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1 Introduction

Economists have long recognized that the direction of innovation responds to economic

incentives (Hicks, 1932; Kennedy, 1964). While early endogenous growth theory models,

such as Romer (1990) and Aghion and Howitt (1992) only featured one type of inno-

vation, models of “directed technical change” (DTC) with several types of innovation

were quickly developed. The earliest example is Aghion and Howitt (1996) who model

separately research and development and analyze researchers’ incentives to allocate their

effort to one or the other.1 Closer to the questions of Hicks (1932) and Kennedy (1964),

Acemoglu (1998) develops a canonical DTC model where innovation can augment either

low- or high- skill labor. Since then, the insights of DTC have been incorporated into

several areas of economics, two of which we focus on here: Environmental and Labor

Economics.

Despite some differences between these two strands of literature, we show that they

have much in common both theoretically and empirically, as demonstrated by frequent

cross-fertilization between the two. On the theory side, we emphasize two aspects. First,

whether a given model features a Balanced Growth Path (BGP), that is, whether there

exists an equilibrium path in which relevant variables grow at equal rates. The lack of

such a feature is closely related to the slow development of green technologies in environ-

mental economics and rising inequality in labor economics. Second, we discuss whether

the direction of innovation is efficient: Are clean research subsidies necessary to address

climate change in the presence of carbon taxation? Is there too much automation?

Further, we show that there is overwhelming empirical evidence that the direction of

technology responds strongly to economic incentives in the environmental context, and

emerging evidence in the labor context.

Section 2 briefly presents a version of the DTC models of Acemoglu (1998, 2002).

Section 3 shows how environmental economics has used this framework. Section 4 con-

tinues with more recent DTC models that depart from the usual assumption of factor-

augmenting technical change to study automation. Finally, Section 5 presents empirical

evidence.

1In their model, research corresponds to the development of a new potential line of products and
development to secondary innovations which introduce one of these products.
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2 The Canonical Directed Technical Change Model

The last two decades of the 20th century saw a concurrent increase in both the skill ratio

and the skill premium. A common explanation for this is that Skill-Biased Technical

Change meant that the relative demand for skill outpaced the relative supply (Goldin and

Katz, 2008). Acemoglu (1998) notes that this simultaneity is in need of an explanation

and seeks to endogenize the rise in skill demand as a technological response to the

increase in the skill ratio. Acemoglu (1998, 2002) feature two competitive markets for

intermediate goods. These goods are combined using an aggregate CES production

function:

Y =
(
Y

ε−1
ε

L + Y
ε−1
ε

H

) ε
ε−1

, (1)

where ε > 0 is the elasticity of substitution between the two (we omit time subscripts

when they are not necessary). In the original setting, YL, is an intermediate input pro-

duced using low-skill labor, whereas YH is produced using high-skill labor. However, as

we will show below, the framework is well-suited for other applications. The intermediate

inputs are each produced using a combination of labor and a unique set of machines of

measure one. These machines are distinct for each sector, and their productivity evolves

endogenously. The level of technology of the most advanced machine, the one employed

in equilibrium, is denoted Aji > 0 for j ∈ {L,H} and i ∈ [0, 1]. The production functions

for the two sectors are:

YL =
1

1− β
LβL

∫ 1

0

AβLix
1−β
Li di and YH =

1

1− β
LβH

∫ 1

0

AβHix
1−β
Hi di, (2)

where Lj is the supply of workers of type j. Machines are produced monopolistically

with 1− β units of the final good, which is the numeraire. With a demand elasticity of

1/β, the price of a machine is 1.

Denote pj the price of the intermediate goods. Use the monopolist’s solution to find

that output for intermediate input j = L,H obeys

Yj =
1

1− β
p

(1−β)/β
j AjLj, (3)

where Aj ≡
∫ 1

0
Ajidi is the aggregate technology in sector j. Profits of a monopolist are

given by:

πji = βp
1/β
j LjAji. (4)
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Combining the final good producer’s problem with labor market clearing conditions gives

the skill premium:

wH
wL

=

(
LH
LL

)− 1
σ
(
AH
AL

)σ−1
σ

, (5)

where σ ≡ 1 + β(ε − 1) > 0 is the derived elasticity of substitution between L and

H and σ > 1 if and only if ε > 1. This mirrors the framework of Goldin and Katz

(2008) (building on Katz and Murphy, 1992). They focus on the college skill-premium

and reconcile the large rise in college attainment with the substantial increase in the

skill-premium since the 1980s by arguing that low-skill and high-skill workers are gross

substitutes, σ > 1, and by inferring a positive secular trend in AH/AL. They take this

trend in skill-biased technical change as exogenous, whereas Acemoglu (1998) argues that

when technology is endogenous, the growth in AH/AL can be driven by the increase in

the skill-ratio, LH/LL.

To demonstrate this, we model innovation in a quality-ladder fashion (Aghion and

Howitt, 1992). The literature generally models the cost of innovation in terms of the final

good or of a limited factor of production, “scientists” (Acemoglu, 2002). To facilitate

comparison with Section 3.1, we implement the latter. Time is discrete, and the usual

Ramsey setup gives the interest rate rt. At the beginning of every period, scientists of

mass S = 1 can work to innovate either in the low-skill or high-skill intensive sector.

Given this choice, each scientist is randomly allocated to one machine in their target

sector without congestion (this can be rationalized using within sector spillovers).

Inspired by Acemoglu (2002), the probabilities of successful innovation for scien-

tists in the low-skill and the high-skill sector are given by ηL (AHt/ALt)
(1−δ)/2 and

ηH (ALt/AHt)
(1−δ)/2, respectively.2 δ is inversely related to the complementary of tech-

nologies in the innovation functions. When δ = 1, the innovation possibility frontier

is independent of the technology levels. When δ < 1, the productivity of innovation

declines with the level of technology but knowledge spillovers from the other sector com-

pensates for this in a way that permits a BGP. Once innovation is complete, the scientist

increases the quality of her targeted machine by a factor 1 + γ and obtains monopoly

rights until she is replaced by a future innovator. We impose the inconsequential as-

2Acemoglu (2002) has an expanding variety framework and the probability of innovation for each

scientist in the low-skill sector obeys ηLN
(1+δ)/2
L N

(1−δ)/2
H , where NL (NH) is the mass of low-skill (high-

skill) products. This formulation is equivalent to ours since in the expanding variety model, profits for
each firm are mechanically diluted with the number of products: they are proportional to pLYL/NL in
the expanding-variety model but to pLYL in the quality ladder model.
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sumption that (1 + γ) > (1− β)
β−1
β which ensures that the technological leader charges

the unconstrained monopoly price.

We focus on a BGP where the two technologies grow at the same rate and the

probability ρ that an incumbent is replaced by an entrant is the same in both sectors

and constant. Moreover, the interest rate r and profits for a given technology are also

constant. Therefore the value of a firm obeys:

Vji =
πji(1 + r)

r + ρ
. (6)

Since scientists are randomly allocated within a sector, the expected technology ob-

tained by an innovator in sector j is given by (1 + γ)Aj(t−1). Using (4), (6) and the

BGP condition that the two technologies grow at the same rate (such that ALt/AHt =

AL(t−1)/AH(t−1)), we obtain the relative value of innovating in the low-skill versus high-

skill sector, Ω, as

Ωt =
ηL
ηH

(
AHt
ALt

)1−δ
pLtYLt
pHtYHt

=
ηL
ηH

(
pLt
pHt

) 1
β

︸ ︷︷ ︸
price effect

LL
LH︸︷︷︸

market size effect

(
ALt
AHt

)δ
︸ ︷︷ ︸

technology effects

.

The first equality emphasizes Kennedy (1964)’s finding that the relative incentive to in-

novate combines the innovation possibility frontier and the relative factor shares (more

specifically intermediate input shares). The second equality emphasizes Acemoglu’s

decomposition between a price effect, a market size effect, and technology effects. In-

novation has higher value in the sector with the more expensive good and the larger

labor market. Technology also directly increases the value of innovation, but this effect

is diminished by the presence of knowledge spillovers (when δ < 1) across the two types

of technology. Solving for the relative price pL/pH returns:

Ωt =
ηL
ηH

(
LL
LH

)σ−1
σ
(
ALt
AHt

) δσ−1
σ

. (7)

Innovation can only occur in both sectors when Ω = 1. If δσ > 1, the relative incentive

to innovate in low-skill products is increasing in ALt/AHt, and a BGP is not stable.

Therefore, except for knife-edge cases, the economy eventually features innovation in

only one sector. Intuitively, the sector with a technological advantage commands a

larger revenue share when the elasticity of substitution σ is larger, and low knowledge
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spillovers (high δ) make a BGP less likely.

In contrast, if δσ < 1, a stable BGP with innovation in both sectors is possible.

Solving for ALt/AHt and using the expression for the skill-premium in (5) gives that on

a BGP:
wH
wL

=

(
ηH
ηL

) σ−1
1−σδ

(
LH
LL

)σ−2+δ
1−δσ

.

This replicates the “strong induced-bias” hypothesis of Acemoglu (1998): if σ > 2 − δ
(and δσ < 1), an increase in the skill-ratio increases the skill premium. Intuitively, an

increase in the skill ratio leads to skill-biased technical change: an increase in LH/LL

decreases Ω which pushes innovation towards the high-skill sector if and only if σ > 1

(see 7) and a decline in AL/AH is high-skill biased if and only if σ > 1 (see 5). When the

two inputs are sufficiently substitute, the technological response is sufficient to overturn

the direct supply effect.3

Acemoglu (2003) uses an analogous framework to demonstrate that when capital is

a reproducible factor, and capital and labor are complements, innovation must be labor-

augmenting. This endogenizes one of the assumptions underlying the Uzawa theorem

and ensures stable factor shares. An extensive literature has emerged building on the

framework of Acemoglu (1998), including Acemoglu and Zilibotti (2001) and Acemoglu,

Zilibotti and Gancia (2012). In the following, we focus on applications to environmental

economics (Section 3) as well as new DTC models that depart from factor-augmenting

technologies (Section 4).4

3 Directed Technical Change and the Environment

While policymakers and climate scientists have long argued that overcoming the chal-

lenges of climate change requires the development of clean technologies, the economics

literature initially focused on models with exogenous technological change (see e.g. Nord-

haus, 1994). Meanwhile, a growing empirical literature has shown that innovation re-

sponds to energy prices (see Section 5). Several papers added induced technical change

3Acemoglu (2007) demonstrates that this result holds very generally in models with factor-
augmenting technology. See also Loebbing (2020) who demonstrates that an increase in the skill-ratio
increases the skill premium if and only if the production function is quasi-convex in factors taking
endogenous technology responses to factors into account.

4We focus on models of imperfect competition where profits drive innovation effort. There is a small
literature on DTC models with perfect competition, but these models are too different in their setup to
cover them here (Irmen, 2017, Irmen and Tabaković, 2017, and Casey and Horii, 2019; as well as the
references therein).
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to computable general equilibrium (CGE) models. Still they did not build on modern

growth theory and therefore either ignored knowledge externalities or modeled them in

an ad-hoc way: for instance, in Nordhaus (2002) and Popp (2004, 2006) technological

progress results from the accumulation of an R&D stock similar to capital.5 Bovenberg

and Smulders (1995, 1996) present the first model of modern endogenous growth theory

in an environmental context but only model one type of innovation.

We focus here on DTC models, which build on modern endogenous growth theory and

feature two different types of innovations. In the environmental context, these models

come in two varieties. Some focus on energy-saving innovation and model energy or a

resource as an input complementary to capital or labor (the first example is Smulders

and de Nooij, 2003). Others analyze DTC between two substitute inputs where one

is cleaner than the other (Acemoglu, Aghion, Bursztyn and Hémous, 2012, henceforth

AABH).6 We start with the substitute case in Section 3.1, move to the complement case

in Section 3.2, and present further applications of the DTC framework in Section 3.3 .

Our review is not exhaustive and we focus primarily on recent work.7

3.1 The substitute case: clean and dirty energy

AABH build on the framework of Section 2, but the two inputs differ in whether they

generate greenhouse gas emissions (the dirty input Ydt) or not (the clean input Yct). The

two inputs are assumed to be substitute (ε > 1, see empirical evidence in Papageorgiou,

Saam and Schulte, 2017) so that this framework can be used to analyze the choice

between renewable (or nuclear) and fossil fuel energy, or the choice between electric and

fossil fuel vehicles.8 Production occurs as in Section 2, except that the labor allocation

between the two sectors is endogenous.

CO2 emissions are directly proportional to the use of the dirty input. Implicitly,

using the dirty input requires consuming a freely available fossil fuel with a Leontif

technology. As a result, AABH do not model improvements in energy efficiency or

5See also Goulder and Schneider (1999), Massetti, Carraro, and Nicita (2009) or Sue Wing (2003).
Gerlagh and Lise (2005) and Grimaud and Rouge (2008) microfound innovation but still impose ad-hoc
relationships between its social and private values.

6Instead of building on Acemoglu (1998)’s DTC framework, Hart (2004) and Ricci (2007) present
models where innovation either only increases the productivity of an intermediate or increases it by a
lower amount while making it cleaner.

7For other literature reviews see Popp, Newell and Jaffe (2010) and Fischer and Heutel (2013).
8Aghion and Howitt (2009, ch. 16) preempt some of the results of AABH in the case of perfect

substitutes.
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resource productivity (“thermal efficiency”) of power plants or fossil fuel vehicles but

focus on other innovations that reduce their effective costs.9

Innovation is modeled as in the previous section except that patents only last for

1 period and δ = 1 so that the innovation possibility frontier is independent of the

technology levels.10 The law of motion of input j ∈ {c, d} technology is:

Ajt = (1 + γηjsjt)Ajt−1,

where sjt is the mass of scientists in sector j, ηj their productivity and γ the innovation

size. This innovation set-up features a “building-on-the-shoulders-of-giants” externality

since an innovator not only improves the current technology but also enables future

innovators to build on her innovation.

As profits still obey (4), the expected profits of a scientist working for sector j are:

Πjt = ηj (1 + γ) βp
1
β

jtLjtAj(t−1) =
ηjβpjtYjt
1 + γηjsjt

.

Scientists target the sector with the highest expected profits which is the clean sector if

the following ratio is greater than 1:

Πct

Πdt

=
ηc (1 + γηdsdt)

ηd (1 + γηcsct)

pctYct
pdtYdt

=
ηc
ηd

(
pct
pdt

) 1
β

︸ ︷︷ ︸
price effect

Lct
Ldt︸︷︷︸

market size effect

Act−1

Adt−1︸ ︷︷ ︸
direct productivity effect

. (8)

Therefore scientists target the sector with the largest revenue (adjusted with the pro-

ductivity of the innovation technology). Relative revenues depend on the same forces as

above. Yet, there are no cross-sectoral knowledge spillovers and the labor allocation is

now endogenous, with the more advanced sector attracting relatively more labor when

the inputs are substitute.

9Such innovation could be included if pollution were proportional to the use of dirty machines, xdit
(similar to Gans, 2012). This would not change any of the following results.

10The supply of R&D resources is fixed so that clean R&D fully crowds out dirty R&D. This is not
an innocuous assumption as a policy which aims at increasing clean innovation also depresses dirty
innovation and output growth (see Popp, 2004).
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We can then express the relative expected profits from innovation as:

Πct

Πdt

=
ηc
ηd

(
1 + γηcsct
1 + γηdsdt

)σ−2(
Act−1

Adt−1

)σ−1

. (9)

When the two inputs are substitute, the price effect is weaker and innovation tends to be

directed toward the most advanced sector: it exhibits path dependence, which is the first

lesson of the framework.11 In fact, the solution is “bang-bang” and for a sufficiently low

ratio Ac0/Ad0, all innovation at time 1 occurs in the dirty sector. Act/Adt further declines

and innovation remains locked in dirty technologies. Intuitively, we should not expect

much clean innovation in laissez-faire because an innovation which aims at improving a

component in a solar panel would have a much smaller market than an innovation aimed

at improving a component in a fossil fuel power plant. Therefore, while the canonical

model of Section 2 focuses on a BGP, we focus here on unbalanced trajectories.12

As a result, when fossil fuel technologies are initially ahead, the production of dirty

inputs in laissez-faire grows without bound and so do CO2 emissions. To prevent this, a

social planner could implement a carbon tax or research subsidies for clean innovation.

A carbon tax imposes a wedge between the producer price of the dirty input and its

marginal product in final good production, and decreases the producer price pdt for

given technologies in equation (8). A clean research subsidy directly multiplies the

right-hand-side.13 With a sufficiently strong policy intervention, the social planner can

redirect innovation away from dirty towards clean technologies. If this intervention is

maintained for a sufficiently long time, clean technologies will catch up, and market forces

will favor clean innovation. When the two inputs are sufficiently substitute (ε > 1/β),

a temporary intervention is enough to ensure that emissions decline in the long-run.

This intervention, however, has the cost of lower productivity growth during the catch-

up phase while innovation is improving the less productive input. Yet, the longer the

social planner waits, the larger the gap between clean and dirty technologies before

the intervention, and the longer the intervention and the larger the costs. This is the

second lesson from the framework: taking endogenous technical change into account

11For more discussion on path dependence see the review of Aghion, Hepburn, Teytelboym and
Zenghelis (2019).

12With cross-sectoral knowledge spillovers as in the innovation function of Section 2 where scientists’
productivity obeys ηj(A(−j)t/Ajt)

(1−δ)/2, there is still path dependence when σ > 2− δ. The difference
with the threshold σ > 1/δ given above comes from the endogeneity of the labor allocation.

13That is, (9) becomes Πct
Πdt

= (1 + qt) (1 + τt)
ε ηc
ηd

(
1+γηcsct
1+γηdsdt

)σ−2 (
Act−1

Adt−1

)σ−1

, where qt is a clean

research subsidy and τt is an (add-valorem) carbon tax.
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calls for earlier intervention. Gerlagh, Kverndokk and Rosendahl (2009) similarly find

that endogenous innovation in abatement technology calls for a front-loaded policy.

Finally, AABH study the optimal policy when the representative agent values con-

sumption and is hurt by environmental degradation. They show that this policy can

be decentralized using a Pigovian carbon tax and research subsidies to clean innovation

(plus a subsidy to remove the monopoly distortion). This is the third lesson from the

framework: a carbon tax is not enough to obtain the first best. In the optimum, innova-

tion is allocated to the sector with the highest social value. The ratio of social values

can be expressed as:

SVct
SVdt

=

ηc (1 + γηdsdt)
∑
τ≥t
λt,τp

1
β
cτLcτAcτ

ηd (1 + γηcsct)
∑
τ≥t
λt,τp

1
β

dτLdτAdτ

, (10)

where λt,τ is the discount factor between t and τ . This ratio reflects the environmental

value as a higher carbon tax decreases pdτ . However, even with a carbon tax, the

market still allocates innovation according to the ratio of equation (8), and will in general

not implement the first best without a research subsidy. Intuitively, the social planner

allocates innovation according to the discounted benefits that a higher technology brings

in every period, while the market only cares about immediate profits.

This intuition extends to the case of patents lasting more than one period, or patents

lasting till the following innovation (as mentioned in AABH, see also Greaker, Heggedal

and Rosendahl, 2018). Moreover, the private value does not internalize the building-on-

the-shoulders-of-giants externality. To see this, consider an extreme case with perpetual

patents, such that future innovators would have to pay royalties to the incumbent to

compensate them for their profit loss once the new technologies has arrived. In that

set-up, the ratio of private values of innovation would obey:

Πct

Πdt

=

ηc (1 + γηdsdt)
∑
τ≥t
λt,τp

1
β
cτLcτAct

ηd (1 + γηcsct)
∑
τ≥t
λt,τp

1
β

dτLdτAdt

. (11)

In this setting only the building on the shoulders-of-giants externality is active. The

only difference between equations (10) and (11) is that (11) sums over the expected

technology of the current innovation, Ajt, instead of a future time τ . This corresponds
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directly to the building-on-the-shoulders-of-giants externality: not only does an inno-

vator improve current technology but all future technology since innovators build on

each other’s work.14 Therefore, finite-lived patents, creative destruction, imitation, and

the building-on-the-shoulders-of-giants externality all imply that the private value of an

innovation tends to be more short-sighted than its social value. The key is that this

“short-termism” does not affect clean and dirty technologies equally. Consider a setting

in which dirty technologies are initially more advanced, but the clean technologies must

dominate in the future in the social planner’s allocation. A larger fraction of the social

value of dirty innovation is realized in the short-run than for clean innovation. In other

words, a high share of the social value from improving a solar panel today comes from

the benefits of getting better solar panels in the future, while most of the benefits from

improving coal power plants are realized today. Then, the short-termism in the market

innovation allocation implies inefficiently low clean innovation relative to dirty even with

Pigovian taxation.15

To summarize AABH provide three lessons. First, there is path dependence in the

development of clean versus dirty technologies. Second, taking into account the en-

dogeneity of innovation calls for earlier action. Third, in addition to Pigovian carbon

taxation, the optimal policy includes research subsidies specifically devoted to clean

innovation.

Acemoglu, Akcigit, Hanley and Kerr (2016) further build on AABH by calibrating

a firm dynamics model with clean and dirty innovation. A final good is produced as a

Cobb-Douglas aggregate of a mass 1 of intermediates. Each intermediate can be pro-

duced with a clean or a dirty technology, which evolve on their own ladder and are

perfect substitutes within a line. A firm is a collection of leading clean or dirty tech-

nologies in different lines. Innovation can be incremental, building on each technology

separately, or radical, building on the leading technology whether it is clean or dirty.

As a result, their model features cross-sectoral spillovers which were absent in AABH

and mitigate (without eliminating) path dependence in innovation. As in the “new DTC

models” of section 4, technical change in each line is microfounded (similar to the tasks

below) instead of immediately taking a factor-augmenting form at the aggregate level.

They calibrate their model to the US energy sector. Their conclusions are in line with

14In contrast, the optimal policy in a model with horizontal innovation and DTC need not feature
research subsidies on top of Pigovian taxation.

15Gerlagh, Kverndokk and Rosendahl (2014) make a related point in a model with clean innovation
only. This contrasts with an earlier literature of integrated assessment models with a constant ratio of
social to private value of innovation (Nordhaus, 2002, Popp, 2004, 2006, or Gerlagh and Lise, 2005).
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AABH: the optimal policy requires both (large) clean research subsidies and a carbon

tax and features a rapid switch from dirty to clean innovation.

3.2 The Complementarity case: Energy-saving Innovation

While AABH focus on the development of clean substitutes to dirty inputs, others have

focused on energy- or resource-saving innovations. In our framework, the final good is

produced with (1) but the two inputs YL and YH are replaced by a production input

YP and an energy-services input YE with ε < 1. Both inputs are produced similarly to

equation (2) with a capital-labor aggregate instead of low-skill labor for YP and energy (or

a fossil fuel resource) E for YE. The papers differ in whether there is a fixed resource flow

(Smulders and de Nooj, 2003), a constant resource price (Shanker and Stern, 2018) or an

exhaustible resource stock (Di Maria and Simone Valente, 2008, André and Smulders,

2014, and Hassler, Krusell and Olovsson, 2019). This literature seeks to account for

stylized facts regarding energy consumption and growth.

In particular, Hassler, Krusell and Olovsson (2019) build a quantitative macroeco-

nomic model. They estimate an elasticity of substitution between energy and other

inputs close to 0 and show that energy-saving technical change took off in the 70s with

the oil shocks in line with the DTC theory. Their model further predicts that thanks to

the innovation response resource scarcity will only lead to a slight increase in the energy

share. One of their conclusions is that “subsidies may not be necessary for regulating

the direction of technical change.” Why are their conclusion so different from AABH?

Because energy is a complement to other inputs and consequently a BGP arises more

easily.

Within the framework we have sketched and with one period patents, the relative

expected profits from labor-augmenting over energy-augmenting innovation obey:

ΠPt

ΠEt

=
ηP (1 + γηEsEt)

ηE (1 + γηP sPt)

pPtYPt
pEtYEt

=
ηP
ηE

(
pPt
pEt

) 1
β L

E

APt−1

AEt−1

=
ηP (1 + γηEsEt)

ηE (1 + γηP sPt)

(
LAPt
EAEt

)σ−1
σ

.

(12)

Since the two inputs are complement, the price effect dominates. When the resource

flow is constant (as in Smulders and de Nooj, 2003), innovation tends to favor the

least advanced sector (following the last expression in 12) and in the long-run, the

economy converges to a balanced growth path (BGP) with innovation in both sectors

(ΠPt = ΠEt), equal growth in the two sectors and constant factor shares (following the
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first equality in 12). When the resource flow decreases (because of resource exhaustion

or a growing carbon tax), the resulting increase in the energy share favors energy-saving

technical change (again from the last expression in 12).16 Here as well, the economy

converges in the long-run toward a BGP with a constant interior energy share but where

energy-saving technical change AEt grows faster than labor-saving technical change APt

to compensate for the reduction in the resource flow. This follows the same logic as

Acemoglu (2003) where labor scarcity leads to labor-augmenting technical change. With

a constant resource price, the logic is reversed and innovation in the long run is entirely

labor-augmenting.

The social planner solution also features balanced growth and converges toward the

same innovation allocation as in the equilibrium provided that energy is optimally priced

through a carbon tax. Research subsidies may be necessary in the transition, but their

importance is greatly reduced (Hassler, Krusell and Olovsson, 2019, show a case where

they are not necessary in the transition either, see also Hart, 2008). The“short-termism”

of the market innovation allocation now favors the least advanced technology adjusting

for resource availability, which ensures that the economy moves toward a balanced growth

path, as called for by the social planner. While public intervention is crucial to the

development of clean alternatives to fossil fuel energy, carbon pricing can do the heavy

lifting for the development of energy-saving technologies.17

A consequence of DTC is that while the short-run elasticity between energy and

other inputs is very low, the long-run energy share is constant. One may be tempted to

conclude that climate models are not missing much by ignoring energy-saving technical

change and simply assuming that energy enters final good production in a Cobb-Douglas

way. Casey (2019) shows that this would be misguided. He builds a model similar to

Hassler et. al (2019) where energy and the capital-labor aggregate are Leontief for

given technologies, but the long-run elasticity is 1 for the same reason as above. He

calibrates both his DTC model and a Cobb-Douglas economy to US data, and shows

that a given carbon tax is less effective at reducing cumulative emissions in the DTC

model. Intuitively, technological adjustment is sluggish and with Leontief technology

emissions do not decline as rapidly as in a Cobb-Douglas setting. Since climate damages

depend on the stock of emissions, this transition period matters quantitatively.

16A tax on energy, E, moves innovation toward AE when ε < 1; a tax on energy-services YE moves
innovation toward AP regardless of the value of ε.

17This conclusion may not hold in the presence of multiple equilibria as shown by van der Meidjen
and Smulders (2017).
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3.3 Applying Directed Technical Change to Environmental Questions

In the following, we review papers that use these two DTC frameworks in the context

of energy shocks, historical energy transitions, and carbon leakage.

Energy market shocks. Fried (2018) uses the oil shocks of the 1970s to calibrate

a DTC model which combines elements of both AABH and Hassler et al. (2019) but

features a more detailed representation of the economy. A final good is produced with a

production input and energy services, which are themselves an aggregate of local fossil

fuel energy, oil imports and green energy. The production input and energy services

are highly complement while the different types of energy are substitutes. Innovation

can be targeted at local fossil fuel energy, green energy or the production input. As in

AABH, emissions are proportional to the quantity of fossil fuel energy. She studies the

implementation of a carbon tax, which can cut emissions by 30% in 20 years. Such a

carbon tax redirects innovation away from fossil fuel energy toward mostly green energy.

DTC reduces the size of the necessary carbon tax by 19.2% compared to a model with

exogenous technical change.18

Acemoglu, Aghion, Barrage and Hémous (2019) build on AABH to study the shale

gas boom, which started in 2009. They show that since then the ratio of renewable

patents relative to fossil fuel patents in the electricity sector has declined sharply. To

analyze the consequences on emissions, they build a DTC model where electricity can

be green or produced with coal or natural gas. Innovation can be targeted at improving

the productivity of fossil fuel power plants or green power plants. Following a drop in

the natural gas prices (as from the shale gas boom) electricity production shifts toward

natural gas. Since natural gas is much cleaner than coal, emissions decrease in the

short-run. However, the price decline also increases the market for innovations in fossil-

fuel power plant and as a result, green innovation declines. Calibrating their model

to the US electricity sector, they find that this innovation effect eventually dominates,

so that emissions increase in the medium term following the shale gas boom. They

argue that policymakers should react to the shale gas boom by raising subsidies to green

innovation.19

18Hart (2019) also calibrates an integrated assessment model with AABH features. The optimal
policy includes both a carbon tax and clean research subsidies but the relative importance of research
subsidies is diminished particularly because of intersectoral knowledge spillovers.

19In a similar spirit, Acemoglu and Rafey (2019) look at the effect of an exogenous shock to geo-
engineering technology. They find that when environmental policy is endogenous and commitment is
impossible, such a shock may decrease clean innovation as it would reduce future environmental taxes.
Progress in geoengineering technology may then backfire leading to an increase in emissions.
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Historical energy transitions. DTC can also be used to explain historical energy

transitions. Stern, Pezzey and Lu (2020) build on Acemoglu (2002) to explain the Indus-

trial Revolution as resulting from the transition from a wood-powered to a coal-powered

economy. In their model, the final good is produced with two substitute intermediate

inputs; one wood-intensive and the other coal-intensive. Innovation may be directed at

either. Wood is in fixed supply each period while coal is supplied at a fixed extraction

cost. Constant long-run growth is only possible in a coal-based economy, and their model

can generate transitional dynamics akin to the British Industrial Revolution: Initially,

the economy relies mostly on wood and grows slowly but with economic development it

progressively shifts toward coal which spurs innovation in coal technologies through a

market size effect. This leads to a take-off in economic growth.20

Lemoine (2018) builds a DTC model where different energy services are produced

using two complement inputs, machines and natural resources (as in Acemoglu et al.,

2019), and where natural resources are isoelastically supplied. Even though the model

generates endogenous energy transitions, a calibration shows that the optimal climate

policy still relies on clean research subsidies to accelerate the transition to renewables.

Carbon leakage. The models we have studied so far all consider either a country in

isolation or a global solution. In practice, international climate negotiations have stalled

and countries have largely conducted climate policy unilaterally. International trade,

however, may reduce the scope for unilateral actions as it may lead to“carbon leakage”(a

move of the production of polluting goods from regulated to unregulated countries). The

DTC literature shows that the elasticity of substitution between traded goods and the

pattern of innovation/imitation across countries play a crucial role in determining carbon

leakage. Di Maria and Smulders (2004) consider a two-country (North, South), two

goods (energy-intensive, non–energy-intensive) trade model where the North innovates

while the South imitates exogenously. The implementation of a carbon tax in the North

and the ensuing reallocation of energy-intensive production to the South leads to an

increase in innovation in the non-energy intensive sector. This reduces carbon leakage

when the goods are substitute and amplifies it when they are complements (innovation

in the energy-intensive sector is resource-augmenting and therefore resource-saving in

the complement case). Di Maria and van der Werf (2008) start from the same set-up

20Similarly, Gars and Olovsson (2019) build a DTC model to explain the 19th century Great Diver-
gence. In their model, a switch from wood-powered to fossil-fuel powered innovation leads to faster
economic growth. However, one country switching to fossil fuels raises their world price, which reduces
innovation in fossil-fuel technologies elsewhere.
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but allow both countries to innovate on a global market. They find that carbon leakage

is always reduced by the innovation response to a unilateral cut in emission. Acemoglu,

Aghion and Hémous (2014) and van den Bijgaart (2017) focus on endogenous imitation

or innovation by the South (the unregulated country) by extending AABH to a two-

country set-up. In both cases, the technological response by the South following a

unilateral carbon tax by the North amplifies carbon leakage.

Hémous (2016) analyzes which unilateral policy can be successful with endogenous

innovation. He also considers a two-country, two-goods (energy-intensive, non–energy-

intensive) trade model with unit elasticity between the two, but the energy-intensive good

can be produced in a clean or a dirty way (as in AAHB). In each country, innovation

can be targeted at the non-energy-intensive sector, or within the energy-intensive sector

at clean or dirty technologies. The innovation response from the unregulated country

amplifies carbon leakage: the implementation of a unilateral carbon tax displaces the

production of the energy-intensive good toward the unregulated country, which increases

dirty innovation in that sector when the dirty technology is more advanced than the clean

one there. A unilateral carbon tax may then backfire and lead to an increase in global

emissions. Instead, a green industrial policy, consisting of green research subsidies and

possibly carbon tariffs, can reduce emissions in both countries by directing innovation

within the regulated country toward the clean sector, and innovation in the unregulated

country toward the non-energy intensive sector and (with strong knowledge spillovers)

clean energy. Overall, trade acts a double-edged sword: unilateral carbon taxes are less

effective, but an appropriate policy can decrease emissions globally.21

Other applications and future research. Therefore DTC theory often provides policy

answers that differ from models with exogenous technology and accounts well for his-

torical trends. This calls for further integrating DTC in climate change economics. In

particular, microfounded DTC should be more systematically incorporated in Integrated

Assessment Models. Dietz and Lanz (2019) is a recent example in a detailed multisec-

toral model with endogenous population dynamics. Kruse-Andersen (2020) also includes

population dynamics into a DTC model. Another important avenue is to expand the

2-country set-ups discussed above for more realistic models of international environ-

mental agreements building on game-theoretic contributions such as Barrett (2006) and

21Witajewski-Baltvilks and Fischer (2019) also build on AABH but with trade in machines so that
innovation incentives reflect market conditions in both countries. A unilateral clean research subsidy
can redirect innovation toward clean technologies in both countries if the regulated country is large
enough. Moreover, it may induce the government of the unregulated country to introduce their own
clean research subsidy as long-run growth is higher when the two countries innovate in the same sector.
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Harstad, Lancia and Russo (2019). Finally, climate change is a problem riddled with

uncertainties about climate dynamics, climate damages but also technological prospects.

The models reviewed here are all deterministic but the interaction between technology

and uncertainty is a promising avenue for future research (see Heutel, Moreno-Cruz and

Shayegh, 2018, who show that geoengineering can be used as an insurance mechanism

against climate uncertainty).

4 Automation and new Directed Technical Change models

We have argued that the canonical DTC has provided insights both for the study of

income inequality and environmental issues. Nevertheless, a few papers have criticized

this framework for being too imprecise in describing the effect of technology on work.

Among these, Autor, Levy and Murnane (2003) postulate the “routinization hypothesis”

by introducing the notion of tasks: the work inputs required for producing a given

output. They argue that since computers are highly capable of performing tasks that can

be codified in a computer program—labeled routine tasks—they are disproportionately

substitutable to workers performing such tasks. Specifically, they model output in an

industry i as:

y(i) = (lR(i) + x(i))βi l1−βiN (i), (13)

where lR denotes the input of routine labor, lN the input of non-routine labor, x the use

of computer capital and βi ∈ (0, 1) the importance of routine-tasks in a given industry.

Autor et al. (2003) formalize technical progress as the continuously declining price of

computer capital. When both are employed, the specification above implies that low-

skill wages equal the price of computer capital and correspondingly decline. They show

empirically that the implementation of computer capital correlates strongly with changes

in the use of routine-tasks across industries. Acemoglu and Autor (2011) argue that the

canonical model based on factor-augmenting technical change cannot account for several

features of the evolution of the income distribution. These include a continuous increase

in labor income inequality and absolute declines in low-skill wages (see also Acemoglu and

Restrepo, 2020b). Furthermore, the canonical model does not microfound automation

as the replacement of workers with machines in the execution of certain tasks. To do so,

they extend the Autor et al. (2003) model with exogenous technology and endogenous

assignment of skills to tasks.

While Habakkuk (1963) already postulated that labor scarcity encouraged innova-
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tion in the US, Zeira (1998) is the first to model automation in a growth model. Output

is produced as an aggregate of intermediates, each of which can be produced with ei-

ther a manual technology or more capital-intensive “automated” technology. Exogenous

technological progress in TFP raises the wage so that a growing number of intermedi-

ate producers adopt the industrial technology over time. He then focuses on the role

of automation in amplifying productivity differences across countries. Acemoglu (2010)

shows that Habbakuk’s hypothesis can only hold if innovation is labor-saving. Peretto

and Seater (2013) build a dynamic model where innovation in automation changes the

exponent of an aggregate Cobb-Douglas production function. Yet, none of these papers

feature DTC since they only consider one type of innovation.

4.1 Automation and non-balanced growth

A recent literature, starting with Hémous and Olsen (forthcoming; henceforth HO), has

explicitly built task-models into DTC frameworks. Their model endogenizes several

aspects of the automation process described in Zeira (1998) and provides some answers

to the Acemoglu and Autor (2011) critique of the DTC literature. HO build on the

expanding-variety model (Romer, 1990) and consider an economy in which a final good

is produced as a CES aggregate of a mass N of products:

Y =

(∫ N

0

y(i)
σ−1
σ

) σ
σ−1

,

with σ > 1 and y(i) being the use of product i. Each product is produced monopolisti-

cally using a generalization of equation (13):

y(i) =
(
l(i)

ε−1
ε + α(i)x(i)

ε−1
ε

) εβ
ε−1

h(i)1−β, (14)

where l(i) denotes low-skill workers and h(i) high-skill workers. These labor inputs

correspond to different tasks, so that each product comes with its own tasks. Automation

occurs when machines can be used to (partly) substitute for low-skill labor in a task and

α (i) switches from 0 to 1. In the baseline model, machines are produced one-for-one with

the final good.22 Technology is characterized both by the number of products, Nt, and the

share of automated products (or low-skill tasks) Gt. Automation is therefore a secondary

22In contrast to Autor et al. (2003) the price of an existing machine is fixed, but there is technological
progress insofar as machines can be used in a growing number of tasks.
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innovation which occurs in product lines developed through horizontal innovation. This

makes HO closer in spirit to Aghion and Howitt (1996).

Aggregate output can be represented as:

Y = N
1

σ−1

{1−G} 1
σ

{
(LN )β(HP,N )1−β︸ ︷︷ ︸

}
T1

σ−1
σ

+G
1
σ

{
[(LA)

ε−1
ε + (X)

ε−1
ε ]

εβ
ε−1 (HP,A)1−β︸ ︷︷ ︸

}σ−1
σ

T2


σ
σ−1

,

(15)

where LA (LN) denotes the total mass of low-skill workers in automated (non-automated)

firms, HP,A (HP,N) the total mass of high-skill workers hired in production in automated

(non-automated) firms and X =
∫ N

0
x(i)di total use of machines. The first term T1

captures the case where production is non-automated. The second term T2 represents the

factors used within automated products and features substitutability between low-skill

labor and machines. Equation (15) shows that G is not a factor-augmenting technology

but the share parameter of the “automated” products nest. N
1

σ−1 plays the role of a

TFP parameter.

HO assume that µ = β(σ−1)/(ε−1) < 1, which ensures that automation is low-skill

labor-saving at the firm level.23 Yet, this does not necessarily imply that automation is

low-skill labor-saving for the aggregate economy. For given N and G the static equilib-

rium can be described as the intersection of two equations, illustrated in Figure 1, where

wL and wH denote the wages of low- and high-skill workers, respectively. The unit isocost

curve draws the cost of producing one unit of final good and is a downward sloping curve

in (wL, wH) space. The relative demand curve is upward sloping.24 When there is no

automation, G = 0, the aggregate economy inherits the Cobb-Douglas structure and the

relative demand curve is linear. With G > 0, the curve bends upwards: automated firms

can substitute more toward machines and non-automated firms lose market size when

wL rises. An increase in automation pivots this curve counter-clockwise, which reduces

low-skill wages, a negative aggregate substitution effect. It also increases the productive

capabilities of the economy which pushes the isocost curve to the northwest, a positive

aggregate scale effect. Consequently, while high-skill wages and the skill premium are

always increasing in G, the effect on low-skill wages is ambiguous. In particular, for low

23Automation both lowers the cost of production, which increases demand for low-skill labor, and
allows for the substitution towards machines, which lowers it. The latter effect dominates when µ < 1.

24The unit iso-cost is given by
σN

1
1−σ

(
G(1+w1−ε

L )µ+(1−G)w
β(1−σ)
L

) 1
1−σ w1−β

H

(σ−1)ββ(1−β)1−β
= 1, and the relative demand

curve by wHH
wLL

= 1−β
β

G(1+wε−1
L )µ+(1−G)

G(1+wε−1
L )µ−1+(1−G)

.
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G, the aggregate scale effect dominates and low-skill wages rise in G, but for higher levels

of automation, the effect is negative (an analogous point is made informally in Autor,

2015). Horizontal innovation, an inflow of non-automated products, raises both low- and

high-skill wages and, for high enough N , lowers the skill premium. Figure 1 illustrates

a central feature of HO. For any paths of technology [Nt, Gt]
∞
t=0 ∈ (0,R+)× (0, 1) where

limt→∞Nt = ∞ and Gt has a strictly positive limit, low-skill wages must grow at a

positive but lower rate than high-skill wages. This will make a BGP with equal growth

in low- and high-skill wages impossible.
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HO endogenize both Nt and Gt. Horizontal innovation uses high-skill workers: Ṅt =

γNtH
D
t . Moreover, a monopolist of a non-automated firm can hire high-skill workers,

hAt , to automate their production technology with Poisson rate ηGκ̃
t

(
NhAt

)κ
, where

κ ∈ (0, 1) controls the curvature of the innovation function and κ̃ ∈ [0, κ] parameterizes

a knowledge externality in automation innovation. This gives the law of motion:

Ġt = ηGκ̄
t (h

A
t Nt)

κ(1−Gt)−Gtg
N
t , (16)

where gNt = Ṅt/Nt. Equation (16) has strong similarities with a capital accumulation

function and the stock of automated tasks can be seen analogously: Automation of

existing tasks accumulates automation stock, and the inflow of (not-yet) automated tasks

depreciates the existing stock of automation. Both of these innovation processes respond

to economic incentives. The resulting state of technology (Nt, Gt) then determines wages

in the economy.

Denote V A
t and V N

t the value functions of automated and non-automated firms,

respectively. Non-automated firms employ high-skill workers to automate the production

process implying the following first order condition for automation innovation:

ηκGκ̃
t

(
Nth

A
t

)κ−1 (
V A
t − V N

t

)
= wHt/Nt. (17)

The number of automation innovations therefore depends on the ratio between the in-

crease in firm value associated with automation and its effective cost:

V A
t − V N

t

wHt/Nt

∝̃ πAt − πNt
GtπAt + (1−Gt) πNt

=
1−

(
1 + wε−1

Lt

)−µ
Gt + (1−Gt)

(
1 + wε−1

Lt

)−µ , (18)

where “∝̃” refers to “approximately proportional” and πAt and πNt are the profits of

automated and non-automated firms. Intuitively, with a positive discount rate, V A
t −V N

t

moves with πAt −πNt to a first approximation. Furthermore, since both aggregate profits

and high-skill labor compensation are proportional to output, wHt/Nt is proportional to

average profits. The second half of the equation follows from πNt /π
A
t = (1 + ϕwε−1

L )−µ.

This highlights low-skill wages as the key determinant of automation innovations. When

wLt ≈ 0, there is little advantage to being automated and πAt ≈ πNt implying little

automation innovation. When wLt →∞, the right-hand side of equation (18) approaches

a constant and with it innovation in automation. In contrast with the classic DTC model

with factor-augmenting technical change, the direction of technical change is entirely
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determined by a price effect with no market size effect (as in Acemoglu and Restrepo,

2018, below). Intuitively, horizontal innovation and automation affect the same market.

This price effect bears similarity to Zeira (1998), where the adoption of a labor-saving

technology also depends on the price of labor.

HO show that this economy cannot feature a BGP with equal growth in low- and high-

skill wages. An economy starting with low Nt and consequently low wLt and automation

is initially nearly on a BGP growing just through horizontal innovation. As low-skill

wages grow so does the incentive to automate and the economy endogenously shifts

towards automation innovation. This leads to an endogenous rise in the skill premium

and a decline in the labor share as experienced in the US since the 1980s. Eventually,

the model features an asymptotic steady state where Gt is constant, all wages grow, but

the skill premium continues to grow. HO take an extended version of the model where

machines belong to a capital stock to the data. The model can replicate quantitatively

(and endogenously) the evolution of the skill premium, the labor share, automation and

productivity growth of the United States from 1963 to 2012.

4.2 Automation and balanced growth

Acemoglu and Restrepo (2018, henceforth AR) also consider DTC in a task model but

reach sharply different conclusions. In contrast to HO, their model features a unit

measure of task and output obeys:

Y =

(∫ N

N−1

y(i)
σ−1
σ di

) σ
σ−1

. (19)

For this review, we restrict σ > 1. Therefore, the introduction of a new task N re-

places an old, now obsolete task, N − 1. Tasks are produced monopolistically using the

production function:

y(i) = α(i)k(i) + γ(i)l(i), (20)

where k(i) is the use of capital in the production of task i, l(i) is the use of labor, and

α(i) ∈ {0, 1} is the automation index. γ(i) = eAi is the labor-augmenting productiv-

ity of task i, where A > 0: new tasks feature higher labor productivity, though once

automated, all tasks have the same (capital) productivity.

In the DTC case, automation is costly so that all automated firms use machines.

With γ(i) increasing in i, there is a threshold I such that tasks below I are automated
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(α(i) = 1) and sold at price p(i) = σ/(σ − 1)R, where R is the gross return on capital.

In contrast, tasks in [I,N ] are non-automated (α(i) = 0) and sold at price p(i) =

σ/(σ − 1) ×W/γ(i), where W is the real wage. Using (19), (20), and factor clearing

conditions for K and L, one gets the aggregate production function:

Y =

{
[I − (N − 1)]

1
σ K

σ−1
σ +

(∫ N

I

γ(i)σ−1di

) 1
σ

L
σ−1
σ

} σ
σ−1

. (21)

Equation (21) demonstrates that technology, N and I, determine factors shares. Hence,

as in HO, technology is not factor-augmenting.25

For given factors K and L, W/R depends positively on the introduction of new

non-automated products, N , and negatively on the automation of existing products, I.

An increase in N always increases the absolute level of wages. As in HO, an increase

in automation has an ambiguous effect on wages due to the combination of a scale

effect (referred to as productivity effect in AR) and a substitution effect (referred to

as a displacement effect). The latter effect may dominate and leave automation labor-

saving. This occurs in particular when R ≈ W/γ(i), i.e. the cost savings of automation

are relatively low, a situation deemed a “so-so” automation in Acemoglu and Restrepo

(2019a). Acemoglu and Restrepo (2019a, 2020a,) argue that many modern innovations

in automation have this feature and correspondingly are labor-saving.26′27

Following this, AR endogenizes capital through a standard Ramsey setting. Innova-

tion is undertaken by scientists who are in fixed supply S and either develop new tasks

or automate existing tasks, so that Ṅ(t) = κNSN(t) and İ(t) = κISI(t) where SN and

SI are the respective number of scientists. AR assume that innovators must compensate

the previous incumbent. Here we focus on BGPs where both types of innovation are

active. This gives the value functions of automating a task and introducing a new one,

respectively:

25In fact, one can write the production function (21) as Y =
[
(AK)

σ−1
σ + (BL)

σ−1
σ

] σ
σ−1

, where

A ≡ (I − N + 1)
1

σ−1 and B ≡ (
∫ N
I
γ(i)σ−1di)

1
σ−1 . When σ > 1, automation, I, increases A and

decreases B and can therefore be seen as a combination of capital-augmenting and labor-depleting
technical change.

26The aggregate substitution effect of HO is derived for an endogenous use of machines as intermediate
inputs, whereas AR hold the stock of capital constant. This distinction is explicit in Acemoglu and
Restrepo (2019a) which refers to the endogenous response of capital as a “capital-deepening” effect.

27Acemoglu and Restrepo (2020a) find that robotization leads to a decline in employment which
suggests that the aggregate substitution effect dominates the scale effect.
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VI(t) = Y (t)

∫ ∞
t

e−
∫ τ
t (R(s)−δ−gy(s))ds (πI(τ)− πN(τ, I(t))) dτ, (22)

VN(t) = Y (t)

∫ ∞
t

e−
∫ τ
t (R(s)−δ−gy(s))ds (πN(τ,N(t))− πI(τ)) dτ. (23)

where gy(t) = Ẏ (t)/Y (t), R(s)− δ is the return to capital net of depreciation, πN(t, i) =

σ−1 (W (t)/γ(i))1−σ denote the profits of non-automated tasks/products and πI(t) =

σ−1R(t)1−σY (t) those of automated tasks/products. Equation (22) reflects the total

discounted value of being a monopolist of an automated task less compensation to the

previous non-automated monopolist at the time of automation, t, I(t). Equation (23)

reflects the analogous expression for a monopolist developing a new non-automated task.

Therefore, the value function of a new automated task, VI(t), depends positively on

the (path of) W (t)/R(t), and the value function of a new non-automated task, VN(t),

negatively.

Combining this insight with the fact that W/R depends positively on N − I, AR

demonstrate that under appropriate regularity conditions (on ρ and κI/κN) a BGP ex-

ists where κIVI = κNVN , and all variables: W (t), K(t), Y (t), VI(t) and VN(t) grow

at the same rate while R(t) is constant.28 Further, N and I grow at the same rate

such that the share of products that are automated, 1 − N + I as well as the factor

shares are constant. In the full paper, AR include heterogeneous effort cost for scientists

working in each type of innovation, which ensures that the allocation of scientists varies

smoothly. They demonstrate that this BGP is locally stable such that a small pertur-

bation in the stock of automation, I, above its BGP path reduces W (t)/R(t), relatively

discourages automation and correspondingly brings the economy back to the BGP level

of automation

Therefore, AR demonstrate that one can build an economy with tasks and automa-

tion that replicates the features of a model with purely labor-augmenting technical

change. In their model, workers’ role in the economy remains undiminished despite

the continued presence of automation. This is in sharp contrast to HO who find that no

BGP is possible and the role of low-skill workers in the economy must diminish as the

economy grows. Therefore, the two models present distinct views on the development of

28The incentive for automation innovation in AR depends on the relative cost of labor and capital,
whereas it only depends on low-skill wages in HO. This difference arises from the assumption that
machines are intermediate inputs in the baseline HO model but is immaterial. In fact, when HO take
the model to the data, machines are a part of the capital stock and the incentive to automate similarly
depends on the relative cost of low-skill labor to capital.
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the US economy over the past decades. Seen through the lens of AR, the recent decline

in the labor share in the United States must come from factors outside of the model.

Acemoglu and Restrepo (2019b) compare the United States economy before and after

1987 and argue that the latter period features lower overall productivity growth. They

ascribe this shift to tax advantages for equipment compared to labor, the popular focus

on automation as well as declining government support for innovation which tends to

favor the creation of new tasks. In contrast, seen through the lens of HO, the recent

development of the US economy is simply consistent with automation endogenously and

gradually increasing as an economy matures. The extent to which the increase in au-

tomation innovation reflects the endogenous development of an economy or shocks and

policy changes is an important issue for future research.

4.3 Other models of automation

The distinct theoretical predictions of HO and AR arise because of different assumptions

on labor-augmenting technical progress in new products. To demonstrate this, consider

a combination of the two by replacing equation (20) with:

y(i) = [b(i)l(i) + α(i)b(i)ςx(i)]β [b(i)h(i)]1−β , (24)

where variables are as in HO and b(i) represents a technology level. We are interested

in whether low and high-skill wages can grow at the same rate for an economy with an

asymptotic BGP. With this in mind, we consider exogenous technical change in which

b(i) = exp(Bi) and Nt = nt for some n > 0 and where products are automated at

a constant Poisson rate. The parameter ς ∈ [0, 1] reflects factor-augmenting technical

change for machines, where ς = 0 ensures only labor-augmenting technical change.

Aggregate output continues to be given by a standard CES production function using

all products, Nt. The stocks of low-skill and high-skill labor are exogenously given,

whereas machines are produced one-for-one with the final good. In the online Appendix,

we demonstrate that only for ς = 0 will low- and high-skill wages grow at the same rate

asymptotically. When ς > 0 low-skill wages must grow slower. This result is in the spirit

of Uzawa’s theorem but differs in so far as it refers to technological progress from one

product to another instead of aggregate technological progress

A related result is demonstrated in Ray and Mookherjee (2020). In a general frame-

work with both capital (complementary to labor) and robots (substitute for labor) they
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demonstrate that under general conditions, an economy which grows through capital ac-

cumulation must eventually have a labor share going towards zero, although wages might

be growing asymptotically like low-skill wages in HO. They extend their model to include

DTC, which permits but does not require technological change to be labor-augmenting

as in AR. They show that asymptotically capital-augmenting technical change will be

at least as rapid as labor-augmenting technical change and consequently growth in labor

income will still be lower than that of the overall economy.

Neither HO nor AR make strong predictions about whether the direction of tech-

nology is efficient. More interestingly, Acemoglu and Restrepo (2019b) argue that inno-

vation is inefficiently directed toward automation because the benefits from automation

may be more front-loaded (analogously to dirty innovation in AABH). Acemoglu and

Restrepo (2020c) argue that this is particularly the case for AI. This could be easily mi-

crofounded in the HO framework by assuming that automation can also be undertaken

by entrants. Since the profits realized once a good is automated partly motivate the

creation of new intermediates, the incentive for horizontal innovation would be lower if

there is a risk that another firm reaps these profits. In this sense, the returns to horizon-

tal innovation would be back-loaded relative to the returns to automation, a situation

akin to clean innovation relative to dirty in AABH.

In contrast with the models described above, Aghion, Jones and Jones (2017) model

automation in a task framework when the different tasks are complement but ignore

other innovations (in equation 19, σ < 1 and N is fixed). Automation still allows for the

use of machines instead of workers in a given task, but with σ < 1, it is now equivalent

to labor-augmenting technical change combined with capital-depleting technical change

(see footnote 25). They show that there is a path of automation that is nearly consistent

with balanced growth. It would be interesting to see whether this proposition can be

reconciled with endogenous innovation. Prettner and Strulik (2020) model automation

as additional varieties of machines which are imperfect substitute with labor (so that

automation does not directly lead to the replacement of workers in existing tasks).29

Further, while both HO and AR focus on automation of the goods production and

have models where the asymptotic growth rate is finite and constant, in a second model,

Aghion, Jones and Jones (2017) explicitly focus on automation of the idea production

function. They show that whether explosive growth happens depends on whether a

29In a model with exogenous technical change, Martinez (2019) also derives an aggregate CES pro-
duction function from a microfoundation of automation. In a cross-industry analysis, he finds evidence
that automation was a driving force behind the recent decline of the US labor share.
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model features “increasing returns to accumulable factors”, ie. the product of the extent

to which the product and idea functions scale with the reproducible factors of technology

and capital. For instance, in either HO or AR, if any of the tasks currently performed by

high-skill workers/scientists in the development of new products/tasks were automatable,

the models would feature explosive growth.

Zeira and Nakamura (2018) study the effects of automation on unemployment in a

model related to HO but with general processes of automation and horizontal innovation.

Automated tasks can be produced solely by capital but to allow for a BGP they require

the productivity of capital to be lower for newer tasks. They consider a small open

economy with free capital movement and assume that workers who are displaced by

automation stay unemployed for a fixed period of time before finding a new job. On

their (asymptotic) BGP, the fraction of tasks performed by humans automated in every

period declines toward zero and with it unemployment. Casey (2018) also develops a

model which features technological unemployment in equilibrium. In his model with

DTC, innovation might speed up both labor productivity growth and unemployment.

This new DTC literature is still in its infancy and more research can and should be done

particularly to analyze the policy implications of DTC.

5 Empirical Evidence

5.1 In environmental economics

A large empirical literature has looked for evidence of induced technical change in envi-

ronmental economics. Popp, Newell and Jaffe (2010) and Popp (2019) provide extensive

literature reviews and here we mainly focus on a few recent papers. Newell, Jaffe and

Stavins (1999) provide the first example by showing that technical change in air condi-

tioners was biased against energy efficiency in the 1960s when energy prices were low,

but that this bias reversed after the energy shocks of the 70s. Most of the early literature

uses macro data in contexts where identification is difficult. In a seminal paper, Popp

(2002) uses time-series data on US patents and finds a long-run elasticity of energy ef-

ficiency innovation on energy prices of 0.35. In a panel of US manufacturing industries,

Brunnermeier and Cohen (2003) find that environmental patents increase following an

increase in pollution abatement expenditures. In a panel of OECD countries, John-

stone, Haščič and Popp (2010) find that public policies have an effect on innovation in

renewable energy with broad policies (such as a renewable mandate) being more effec-
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tive for technologies closer to competing with fossil fuels (namely wind in their sample).

Technologies farther from the market (solar) require more targeted subsidies. Such re-

sults are consistent with the AABH framework. See also Verdolini and Galeotti (2011)

who include knowledge spillovers and Dechezleprêtre and Glachant (2011) who separate

domestic and foreign policies.

Aghion, Dechezleprêtre, Hémous, Martin and van Reenen (2016) go further by pre-

senting firm-level evidence. They focus on the car industry from 1978-2005 and distin-

guish between clean patents (associated with electric, hybrid and hydrogen engines) and

dirty patents (associated with fossil fuel engines). To measure the effect of fuel prices

on innovation at the firm level, they take advantage of the fact that innovators in the

car industry are selling in several national markets to build a firm-specific fuel price.

This fuel price is computed as a weighted average of country-level fuel prices where the

firm-specific weights are computed using a firm’s patent history pre-sample (as a proxy

for firm’s market shares).30 In the spirit of a shift-share instrument, the effect of fuel

price on firms’ innovation is identified by cross-country variations in fuel prices or taxes

affecting firms differently according to their exposure to different markets. They esti-

mate a large positive effect of fuel prices on clean innovation with an elasticity close to 1

and a negative effect on dirty innovation with an elasticity close to -0.5.31 Furthermore,

they find evidence for path dependence. Through simulations, they show that, in line

with AABH, path dependence exacerbates the gap between clean and dirty knowledge

in business-as-usual but actually reduces the increase in fuel prices necessary to induce

clean technology to catch-up with dirty ones by 2020.

Several papers have used the same method to get variation at the firm level. Noailly

and Smeets (2015) study how clean and dirty innovations in electricity production re-

spond to both fuel price and market size where market size is calculated in an analogous

manner (see also Lazkano, Nøstbakken and Pelli, 2017 and Lööf, Perez and Baum, 2018).

Overall, their results support the DTC hypothesis: an increase in renewable market size

or fossil fuel prices increase renewable innovation and a larger fossil fuel market leads

to more fossil fuel innovation. Surprisingly, an increase in fossil fuel price also leads to

30Since a patent only protects an invention in the country in which it is applied for, whether a firm
decides to apply for a patent in a given country or not reflects how important this country is for the
firm. Coelli, Moxnes and Ulltveit-Moe (forthcoming) show empirically that this is a good proxy for
market share.

31In line with these results, Knittel (2011) finds that there is a trade-off between improving fuel
efficiency and other vehicle attributes, and that technical progress has responded to the implementation
of regulatory standards.
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a large increase in fossil fuel innovation but an increase in energy-efficiency innovations

drives this. Their results also support path dependency.

Using different identification strategies, other recent papers measure the direct effect

of environmental policies on innovation with microdata. Calel and Dechezleprêtre (2016)

show that the EU ETS cap-and-trade system has increased low-carbon innovation by

10% in regulated firms. To establish this result, they take advantage of the existence

of regulatory thresholds at the plant level and follow a matched difference-in-difference

strategy where they compare regulated firms with unregulated firms of the same size.

Calel (2020) finds similar results. Dugoua (2020) evaluates the effect of international

environmental agreements on innovation. She focuses on the Montreal protocol, which

has regulated the use of CFC since 1989 and finds that it led to an increase of 4000%

in patents pertaining to CFC-substitutes relative to similar molecules. Howell (2017)

exploits that the US Department of Energy allocates R&D grants to small businesses

through a grading scheme. Using a regression discontinuity analysis, she finds that

receiving a grant increases patenting, survival rate and venture capital, with stronger

effects for firms likely to be more financially constrained.

Having established the empirical existence of directed technical change from price

and market size effects, the literature is moving to study other factors driving technical

change as well as interaction effects. For instance, Aghion, Bénabou, Martin and Roulet

(2020) extend the set-up of Aghion et al. (2016) to study both the role of consumer

value and competition in driving innovation in the car industry. They find that when

consumers value the environment more, clean innovation in the car industry increases,

particularly when competition is more intense. They estimate that the simultaneous

increase in environmental valuation and competition which happened between 1998-2002

and 2008-2012 had the same effect on innovation as a 40% increase in fuel price.

5.2 In labor economics

The empirical literature on DTC in labor economics is comparatively smaller. A few

papers show that labor market conditions affect labor-saving technology adoption in

health care (Acemoglu and Finkelstein, 2008), agriculture (Hornbeck and Naidu, 2014,

and Clemens, Lewis and Postel, 2018), and manufacturing (Lewis, 2011). Both Lor-

dan and Neumark (2018) and Aaronson and Phelan (2019) look at the consequences

of minimum wage hikes on routine jobs. Acemoglu and Restrepo (2019c) find that ag-

ing is associated with greater adoption of robots and other automation technologies in
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cross-country regressions. Further, this effect is stronger in industries relying more on

middle-skill workers in industry x country-level regressions. More importantly, for the

purpose of this review, they also find a positive correlation between aging and patenting

in robotics. Alesina, Battisti and Zeira (2018) find that across countries, labor market

regulations are positively correlated with innovation in low-skill intensive sectors.

A few recent papers use micro evidence. Dechezleprêtre, Hémous, Olsen and Zanella

(2019) develop a new classification of patents in the machinery sector as automation

or non-automation by combining information on patent texts and technological classes.

They build on the empirical strategy of Aghion et al. (2016) taking advantage of the

market structure for most innovation in automation technology: innovation is highly

concentrated in a few large companies which sell their technology to other (typically

manufacturing) firms around the world. Consequently, the demand for automation, and

with it the incentive to innovate, is determined by the wages faced by these potential

customers. They compute a proxy for the low- and high- skill wages faced by these

customers by taking a weighted average of country-level wages where the weights are

calculated using the geographical dispersion of patents pre-sample. They find a large

positive effect of low-skill wages on automation innovations with an elasticity between

2 and 4. In line with capital-skill complementarity, high-skill wages tend to reduce

automation innovations. In contrast, wages do not have a significant effect on non-

automation innovations in machinery. Moreover, they show that the Hartz reforms –

which increased the flexibility of labor market – in Germany led to a relative decrease

in automation innovations in non-German firms more exposed to Germany.Relatedly,

Bena and Simintzi (2019) attempt to distinguish process from product innovations in

patent data and find that firms with better access to the Chinese labor market decrease

their share of process innovations after the 1999 U.S.-China trade agreement. Note that

process and automation innovations may overlap but are distinct concepts.

Several papers use immigration to relate labor scarcity to innovation. San (2019)

shows that following the exclusion of Mexican seasonal agricultural workers, patenting

increased for crops that rely more on them. Danzer, Feurerbaum and Gaessler (2020)

rely on the German regional allocation of ethnic German migrants from the collapsing

Soviet Union. They also classify patents as automation or non-automation and find that

regions receiving more immigrants developed fewer automation patents. Andersson,

Karadja and Prawitz (2020) use an IV strategy to show that Swedish emigration to the

US led to higher wages and innovation in the most affected municipalities. They do
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not, however, look at the direction of innovation. In contrast, Doran and Soon (2020)

find that innovation decreased in the US cities most affected by the 1920 immigration

quotas which reduced immigration from Southern and Eastern Europe. These, perhaps,

contradictory results highlight that analyzing the effect of labor scarcity on innovation

requires distinguishing between different forms of innovation.

6 Conclusion and Future Avenues

The literature has established that innovation responds strongly to market incentives and

that its endogeneity matters for macroeconomic outcomes. The original DTC framework

of Acemoglu (1998) has been successfully applied in various contexts. A recent literature

has developed new DTC models to analyze automation. A potential avenue for future

research is to use these new models in other contexts, notably environmental economics.

Our review has identified two important issues. First, whether the economy is on

a BGP? Should this not be the case, DTC can account for path dependence in energy

technologies in environmental models and for growing income inequality in labor models.

In contrast, on a BGP, an economy would revert to the same path after shocks. Testing

for the existence of a BGP would be a complex but rewarding empirical endeavor.

Second, is the gap between the private and social returns of innovation the same for

all technologies? The answer to this question determines whether industrial innovation

policies are called for. In the environmental context, AABH and the literature that

followed provide a strong case for a green innovation policy: climate policy should be

designed with innovation at the forefront. The question is more open in the labor context:

should automation be encouraged or hindered? Future research should delve deeper into

this important issue, particularly, because the DTC labor literature has paradoxically

sidelined the distributional aspects of innovation policy.
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