A.39 investigates

whether our results are robust to focusing on patents of higher quality and weighs patents

by citations. We add to each patent the number of citations received within 5 years

normalized by technology field, patent office and year of application, and winsorized at

the 75th percentile. We find similar coefficients as in the baseline, which shows that our

results are not driven by low-quality innovations.54

54If we do not winsorize the patent counts at the 75th percentile, we lose significance in columns (4)
and (5). The number of citations is quite right-skewed and one possible interpretation is that conditional
on R&D investment, whether an innovation turns out to be of very high quality is largely random. This
dampens the effect of low-skill wages on (non-winsorized) citations-weighted patents.
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Table A.39: Citations-weighted patents

Dependent variable Citations-weighted auto95

Domestic and foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.50∗∗∗ 2.27∗∗ 3.22∗∗∗ 1.79∗ 2.21∗ 3.30∗∗ 4.04∗∗∗ 5.16∗∗∗ 4.28∗∗

(0.85) (0.91) (1.03) (1.07) (1.25) (1.37) (1.39) (1.56) (1.80)
High-skill wage −2.25∗∗∗ −2.64∗∗∗ −1.52∗ −3.00∗∗∗ −2.10∗ −1.98∗ −4.79∗∗∗ −3.23∗∗ −4.65∗∗∗

(0.82) (0.86) (0.88) (1.08) (1.12) (1.17) (1.34) (1.54) (1.47)
GDP gap −3.38 −3.89 −1.73 3.28 4.42 5.90 −1.61 0.77 −1.15

(2.62) (2.70) (2.78) (6.62) (6.61) (6.92) (4.41) (4.71) (5.01)
Labor productivity 0.90 −2.06 −2.53

(0.95) (1.85) (1.61)
GDP per capita −2.01 −3.75∗ −0.42

(1.36) (2.06) (2.19)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects No No No Yes Yes Yes Yes Yes Yes

Observations 48 091 48 091 48 091 47 741 47 741 47 741 47 741 47 741 47 741
Number of firms 3255 3255 3255 3252 3252 3252 3252 3252 3252

Notes: This table weighs patents by citations. We add to each auto95 patent the number of citations received
within 5 years normalized by technological field, patent office, and year of application, and winsorized at the
75th percentile. All columns include firm and industry-year fixed effects. Columns 4–9 add country-year fixed
effects. In Columns 7–9 the macroeconomic variables are the normalized foreign variables defined in the text.
Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at *10%, **5%,
***1%.

Innovation types. We look at other definitions or subcategories of automation

innovations in regressions with foreign wages in Table A.40. The results are robust to

excluding the codes that we added to the definition of the machinery technology field

listed in footnote 11. Though the coefficients are smaller, they are also robust to using

the laxer auto80 definition of automation innovations. Subcategories of automation in-

novations are defined by re-classifying codes according to the prevalence of each category

of automation keywords. We find large effects of low-skill wages on automat* and robot

patents; but no significant effect on CNC patents, for which the sample size is smaller.

A.6.3 Computing automation elasticities from the literature

In this Appendix, we explain how we compute the elasticities reported in Section 4.4.

Lewis (2011) identifies low-skill workers as high-school dropouts and middle-skill work-

ers as high-school graduate, which does not align with our analysis. Nevertheless, he

estimates that a 1 point increase in the ratio of low- to middle-skill workers decreases

the number of technologies adopted by 7.75 (Table V, column 2), decreases ln (wL/wM)

by 0.199 (Table VIII, column 2) and increases ln (wH/wM) by 0.474 (Table VIII, column

5), so that ln (wL/wH) decreases by −0.673. The mean number of adopted technologies
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Table A.40: Innovation categories

Dependent variable Auto95 AutoX95 Auto80 Automat*90 Automat*80 Robot90 Robot80 CNC90 CNC80

(0) (1) (2) (3) (4) (5) (6) (7) (8)

Foreign:
Low-skill wage 5.32∗∗∗ 5.42∗∗∗ 3.56∗∗∗ 7.48∗∗∗ 5.94∗∗∗ 5.92∗ 7.49∗∗∗ −1.48 −1.56

(1.56) (1.62) (1.32) (2.10) (1.96) (3.32) (2.54) (4.08) (3.05)
High-skill wage −2.87∗ −1.42 −2.16 −2.49 −2.09 0.51 −3.06 5.52 1.75

(1.47) (1.63) (1.32) (1.90) (1.77) (3.01) (2.37) (5.58) (3.61)
GDP gap 2.28 0.62 1.91 8.31∗ 4.23 6.03 1.22 −1.69 −1.17

(4.92) (4.60) (2.85) (4.93) (4.42) (8.15) (6.79) (12.03) (9.68)
Labor productivity −2.57 −3.87∗∗ −1.78 −5.41∗∗∗ −4.49∗∗ −7.65∗∗∗ −5.70∗∗ −4.43 −1.03

(1.60) (1.71) (1.22) (1.82) (1.75) (2.81) (2.25) (5.19) (3.25)

Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country×year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 47 741 45 928 97 705 32 424 48 900 15 831 23 268 7080 13 617
Number of firms 3252 3150 6561 2244 3329 1151 1632 547 1001

Notes: This table analyzes the effect of wages on different automation innovation categories. AutoX95 excludes the C/IPC codes which
we added when defining the machinery technological field. Auto80 lowers the threshold to define automation innovation to the 80th
percentile of the C/IPC 6-digit distribution. Automat*90 and Automat*80 only count words associated with automat. Robot90 and
Robot80 only count words associated with robot. CNC90 and CNC80 words associated with CNC. 90 and 80 refer to the thresholds used
to define the corresponding technology categories, which are the 90th and 80th percentile of the distribution of automation keywords for
6-digit C/IPC codes. The macroeconomic variables are the normalized foreign variables as defined in the text. Stocks and spillovers are
computed with respect to the dependent variable. All regressions include firm fixed effects, industry-year, and country-year fixed effects.
Standard errors are clustered at the firm-level and reported in parentheses. Significance levels at *10%, **5%, ***1%.

is 3.09, while the mean change in the ratio of low- to middle-skill workers is −0.03 (Ta-

ble I). From this, we can back an elasticity of automation adoption with respect to the

inverse skill premium of [ln(3.09− 7.75× 0.03)− ln(3.09)] /[0.673× 0.03] = 3.6.

Acemoglu and Restrepo (2022) measure aging as the predicted change in the ratio of

above 56 to below 56 workers between 1995 and 2025. They find that aging leads to an

increase in the log ratio of robot imports over all intermediate imports of 1.96 (Table 4,

column 3) and an increase in the log number of robotics over all patents of 0.75 (Table

5, column 3). They also report that aging between 1990 and 2015 is associated with

a relative increase of blue-collar manufacturing wages compared to average wages of

0.418 across US commuting zones (Table A.20, Panel B, column 4). Taking ratios and

adjusting for the different time lengths gives an elasticity of 1.96
0.418

25
30

= 3.9 for adoption

and 0.75
0.418

25
30

= 1.5 for innovation.

Finally, we report on elasticities in the adoption of new technologies in footnote 41.

Baptista (2000) studies the adoption of CNC machines in the UK. He estimates the

effect of the number of previous adopters in an area on the hazard rate of adoption.

Using the coefficient from their Table 3 and the mean number of adopters from Table

2, one gets that a 1% increase in the number of local adopters reduces the hazard rate

of adoption by 0.08%. No (2008) looks at the adoption of advanced manufacturing
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technologies in Canada and reports elasticities with respect to the number of previous

adopters in similar industries between 0.0012 and 0.0015 (their Table 3 and 4). Finally,

Bekes and Harasztozi (2020) shows that Hungarian firms are more likely to import

specific machines when a nearby peer already imports the same machine. Combining

the coefficient of Table 7 (0.003—coefficients in the table are multiplied by 100) with

the probability that there is a peer (0.2 from their Table 4) and an average hazard rate

of importing of 1%, we get an elasticity of 0.06.

A.6.4 Macroeconomic interpretation of the regression coefficients

This section provides details on the simulation results of Section 4.4. Table A.41 shows

the exact regression that supports our simulations. We jointly estimate the effect of

the inverse skill premium on auto95 and pauto95 innovations (without restricting atten-

tion to the sample of firms of the baseline regression). This requires that we compute

separately the stocks and spillovers of auto95 innovations, pauto95 innovations and non-

machinery innovations. We also include quadratic terms for the knowledge spillovers.55

Recomputing the spillover variables involves two complications. First, our model

applies only to the number of innovations, not their location. To allocate innovations

to countries, we assign the simulated innovations proportionally to contemporaneous

inventor weights of the firms (while the spillover variables are computed using pre-

determined inventor weights). These contemporaneous weights reflect the distribution

of where firms’ innovators are located in the respective year (or the closest year if there’s

no patenting).

Second, our regression dataset does not include all firms with biadic innovations but

our spillover variables are computed using country-level stocks of biadic innovations.

To account for this, we assume that out-of-sample firms respond similarly to in-sample

firms. When assigning simulated innovations to countries, we increase the innovations by

those of out-of-sample firms so that the ratio of in-sample to out-of-sample innovations

in that country-year remains the same as in the data. We make this adjustment for

countries with at least 10 in-sample machinery patents.

55The coefficients on knowledge spillovers in log linear regressions are greater than 1 leading to an
explosive behavior. Coefficients on the knowledge spillover squares are significant which justifies the
inclusion of the square terms. We also use ln(1+) to compute stocks and spillovers in this exercise. This
has no effect on the regression results but ensures a more stable behavior in the simulations.
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Table A.41: Regression supporting the simulation of Figure 4

Dependent variable Auto95 Pauto95

(1) (2)

Low-skill / High-skill wages 2.51∗∗∗ 0.44
(0.69) (0.53)

Stock automation −0.15∗∗∗ 0.13∗∗∗

(0.05) (0.03)
Stock non-automation 0.34∗∗∗ 0.27∗∗∗

(0.06) (0.03)
Spillovers automation 2.24∗∗ −1.01

(0.96) (0.63)
Spillovers automation squared −0.10∗ 0.04

(0.06) (0.04)
Spillovers non-automation 4.44∗ 4.42∗∗∗

(2.32) (1.50)
Spillovers non-automation squared −0.20∗ −0.13

(0.12) (0.08)

GDP gap Yes Yes
Non-machinery stock Yes Yes
Non-machinery spillovers Yes Yes
Non-machinery spillovers squared Yes Yes

Firm fixed effects Yes Yes
Industry×year fixed effects Yes Yes
Country×year fixed effects No No

Observations 48 091 155 183
Number of firms 3255 10 382

Notes: This table shows regressions of automation (column
1) and non-automation machinery innovations (column 2)
on the inverse skill-premium, the GDP gap, and firm-level
stock and spillover variables. We consider automation, non-
automation, and non-machinery stocks and spillovers sepa-
rately and include squared spillovers. Stocks and spillovers
are computed as log(1+). The regressions include firm and
year-industry fixed effects. Standard errors are clustered
at the firm-level and reported in parentheses. Significance
levels at *10%, **5%, ***1%.

Even without any change in the skill premium, the noise in the Poisson process means

that the exact number of patents in each country can vary from one simulation to the

next. If the spillover variables are kept as in the data, the average effect of this noise is

null, and the average simulation (with no change in the skill premium) looks exactly like

the data series. However, when the spillover variables at time t are updated to reflect

the simulated innovations in the years before t− 2, the predicted number of innovations

at t may be different fron that in the data. This is why the baseline curve in Figure 4

differs from the data series, especially toward the end of the sample. And this is also why

the total effect of the change in the skill premium should be computed as the difference

between the baseline + total effect curve and the baseline curve. Figure 4 displays the

median simulation but the mean looks similar.

97



Online Appendix References

Dolado, J., Kramarz, F., Machin, S., Manning, A., Margolis, D., and Teulings, C. (1996).

The Economic Impact of Minimum Wages in Europe. Economic Policy 11 (23).

Dickens, R., Machin, S., and Manning, A. (1999). The Effects of Minimum Wages on

Employment: Theory and Evidence from Britain. Journal of Labor Economics, 17 (1).

Lybbert, T. and Zolas, N. (2014). Getting patents and economic data to speak to each other: An

’Algorithmic Links with Probabilities’ approach for joint analyses of patenting and economic activity.

Research Policy, 43: 530-542.

Scopp, T. (2003). The relationship between the 1990 Census and Census 2000 Industry and

Occupation Classification Systems. US Census Bureau.

98



B Supplemental material

B.1 Additional examples

We provide a few additional examples of automation and non-automation patents. Fig-

ure B.1 shows the example of a robot with a patent containing the IPC code B25J9.

The patent describes a multi-axis robot with a plurality of tools which can change the

working range of each arm. This essentially increases the flexibility of the robot. Figure

B.2 shows an automation innovation used in the dairy industry. The patent contains the

code A01J7 which is a high automation code (see Table A.21). It describes a system in-

volving a robotic arm to disinfect the teats of cows after milking. The patent argues that

this reduces the need for human labor and therefore saves costs. Figure B.3 describes an

automated machining device – yet another example of a high automation innovation –

which contains the code B23Q15 (a high automation code described in Table A.21). The

devices features a built-in compensation system to correct for errors thereby reducing

the need for a “labor-intensive adjustment process”. Figure B.4 describes another high

automation patent belonging to the same IPC code as well as to G05B19. This is also

a machining device. The patent explains that innovations in machining have aimed at

making the process as automated as possible by involving some feedback mechanism (as

in the previous older patent). This invention aims at better predicting the machining

requirements in the first place.

In contrast, Figure B.5 describes a low automation innovation in machinery (none

of the codes are above the 90th percentile in the 6-digit C/IPC distribution). The

innovation relates to a “conveying belt assembly for a printing device”’, which is about

the circulation of paper in the printing machine. This innovation does not directly

involve automation. Similarly Figure B.6 describes a winch to raise and lower people,

another low-automation innovation in machinery. This innovation seems rather low-skill

labor complementary as its goal is to enable workers to move in a plurality of directions.

Finally, Figure B.7 describes a harvester (which also counts as a machinery innovation

since the code A01B63 belongs to other special machinery). This is also a low-automation

innovation as its goal is to ensure that the harvester can both operate in the field and

travel on roads.
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Figure B.1: Example of a high automation patent: an industrial robot
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Figure B.2: Example of a high automation patent: a milking robot
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Figure B.3: Example of a high automation patent: an automated machining device
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Figure B.4: Example of a high automation patent: another automated machining device

Figure B.5: Example of a low automation patent: a printer
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Figure B.6: Example of a low automation patent: a winch

Figure B.7: Example of a low automation patent: a harvester

B.2 Validating our weights approach

We compare our firm-level weights to bilateral trade flows and show that they are

strongly correlated. The first step is to compute patent-based weights at the coun-

try level. For this exercise (and this exercise only), we define the home country D of

a firm based on the location of its headquarters according to the country code of its
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(b) Trade from the 6 largest countries

Figure B.8: Bilateral patent flows and trade flows in machinery.
Notes: Panel (a) plots log patent based weights, which are a weighted average of the destination country’s weights in the
(foreign) patent portfolio of firms from the origin country, against export shares in machinery over the years 1995-2009.
The size of each circle represents the product of the GDP of both countries, which is used as a weight in the regression.
Panel (b) focuses on the weights from the listed countries and observations are weighted by the GDP of the partner
country.

identifier in the Orbis database. For firms which we merged, we keep the country code

of the largest entity by biadic machinery patents in 1997-2011. We compute the foreign

weights for each firm i by excluding the home country. Therefore, the foreign weight for

country c 6= D for firm i is given by κi,c/(1−κi,D) (recall that these weights are computed

based on patenting from 1971 to 1994). We then build the foreign patent-based weight

in country c for country D as a weighted average of the foreign weights in country c

of the firms from country D, where each firm is weighted according to the number of

machinery biadic patents in 1997-2011.

The second step is to build similar weights based on exports. To do that, we collect

sectoral bilateral trade flow from UN Comtrade data between between 1995 and 2009 for

40 countries (Taiwan is not included in the data). To obtain trade flows in machinery, we

use the Eurostat concordance table between 4-digit IPC codes and 2 or 3-digits NACE

Rev 2 codes (van Looy, Vereyen, and Schmoch, 2014): this concordance table matches

IPC codes to the industry of manufacturing. The concordance table assigns a unique

industry to each IPC code. Then, for each industry, we compute the share of biadic

patents over the period 1995-2009 that are in machinery according to our definition.56

This gives us a machinery weight for each industry code and each country. We then

multiply sectoral trade flows (after having aggregated the original data to the NACE

56To do that we use a fractional approach: each patent is allocated NACE sectoral weights (and
machinery weights) depending on the share of IPC codes associated with a NACE sector or machinery.
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Figure B.9: Foreign low-skill wages for each country computed either with patent-based
weights or with trade-based weights.

Notes: Wages are computed for the years 1995-2009. Panel (a) plots log foreign low-skill wages using either patent-based
weights or trade-based weights. Panel (b) plots the residuals of foreign wages according to both methods controlling for
country and year fixed effects. Observations are weighted by the number of biadic machinery patents by firms from the
country over the years 1997-2011.

Rev 2 codes used in the concordance table) by this weight to get bilateral trade in

machinery. We then compute the export share in machinery across destinations. We

compute trade based weights for each year in 1995-2009 and take the average (there are

a few missing observations for 1995).

Figure B.8 plots the patent-based weights against the trade-based weights. Panel (b)

focuses on a few origin countries while Panel (a) plots all countries together. We find a

strong correlation between the two measures with a regression coefficient of 0.94 (when

observations are weighted by the trade flow in 1996).

Figure B.9 goes further and compares low-skill wages computed with either sets of

weights. For each country, we compute “foreign low-skill wages” as a weighted average of

foreign wages where the weights are either the patent-based weights or the trade-based

weights derived above. Foreign wages are deflated with the local PPI and converted

in USD in 1995 as in our main analysis. Panel (a) then reports foreign log low-skill

wages according to both types of weights in 1995-2009 and finds that they are strongly

correlated. Panel (b) reports the same foreign log low-skill wages but taking away

country and year fixed effects. The regression coefficient is 0.56, when observations are

weighed by the number of machinery patents in the country between 1997 and 2011.

Overall, this exercise shows that there is tight relationship between our patent-based

weights and (future) trade flows, suggesting that we can use these patent-based weights

as proxies for firms’ markets exposure.
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