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Abstract

Do higher wages induce more automation innovation? We identify automa-
tion patents in machinery. We show that a higher automation intensity predicts
a decline in routine tasks across US sectors. Then, we estimate how innovating
firms respond to changes in their downstream firms’ low- and high-skill wages. We
compute these wages by combining macroeconomic data on 41 countries with inno-
vating firms’ global market exposure. Higher low-skill wages increase automation
innovation (but not other machinery innovation) with an elasticity of 2-5. Fi-
nally, we show that the German Hartz labor market reforms reduced automation

innovations by foreign firms more exposed to Germany.
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1 Introduction

Do higher wages lead to more labor-saving innovations? And if so, by how much?
Automation technologies accelerate and political campaigns push for higher minimum
wages. Economic theory, however, suggests that firms innovate more in automation tech-
nology when labor costs increase. This would affect the long-term effects of such policies.
But, while the theoretical argument is well-understood, empirical evidence for induced
automation is lacking. Current research faces two challenges: identifying automation in-
novations and finding exogenous variation in labor costs. Accordingly, our paper makes
two contributions: we develop a new classification of automation innovations based on
patent data, and isolate exogenous variation in labor costs from the innovating firms’
perspective. We find that a 1% increase in low-skill wages induces between 2 and 5%
more automation innovations.

For our classification, we aim to identify automation innovations that allow for the
replacement of workers with equipment in some tasks. Our classification follows a two-
step procedure: First, we classify technology categories in machinery (IPC and CPC
codes) using patents’ text and second, patents using their technology categories. This
procedure leverages that the combined wording of many patents improves the signal of
automation characteristics and permits classifying patents without text. The resulting
classification covers a wide range of automation technologies. It is transparent and map-
pable to a detailed sectoral level. Our classification is broader than robots but stricter
than others used in the literature (such as Mann and Piittmann, 2021). As a validation
exercise, we reproduce the cross-sectoral analysis of Autor, Levy and Murnane (2003)
but add a measure of the automation intensity of equipment based on our classification.
We find that in the United States, sectors that use more automation-intensive equipment
saw larger decreases in routine tasks.

We then proceed to our main empirical analysis which studies how automation inno-
vations respond to changes in wages. We exploit plausibly exogenous variation in labor
costs from the innovating’s firm perspective using a shift-share design. Automation in-
novators are often equipment manufacturers which sell their machines to downstream
firms in various countries. Automation producers’ incentives to innovate therefore de-

pend on the labor costs paid by their downstream firms. To proxy for these labor costs,



we compute weighted averages of low- and high-skill labor cost using data on innovat-
ing firms’ international exposure and country-level labor costs. Country-level labor cost
shocks can then be used as a source of variations to identify the effect of labor costs on
automation innovations.

We carry out this empirical strategy as follows. We rely on the PATSTAT database,
which contains close to the universe of patents. We link patents to firms and apply our
classification of automation and non-automation patents in machinery. To proxy for
firms’ international exposure, we use the geographical distribution of their machinery
patents pre-sample. We combine these exposure weights with macroeconomic data from
41 countries. Given our focus on international innovation, we restrict attention to biadic
patents (that is, patents applied for in at least two countries). Our final sample covers the
period 1997-2011 and contains 3,236 firms that account for 53.2% of global automation
innovations. We run Poisson regressions employing multiple layers of firm, industry, and
year fixed effects.

We find a substantial effect of wages on automation innovations. Increases in low-skill
labor costs (referred to as wages for simplicity) lead to more automation innovations with
an elasticity between 2 and 5 depending on specification. In line with the capital-skill
complementarity hypothesis (Krusell, Ohanian, Rios-Rull and Violante, 2000), increases
in high-skill wages tend to reduce automation. We discuss our identification assumptions
in the context of the recent shift-share literature. Borusyak, Hull and Jaravel (2022)
argue that identification can be obtained from conditionally randomly assigned shocks.
As domestic shocks could affect innovating firms through other channels than the labor
costs paid by downstream firms, we include country-year fixed effects for the innovator’s
home country and further exclude the home country from the wage variables. In these
specifications, foreign wage shocks are the source of identification. In addition, we carry
out placebo regressions. We find that non-automation machinery innovations do not
respond to wage shocks.

Because our main analysis is agnostic about the exact nature of the labor market
shocks driving automation innovation, we complement it with two exercises. First, we
build a measure of minimum wages for a subset of countries. We also find a positive
effect of minimum wages on automation innovations. Second, we focus on a specific
labor market shock, the Hartz reforms in Germany. The Hartz reforms were a series
of labor market reforms implemented in 2003-2005. They are credited with increasing

labor supply and reducing labor costs, notably for low-skill workers (Krause and Uhlig,



2012). Therefore, we predict that these reforms reduced automation innovation. In
a difference-in-difference exercise, we find that foreign firms that are relatively more
exposed to Germany innovated less in automation technologies post the Hartz reforms.
Finally, in a triple-difference exercise, we find that the reforms also decreased automation
innovations relative to non-automation innovations.

We contribute to three literatures: on induced automation, on endogenous innovation
more generally, and on the measurement of automation. The theoretical argument that
higher wages should lead to more labor-saving technology adoption (e.g. Zeira, 1998)
and innovation is well-understood. In Hémous and Olsen (2022) and Acemoglu and
Restrepo (2018), wages affect the direction of innovation in the form of automation or
the creation of new tasks. We provide empirical support for this literature.

The existing empirical literature studying the effect of wages on technology adoption
or innovation is limited.! A few papers show that labor market conditions affect adoption
of labor-saving technology in agriculture (Hornbeck and Naidu, 2014, and Clemens,
Lewis and Postel, 2018) and manufacturing (Lewis, 2011). Lordan and Neumark (2018)
find that minimum wage hikes displace workers in automatable jobs and Fan, Hu and
Tang (2020) that they induce Chinese firms to adopt industrial robots. In contrast, we
focus on innovation not adoption. The distinction matters because i) the magnitudes of
the effect of wages on innovation and adoption likely differ and ii) knowledge spillovers
play a larger role for innovation than adoption.

The literature on induced automation innovation is scarcer. Acemoglu and Restrepo
(2022) find a positive correlation in cross-country regressions between aging and patent-
ing in robotics and numerical control, though they focus mainly on adoption. Our paper
differs in at least three ways: we build a broader measure of automation innovation
in machinery; we are interested in the effect of all wage variations, not only variations
arising from demographic trends; and foremost, we conduct our analysis at the firm in-
stead of the country-industry level. Danzer, Feuerbaum and Gaessler (2020) exploit an
immigrant settlement policy in Germany to show that increases in labor supply discour-
age automation innovation at the level of local labor markets. In contrast, we exploit

firm-level variation and focus on the effect of labor cost on global innovation.? Our

'In contrast, there is an extensive empirical literature on the effects of technology on wages and
employment: see e.g., Autor et al. (2003), Autor and Dorn (2013) or Gaggl and Wright (2017) for IT,
Doms, Dunne and Troske (1997) for factory automation, Graetz and Michaels (2017) or Acemoglu and
Restrepo (2020) for robots, Mann and Piittmann (2021), Bessen, Goos, Salomons and van den Berge
(2019) and Aghion, Antonin, Bunin and Jaravel (2022) for broader measures of automation.

2Relatedly, Andersson, Karadja and Prawitz (2022) look at the effect of emigration to the US in the



contribution to the literature on induced automation is to show a new correlation at the
firm level between downstream low-skill wages and automation innovation and to argue
that this correlation reflects a causal effect from wages to automation innovations.

An extensive literature shows that the direction of innovation is endogenous in other
contexts (e.g. Acemoglu and Linn, 2004, and Popp, 2002). We build on Aghion, Deche-
zleprétre, Hémous, Martin and Van Reenen (2016), who show that an increase in gas
prices lead firms in the auto industry to engage more in clean and less in dirty innova-
tions. We use a similar shift-share design as theirs and also measure firms’ international
exposure with patent weights. We advance their methodology in particular by introduc-
ing country-year fixed effects.?

Other researchers have built measures of automation with patent data. In contem-
porary work, Mann and Piittmann (2021) use machine-learing techniques to identify
automation patents and Webb (2020) uses a dictionary approach similar to ours to iden-
tify robot, software, and artificial intelligence patents and links them to occupations.
We compare our approaches below.* We classify technological codes, which are readily
available, and not patents directly using text. Therefore, only our classification can be
directly applied to other patent data.

Section 2 develops our classification of automation technologies. Section 3 describes
the data and our empirical strategy. Section 4 presents the results of the main analysis
on the effect of wages on automation innovations. Section 5 discusses the event study
of the Hartz reforms. Section 6 concludes. The Appendix provides an analytical model,

additional robustness checks, and details on our methodology.

19t"century in Sweden and find that more exposed municipalities experienced an increase in innovation
(but they do not identify automation innovations). Bena and Simintzi (2019) show that firms with
better access to the Chinese labor market decrease their share of process innovations after the 1999
U.S.-China trade agreement. Process innovations and automation innovations are not the same: some
process innovations reduce costs other than labor (say, material cost) and many automation innovations
are product innovations (a new industrial robot is a product innovation for its maker).

3Other papers have used their methodology, including Noailly and Smeets (2015) on innovation in
electricity generation, Coelli, Moxnes and Ulltveit-Moe (2020) on the effect of trade policy on innovation
and Aghion, Bénabou, Martin and Roulet (forthcoming) on the role of environmental preferences and
competition in innovation in the auto industry.

4Recently, Autor, Salomons and Seegmiller (2021) and Kogan, Papanikolaou, Schmidt and Seegmiller
(2022) also match patents to occupations to look at the effect of technology on labor.



2 Classifying Automation Patents

In this section, we develop our classification of automation patents. Then, we use the
classification to build a measure of automation at the industry level and find that it

predicts a decline in routine tasks, extending the analysis of Autor et al. (2003).

2.1 Our approach to classifying patents

Our goal is to identify automation innovations in machinery: that is, innovations embed-
ded in equipment goods, such as machine tools or robots, which allow for the replacement
of workers in some tasks. Non-automation innovations, in contrast, may improve energy
efficiency, reduce the costs of producing certain machines or increase reliability.

We follow a well-established tradition in the empirical literature and use patent data
as a measure of innovative activity. Patent data have many advantages: they focus on the
output of the innovative process, give the countries where inventions are being protected
and are available at both the firm level and at a highly disaggregated technological level.
They also have some drawbacks, such as a high heterogeneity in patent value. To tackle
this problem, in our main analysis we focus on patents filed in at least two countries.

We use two patent databases: the EP full-text database from 2018, which contains
the full text of patent applications at the European Patent Office (EPO), and the World
Patent Statistical Database (PATSTAT) from Autumn 2018, which contains the bib-
liographical information but not the text of close to the universe of patents. In these
datasets, the technological characteristics of patents are recorded in technological codes
(notably CPC and IPC codes, henceforth C/IPC codes, explained in footnote 8 below).
Certain types of technologies, such as fossil fuel engines, can readily be identified to
existing groupings of C/IPC codes. Such a grouping does not exist for automation in
machinery, and we use text analysis to create one.

We employ a dictionary method on patent data and proceed in four steps: i) we use
the existing literature to identify automation-related keywords. ii) For each “technology
category” (defined below based on C/IPC codes), we compute the share of patents at the
EPO containing one of our automation keywords. iii) We use this measure to classify
technology categories as automation or not based on a cut-off. iv) We then classify
worldwide patents as automation if they belong to an automation technology category.

This strategy of first classifying technology categories and then patents has two

advantages over classifying patents directly. First, it allows for the inclusion of patents



without text from PATSTAT, so that other researchers and we can use our technology
category classification on patents without text and future patents.® Second, the C/IPC
codes are by themselves informative of the characteristics of an innovation, including
whether it relates to automation. Patents are written in varying styles. Applicants can
often describe the same innovation with or without using our keywords. Conversely, if
a patent uses one of our keywords but does not belong to any C/IPC code where this is
common, the inclusion of this keyword is frequently uninformative about the nature of
the innovation. That is, the wording of a given patent is a weak signal of whether that
patent corresponds to automation, but the combined wording of many patents gives a
strong signal of whether a technological code corresponds to automation.5
Alternatively, we could have read and classified a subset of patents and then used
machine-learning techniques to classify other patents or technology categories based on
patent text. This is the procedure in Mann and Piittmann (2021), whose results we
discuss in Section 2.3 and Appendix A.3. Relying on keywords instead of a training set
of patents presents several advantages. First, manually classifying patents as automation
is a difficult task that cannot be easily systematized and outsourced. Second, patents
give technical descriptions of an innovation and do not primarily discuss its goal. Only
a few words within the text are informative, and a machine-learning algorithm would
require an extensive training set. Third, using a few keywords instead of a large training
set makes our approach more transparent, easily replicable and modifiable, and leaves

fewer degrees of freedom since we pick most of our keywords from the literature.

2.2 Choosing automation keywords

To tie our hands, we choose most of our keywords from the automation technologies
identified in Doms, Dunne and Troske (DDT, 1997) and Acemoglu and Restrepo (AR,
2022) and complement them with a few additional words as described below.” In fact,

most of our search terms (for simplicity “keywords”) correspond to the co-occurrence of

5To give an idea of the increase in the sample size, over the period 1997-2011 there are 3.19 million
patent families with patent applications in at least two offices (a condition we will impose in our main
analysis). Among these only around 740,000 have an EPO patent with a description in English.

60ur strategy follows the World Intellectual Property Organization (WIPO), which offers on its
website a simple tool based on a similar principle: a search engine allows one to identify up to 5 IPC
codes most likely to correspond to a set of keywords in the text of the patents.

"Doms, Dunne and Troske (1997) measure automation using the Survey of Manufacturing Technology
(SMT) from 1988 and 1993 conducted by the US Census. The survey asked firms about their use of
specific automation and information technologies. Acemoglu and Restrepo (2022) include imports of
automation technology and associate specific HS-categories from Comtrade with automation technology.



Table 1: Choice of automation keywords

Keywords Comments Source

Automat* Automation, automatization or automat® at least 5 times. Own or Doms, Dunne and
Or automat™ or autonomous with secondary words, ware- Troske (DDT) or Acemoglu
house, operator, arm, convey*, handling, inspect®, knitting, and Restrepo (AR).
manipulat®, regulat®, sensor, storage, store, vehicle system,
weaving, or welding) in the same sentence at least twice.

Robot* Not surgical or medical. DDT and AR

Numerical Control CNC or numeric* control* or NC in the same sentence as DDT and AR
secondary words.

Computer-aided design Computer-aided/-assisted/-supported in the same patent as DDT

and manufacturing secondary words, also CAD or CAM and not "content ad-

dressable memory" in same sentence as secondary words.
Flexible manufacturing DDT
Programmable logic control  "Programmable logic control" or (PLC and not (powerline or  DDT
"power line")).

3D printer "3D print*" or "additive manufacturing" or "additive layer Own
manufacturing".

Labor Including laborious. Own

Secondary words Machine or manufacturing or equipment or apparatus or machining.

Notes: This table describes the keywords that we use to identify automation technologies. Keywords include i) natural ad-
jacent words (i.e. numerical control includes NC, numerically controlled and numeric control), ii) British/American spelling
(i.e. labour/labor) and iii) hyphenated adjectives (i.e. computer aided / computer-aided design). "In the same sentence as
secondary words" refers to at least one secondary word. We added words in italics, the others come from AR or DDT. See
Appendix for details.

several words in the same sentence or patent or the repetition of these words a sufficient
number of times. Table 1 describes the list of our search terms.

We have eight categories of keywords. Five of these, robot*, numerical control,
computer-aided design and manufacturing, flexible manufacturing, and programmable
logic control, are automation technologies in DDT or AR. Directly using some of these
keywords results in false positives. Therefore, we require that our keywords occur in the
same patent or in the same sentence as secondary words, such as machinery or equip-
ment, indicating that the text describes a machine. Furthermore, we add “automation”
and “automatization”. The stem “automat™®” gathers too many false positives such as
“automatic transmission”. We resolve this in two ways: either we restrict attention to
patents where the frequency is 5 or more or we combine automat™ with our secondary
words or other words that largely come from technologies described in DDT or AR and
often describe tasks (such as manipulat®, regulat® or inspect™). We count patents where
automat* and one of these words appear in the same sentence at least twice. Finally, we
add 3D printing, which was in its infancy when DDT was written, and “labor”, which
often indicates that an innovation reduces labor costs. The most important keywords

are those associated with “automat*” (see Appendix A.2). Section 4.3 shows that our



main results are robust to only using those.

2.3 Automation technology categories

Defining machinery C/IPC codes. We base our classification on EPO patent appli-
cations from 1978 to 2018 with a description in English (1,538,370 patent applications),
which we denote Q2gpp. To identify the technological characteristics of patents, we use
their C/IPC codes. The C/IPC codes form a hierarchical classification system; most
patents have several of them.® We define “technology categories” based on these codes,
and use our keywords to classify technology categories as automation or not.

Specifically, we define technology categories using three C/IPC groupings. First,
we use 6-digit C/IPC codes (e.g. B25J13). Second, we include pairs of 4-digit C/IPC
codes (e.g. B25J and A61F) with the idea that the co-occurrence of technological codes
can also be informative about the characteristics of a patent. Finally, we add the co-
occurrence of 4-digit C/TPC codes with the 3-digit codes G05 or G06 (e.g. B25J together
with GO5 or G06). The code GO5 corresponds to “controlling; regulating” and GO6 to
“computing; calculating; counting”. Aschhoff et al. (2010) use these combinations to
identify advanced manufacturing technologies. To ensure that the set of patents available
in Qppo is sufficiently representative of a technology category, we restrict attention to
categories that contain at least 100 patents (we group 6-digit codes with the same 4-digit
code and less than 100 patents in common artificial 6-digit codes). The 6-digit codes
will identify close to 82% of our automation patents (see Appendix A.2.3).

Our keywords are best associated with automation in equipment. Accordingly, we
restrict attention to C/IPC codes that belong to specific technological fields. There are
34 technological fields (see Figure A.1). We focus on “machine tools”, “handling”; “textile
and paper machines”, and “other special machines” with some adjustments, which we

refer to as “machinery”.? For pairs of 4-digit C/IPC codes or pairings of 4-digit C/IPC

8The IPC is the International Patent Classification and the CPC the Cooperative Patent Classifi-
cation used by the USPTO and the EPO. The CPC is an extension of the IPC and contains around
250,000 codes in its most disaggregated form. The structure of the C/IPC classification is as follows:
C/IPC “classes” have 3-digit codes (e.g. B25: “hand tools; portable power-driven tools; handles for
hand implements; workshop equipment and manipulators”), “subclasses” have 4-digit codes (e.g. B25J:
“manipulators; chambers provided with manipulation devices”), and main groups have 5 to 7 digit codes
(e.g. B25J 9: “programme-controlled manipulators”). In the following, we refer to classes, subclasses,
and main groups as 3-digit, 4-digit, and 6-digit codes respectively.

9We exclude F41 and F42, which correspond to weapons and ammunition and are in “other special
machines”. Moreover, we include B42C which corresponds to machines for book production and B07C
which corresponds to machines for postal sorting as both correspond to equipment technologies and con-



codes with GO05 or G06 we classify them as machinery if at least a 4-digit code belongs
to that field. This leaves us with 986 6-digit codes, 1104 pairs of 4-digit codes, and 25
groupings of 4-digit codes with G05/G06.

Defining automation C/IPC codes. We define a machinery patent as a patent
which belongs to one of the machinery technological categories. We then denote MT,
the set of machinery technology categories associated with a patent p.! The com-
bined set of machinery technology categories is MT = UpcqppoMT,. A patent is
also associated with a text 7,. For each keyword category (automat™, robot, CNC,
etc.) we define functions k®wtomat*(T ) krobol(T,) kONC(T,), etc. which take value 1 if
one of the associated keywords is in the text and 0 otherwise. We define k" (T},) =
max{ keutomats () frovot () kCNC(T,), ...} which takes value 1 if any of the automation
keywords are present. For all machinery technology category t € MT, we define the
prevalence of automation keywords s(¢) as the share of patents containing at least one

of our keywords:
ZPEQEPO ]‘tEMTpkany(TP)

ZpEQEPO 1t€MTP

s(t) =

We similarly define the prevalence of specific keyword categories. We show that these
measures are positively correlated for the main keywords, give examples of the prevalence
measures in some C/IPC codes, and present additional statistics in Appendix A.2.

We manually checked the C/IPC codes extensively and sampled patents from each
category to ensure that the procedure delivered reasonable results and adjusted the
keywords accordingly. Yet, we never modified the classification after carrying out our
regressions.

We define automation technology categories as those with a prevalence measure above
a threshold. Figure 1 shows the histogram of the prevalence of automation keywords
for all C/IPC 6-digit codes in machinery. It shows that most C/IPC codes have a low
prevalence of automation keywords but a few codes have a very high value. As our
baselines, we choose thresholds at the 90" and 95 percentiles of the distribution of
the 6-digit code distribution (within machinery), which are given by 0.396 and 0.480,

tain 6-digit codes with a high prevalence of automation keywords. We further include the 6-digit codes
GO05B19 and G05B2219, which correspond to “programme-control systems” and contain many computer
numerically controlled machine tool patents without C/IPC from the machine tools technological field.
Finally, we include the 6-digit code B62D65 which deals with engine manufacturing (though the rest of
the B62D code deals with the vehicle parts themselves). We verify that these additional codes do not
qualitatively affect our results.

10We use all C/IPC codes of the patent family associated with the EPO patent application p. See
Section 2.4 for the definition of the patent family.
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Figure 1: Prevalence of automation keywords for C/IPC 6-digit codes in machinery

respectively.!! Therefore, a technology category ¢ belongs to the set of auto90 categories
T if s(t) > 0.396 and to the set of auto95 category 7% if s(t) > 0.480. In Appendix
A.2.4, we show that the technology categories with a high prevalence of automation
keywords remain the same throughout the period considered. In particular, the correla-
tion between the prevalence measures computed for the first half of the sample and the
second half is 0.85.

2.4 Automation patents

We now proceed to classify automation patents. To do so, we use PATSTAT, which
contains bibliographical information for close to the universe of patents. PATSTAT
further allows us to identify patent families, a set of patent applications across different
national or international patent offices representing the same innovation. For each patent
family, we know the date of the first application (used as the year of an innovation), the
corresponding patent offices, the identity of the applicants and the inventors, the number
of citations received, and, importantly the C/IPC codes associated with the innovation.

We then define a patent family p in the PATSTAT dataset Qparsrar as an automa-
tion innovation if it belongs to at least one automation technology category. From now
on, we slightly abuse language and refer to a patent family as a patent. That is p is
an auto95 patent if 3¢, € MT, such that ¢, € T%, and similarly for an auto90 patent.
Appendix A.2 provides additional statistics on how we identify automation patents, on

the stability of our classification, and gives examples of automation patents.

1 Choosing different thresholds is easy and we investigate how robust our results are in Section 4.3.
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Comparison with Mann and Piittmann (2021). Mann and Piittmann (2021)
also classify patents as automation and non-automation. Our approaches differ in three
ways. First, they classify all patents while we focus on machinery. Second, they manually
classify a training set and use machine learning to classify US patents in a given period,
while we identify technology categories using a dictionary method. This way, we (or
others) can classify any patent in machinery. Third, they define as automation “a device
that carries out a process independently of human intervention”, while we seek to identify
innovations that replace workers in existing tasks. Therefore, they classify a number of
patents related to elevators and printing machines as automation patents, which we do

not. In Appendix A.3, we compare the two approaches in detail.!?

2.5 Trends in automation innovations

To restrict attention to innovations of sufficient quality, we focus on patent families con-
taining patent applications in at least two countries, referred to as biadic patents. Sev-
eral studies (e.g. De Rassenfosse et al., 2013, and Dechezleprétre, Méniere and Mohnen,
2017) have shown that biadic patents are of higher quality than others.!3

Figure 2 plots the evolution of automation biadic patent families. Panel (a) shows
that worldwide the share of automation patents in machinery slightly declined between
the mid1980s (9.4% in 1985 for auto95) and the mid1990s (7.5% in 1994 for auto95)
before increasing quickly (reaching 19% in 2015 for auto95). Appendix Figure A.2 reports
the raw numbers of auto90 and auto95 patents and their share out of total patents.
Figure 2.b shows the trends for auto95 by applicant nationality. Initially, Japan’s share
of automation patents in machinery is the highest, but it declines through the 1980s
and 1990s. It increases in the 2000s, yet is overtaken by other countries, in particular

Germany which has the highest automation share in 2015.

12Bessen and Hunt (2007) also use keywords to identify software patents. Webb (2020) focuses
on matching three technologies (robotics, software, and AI) to the occupations they might replace
and similarly identifies the associated patents using keywords. We instead focus on all automation
innovations in machinery, and classify technology categories first.

13We count applications and not-granted patents because certain patent offices, notably the Japanese,
only formally grants a patent if the applicant requests an examination which they often only do when
their rights are challenged. Further, biadic patents allow for better comparison across countries since
several small patents typically cover the same large innovation in certain offices like the JPO but only
one broad patent in others like the USPTO. To restrict attention to patent families of even higher
quality, we carry out robustness checks where we use patent citations.

11
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Figure 2: Share of automation patents in machinery for biadic families

2.6 Automation, routine tasks and skill composition

We now build a measure of automation at the industry level and relate it to changes
in task and skill composition. We do this in part to validate our classification of au-
tomation patents. We build on Autor et al. (2003) (henceforth ALM), who show that
computerization was associated with a decrease in routine tasks at the industry level
on U.S. data from 1960 to 1998. We give our main results here and refer the reader to
Appendix A.4 for details on the data construction and additional results.

As ALM, we run industry level regressions of the type:
ATjk = ﬂo + BcACj -+ Bautautj —+ 5]‘7—- (1)

We focus here on the years 1980-1998. ATj; represents the change in tasks of type k
in industry j. We take this measure directly from ALM, who define 5 types of tasks:
nonroutine analytic, nonroutine interactive, routine cognitive, routine manual, and non-
routine manual. AT} is measured as 10 times the annual within-industry change in task
input measured in percentile of the 1960 task distribution. AC; is ALM’s measure of
the change of computerization in sector j (available for the period 1984-1997). aut; is
our patent-based measure of automation intensity in sector j. Since patenting is already
a measure of the flow of knowledge, we do not first-difference this measure.

To construct aut;, we allocate patents in machinery to their sector of use, focusing on
USPTO granted patents. Autor, Dorn, Hanson, Pisano and Shu (2020) match USPTO

12



patents with firm-level data from Compustat, providing detailed sectoral information
for corporate patents. We use their data to create a weighted concordance table from
C/IPC 4-digit codes to 4-digit SIC industries. We use this mapping to allocate patents
to sectors of invention. Then, we combine this information with the 1997 capital flow
table from the BEA to get the sector of use. The capital flow table is similar to an
input-output table but reports the flows in investment goods instead of intermediate
inputs. For each sector j, we compute aut; as the share of automation patents (auto95
in our baseline) among machinery patents applied for in 1980-1998. We compute this
statistic for the 133 sectors with machinery patents (our results are robust to excluding
sectors with few machinery patents). Interestingly, our automation measure auto95 is
only weakly correlated with computerization with a coefficient of 0.08 (and —0.16 when

we weigh industries by employment).

Table 2: Effect of the use of automation technologies on tasks and skill composition

A Routine cognitive A Routine manual A High/low skill workers

(1) (2 3) (4) (5) (6)
Share automation -155.29***  -159.70***  -128.32"**  -129.88"*** 3.97* 3.64*
(using industry) (37.30) (25.62) (34.89) (36.82) (2.15) (1.91)
Share automation -21.00"** -11.74 -0.22
(inventing industry) (7.73) (7.90) (0.50)
A Computer use -17.42%** -18.21%** -19.13*** -21.35%** 0.97*** 0.91***
(1984-1997) (6.48) (6.10) (7.24) (7.61) (0.26) (0.26)
R? 0.27 0.36 0.21 0.24 0.21 0.19
Mean dependent variable -2.50 -2.47 -2.27 -2.27 0.12 0.12
Observations 133 126 133 126 133 126

Notes: Each column represents a separate OLS regression of ten times the annual change in industry-level task
input between 1980 and 1998, measured in centiles of the 1960 task distribution, on the share of automation
patents in machinery, the annual percentage point change in industry computer use during 1984-1997, and a con-
stant. Estimates are weighted by mean industry share of total employment in FTEs in 1980 and 1998. Robust
standard errors are reported in parentheses. In columns 1-3 the dependent variable is the change in routine cog-
nitive tasks, in columns 4-6 the change in routine manual tasks, and in columns 7-9 the change in the ratio of
high-skill workers (college graduates) over low-skill workers (others). As described in the text, the two automa-
tion share measures correspond to a different mapping between C/IPC codes and industries. Using industries
allocates patents to their sector of use while innovating industry — added in columns 2,4, and 6 — allocates patents
to their sector of manufacturing. * p < 0.1; ** p < 0.05; **¥* p < 0.01

Table 2 reports the results of regression (1) for routine cognitive tasks (Column 1)
and routine manual tasks (Column 3). Appendix Figure A.10 provides scatter plots of
the changes in routine tasks and the share of auto95 patents in machinery. There is a
clear relationship: sectors with a higher share of automation patents experience a larger
decline in routine cognitive and routine manual tasks. A 1 pp increase in the automation
share is associated with a 1.6 and 1.3 centiles decrease in routine cognitive and manual

tasks per decade. The standardized beta coefficients are larger for automation than for
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computerization: 2 vs 1.3 for routine cognitive and 1.7 vs 1.4 for routine manual tasks.!4

At first sight, it may seem surprising that our measure of automation in machinery
predicts a decline in routine cognitive tasks. However, ALM define routine cognitive
tasks as the “adaptability to situations requiring the precise attainment of set limits
tolerances or standards”. These correspond to inspection and control tasks that our
automation machines may render superfluous (Figure A.8 gives an example of such
a machine). Metalworkers, for instance, are one of the occupations with the highest
intensity in routine cognitive tasks.

In Column (5), we use the change in the ratio of high-skill workers (defined as college
graduates) over low-skill workers (defined as all other workers) as the dependent variable
instead. We find that sectors with a higher share of automation innovation experience
a larger increase in the skill ratio.

In Columns (2), (4), and (6), we add a control for the share of automation patents
invented by the industry. To allocate patents to the inventing sector, we simply omit
the capital flow table step when computing our automation variable at the sectoral level.
The coefficients on the automation share in the using sector remain similar to those in
Columns (1), (3) and (5). In addition, the automation share in the using sector has a
bigger effect than the automation share in the inventing sector.!®

Appendix A.4 includes additional robustness checks: we use biadic patents, auto90
patents, or an alternative concordance table between C/IPC codes and sectors developed
by Lybbert and Zolas (2014). In all cases, we find a negative effect of the automation
share on routine tasks.

To summarize, we have now classified machinery patents as automation or non-
automation. Importantly, given a mapping between C/IPC codes and sectors, this clas-
sification also delivers a measure of automation at a more detailed sectoral level than
alternatives such as robotization. This measure is uncorrelated with computer use but
is associated with a reduction in routine tasks and an increase in the skill ratio at the

sectoral level.

14The employment-weighted standard deviation in the share of automation patents for the included
industries is 1.3% and the mean 7.5%, while the standard deviation for computerization is 0.072. Routine
tasks decline by 2.5 and 2.3 centiles per decade for these sectors.

15The standardized coefficients are larger for the using sector than the inventing sector as the s.d. for
the share of automation patents in the using and inventing sectors are respectively 1.3% and 6.3%.
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3 Empirical Strategy and Data

We now move to our main empirical exercise, which analyzes the effect of labor cost
shocks on automation innovations. Section 3.1 presents our empirical strategy, Section
3.2 and 3.3 explain how we build our dataset, Section 3.4 describes our estimation
equation and Section 3.5 shows summary statistics for our baseline sample. Section 4

discusses results and identification assumptions.

3.1 Empirical strategy

We motivate our empirical strategy with the business structure of the most prominent
automation innovators. These are often large companies that sell their automation
equipment internationally to downstream firms. Automation equipment allows for the
replacement of low-skill workers with machines. It may also complement high-skill work-
ers who program, operate, and maintain the machines. Therefore, the incentives of the
downstream producers to adopt automation technology are determined by labor costs
in their local market. Higher labor costs for potential customers are associated with a
larger market for automation machine producers, which, in return, should induce innova-
tors to undertake more research in automation technologies.!6:'” Appendix A.5 presents
a simple model which rationalizes this argument.

Empirically, we aim to measure by how much an increase in low-skill labor costs
leads to an increase in automation innovations, and an increase in high-skill labor costs
to a decrease in automation innovations. We focus on labor costs because they are the
key factors that would affect automation innovations differently from non-automation

innovations (in contrast, for instance, with the market size of the downstream firms).

16For example, Siemens, the biggest innovator in our sample, had 31% of its workforce but only 14%
of its revenue in Germany in 2018. Its strongest growing division was the Digital Factory Division which
provides a broad range of automation technology to manufacturers across the globe. The annual report
(Siemens, 2018) describes how “The Digital Factory Division offers a comprehensive product portfolio
and system solutions for automation technologies used in manufacturing industries, such as automation
systems and software for factory automation, industrial controls and numerical control systems, motors,
drives and inverters and integrated automation systems for machine tools and production machines...”.
Note that this sentence includes a lot of our keywords. The report is centrally interested in how
“Changes in customer demand [for automation technology by downstream manufacturers] are strongly
driven by macroeconomic cycles”. Interestingly, the report never mentions “cost of labor” as a reason
for automation but instead uses euphemisms such as “increase competitiveness”, “enhance efficiency”,
“improve cost position” and “streamline production”. Siemens further discusses how such macroeconomic
trends affect its R& D decisions.

I7If automation innovations are internal to the firm, then the argument follows if one interprets the
innovator’s customers as the different downstream production sites of the same firm.
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Ideally, we would measure the labor costs paid by automation innovators’ actual and
potential customers. Such a measure would suffer from reverse causality, and we would
need an instrument. A natural candidate would be a shift-share instrument. In the
absence of direct data on the labor costs paid by innovators’ customers, we directly use
such a shift-share measure as a proxy. Our regression should therefore be viewed as the
reduced form of this instrumental approach.

More specifically, our measure of the labor cost paid by the customer of an innovator
is a weighted average of country-level labor costs where the weights reflect the market
exposure of innovators. That is, we define the average low-skill wy, ; ; and high-skill wg ; ;

labor cost faced by firm i’s customers as

Wyt = Z/{Lcwlc,t for J S {Lv H}a (2)

where wy, ., (vesp. wpy) is the low-skill (resp. high-skill) labor cost in country c at
time ¢ and k; . is the fixed weight of country ¢ for firm . Similarly, we build controls
for several macroeconomic variables such as labor productivity, GDP per capita, or the
size of the manufacturing sector, which could also affect innovation.

With this shift-share measure, our identification strategy relies on how country-level
shocks affect firms differently. We discuss this extensively in Section 4.2. We now
describe how we obtain country-level data (such as wy, ;) and firm data (including the

weights ;).

3.2 Macroeconomic data

We source country-level data primarily from the 2013 release of the World Input Output
Tables (WIOD, Timmer et al. 2015). The database contains information on hourly labor
costs from 1995 to 2009 across groups of educational attainment for the manufacturing
sector in 40 countries, including all major markets (US, Japan, all EU countries of 2009,

China, India, Brazil, Russia, etc.). We get similar data from the Swiss Federal Statistical

8To be more precise, innovation incentives depend on the expectation of future labor costs for
automatable tasks, and ideally, we would measure these directly. We cannot measure expectations
so we use current labor costs shocks as a proxy for shocks on expected future costs (see Section 4.3
for further discussion). In addition, there are no good international occupational or task-level labor
costs data. Since low-skill and middle-skill workers are those whose tasks have been more intensely
automated, we use low-skill labor cost as a proxy for the cost of automatable tasks. This proxy will be
particularly good if labor markets are flexible across occupations within education groups or if labor
shocks affect low-skill workers similarly across occupations. Otherwise, a noisy measure should result
in a downward bias.
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Office to add Switzerland, a large source of patents, to our analysis. For our baseline
regressions, we focus on labor costs in manufacturing but check that our results are
robust to using labor costs in the entire economy. Although our data cover all labor
costs, we refer to them as wages for simplicity. In the data, low-skill workers have no
high-school diploma or equivalent and high-skill workers have at least a college degree.
Middle- and low-skill wages are very highly correlated and we can interpret our low-skill
wage variable as reflecting both.

From the same dataset, we calculate labor productivity in manufacturing as value
added divided by hours and producer price indices (PPI for the whole economy and
manufacturing). We gather exchange rate and GDP data from UNSTAT and compute
the GDP gap to control for business cycles. For our baseline regressions, we deflate
all nominal values by the local PPI for manufacturing (indexed to 1995), then convert
everything into dollars using the average exchange rate for 1995, the starting year of our
regressions. Appendix A.6.1 provides further details.

Appendix Table A.2 shows that low-skill and high-skill wages differ considerably
across countries and that the skill premium also varies for countries of similar devel-
opment level. For instance, between 1995 and 2009, the skill premium in the United
States rose from 2.46 to 3.02 but slightly declined in Belgium from 1.56 to 1.46. Ap-
pendix Figure A.3.a shows the log inverse skill premium in the 6 countries with the
largest average weights. Trends in the skill premium vary markedly across countries,

with non-monotonicities for some countries.'®

3.3 Firm-level data

We now describe our firm-level data. To identify firms, we use Orbis Intellectual Prop-
erty which matches global patent data with the companies in Orbis (Appendix A.6.2
details how we merge Orbis firms). We then use PATSTAT to obtain all bibliographical
information about firms’ patents, including their C/IPC codes, which allows us to iden-
tify machinery and automation patents. We use this to build our dependent variable:
the count of automation patents filed by a firm in a given year.

In the absence of sales data, we use the firm’s history of patent filing as a proxy for its
market exposure to measure the weights x; .. This method follows and expands on that of
Aghion et al. (2016, henceforth ADHMV). Firms differ in their market exposure because

19This figure only shows the raw data, the identifying variation, taking into account the fixed effects,
can be seen in Appendix Figure A.12.
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of trade barriers, heterogeneous tastes of customers, or various historical accidents. A
patent grants its holder the exclusive right to commercially exploit an innovation in a
specific country for a limited period, and inventors must file a patent in each country
where they wish to protect their technology. Patenting is costly: a firm must hire
lawyers, possibly translators, and pay filing costs. Therefore inventors only apply for
patent protection in a country if they are relatively confidant in the potential market
value for the technology (Eaton and Kortum, 1996). Indeed, empirical evidence suggests
that inventors do not patent widely and indiscriminately, with the average invention only
patented in two countries (Dechezleprétre et al., 2011).

For each firm, we compute the fraction of its patents in machinery protected in each
country ¢ for which we have wage data, ;.. We keep the weights fixed and compute
them during the pre-sample period 1971-1994 to ensure they are weakly exogenous.?’ We
restrict attention to patent families with at least one citation (excluding self-citations)
to exclude the lowest quality patents. See Appendix A.6.3 for details.?!

Although patenting indicates whether the firm intends to sell a that market, the raw
patent count does not reflect market size. A larger market attracts more firms, so the
market size per firm does not grow 1 for 1 with country size. To account for this, we
weigh each country ¢ by GDFy:%, where GDPy . is the 5 year average GDP of country ¢

at the end of the pre-sample period.?? As a result, the weight of country ¢ for firm i is:

~ 0.35
/fi,cGDP(),c
Rie = — .
S0 GDPOF
cl

We then combine the weights x; . with the macro variables presented in section A.6.1
to build macro variables, including wages, at the level of the firms’ customers along the

lines of equation (2). We use 1971-1994 as a pre-sample period as PATSTAT’s coverage

20This approach aligns with our goal of identifying the exogenous effect of an increase in wages on
innovation. In reality, the exposure to different markets changes over time, in part in response to
changes in wages. Studying this response would be interesting but is beyond the scope of this paper.

2LADHMYV verify that a method similar to ours accounts well for the sales distribution of major auto
manufacturers. Coelli, Moxnes and Ulltveit-Moe (2020) carry out a more systematic exercise and verify
that such a method accounts well for aggregate bilateral trade flows and firm exports across 8 country
groups in a representative panel of 15,000 firms from 7 European countries (regressing patent weights
on sales weights gives a coefficient of 0.89 with a s.e. of 0.008). In Appendix B.2, we also show that our
patent weights correlate well with trade flows.

2Eaton, Kortum and Kramarz (2011) estimate the elasticity of French exports to the GDP of the
destination country to be 1 and the elasticity of the number of French exporters to be 0.65. This gives
an elasticity of the average export by firm of 0.35. ADHMYV use a power of 1 on GDP instead of 0.35.
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is significantly better from the 1970s onward, and we prefer a long time period for our
baseline measure. Importantly, the weights are stable over time.??> We show that our

results are robust to alternative pre-sample periods and weighing schemes in Section 4.3.

3.4 Estimation equation

We now describe how we estimate the effect of an increase in wages on automation
innovations. We have a panel of firms with patent data and firm-level wage variables.
Since our dependent variable is a count of patents, we use a Poisson specification. We

assume that firm’s innovation in automation follows:?*

PATAut,i,t

= exp ( BwL " P N 6WH . it - /BXXZ'J_Q T ﬁKa In KAut,i,t—Z + 51(0 In Kother,i,t—2

+BSa In SPILLAut,i,t—Q + BSO In SP]LLother,i,t—2 + 51 + 5j,t (+5c,t)

PAT a4 denotes the number of biadic automation patent families by firm ¢ with first
application filed in year t. Automation patent families are the auto95 patents defined in
Section 2. As mentioned in Section 2.5, we focus on biadic patent families to ensure that
patents are of sufficiently good quality and more comparable across countries. Focusing
on biadic patents is also consistent with our empirical strategy which relies on firms’
exposure to international markets.

wyp ;¢ and wy ;¢ are the average low-skill and high-skill manufacturing wages (more
generally labor costs) faced by the customers of firm i at time ¢ defined in (2), deflated by
the local manufacturing PPI. X, represents a vector of macroeconomic controls (labor
productivity in manufacturing, GDP per capita, and GDP gap). Labor productivity
captures technology or human capital shocks in the country where machines can be
sold, GDP per capita similar shocks but also demand shocks and the GDP gap, business
cycles fluctuations.

Following ADHMYV, we include controls for knowledge stocks at the firm and country

level. K guti and Koperi denote the stocks of knowledge in automation and in other

23In Section 4.3, we consider an alternative measure of low-skill wages where weights are based on
1971-1989 or 1985-1994. For the firms in our baseline regression sample, the correlation between the
two wage variables is 0.86.

24For estimation, we use the ppmlhdfe command from Correia, Guimaraes and Zylkin (2020), which
allows us to run Poisson regression models with high-dimensional fixed effects.
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technologies of firm 4 at time t. We compute these knowledge stocks using the perpet-
ual inventory method. SPILL gy i+ and SPILLyper;, similarly denote the stocks of
external knowledge (spillovers) in automation and in other technologies to which firm
7 has access at time t. We compute these spillovers as a weighted average of country-
level knowledge stocks where the weights now reflect the location of firms’ inventors.??
These controls ensure that we do not simply capture that some firms or countries are
on different automation trends. In addition, knowledge spillovers are often an impor-
tant characteristic of innovation processes and may amplify the short-run response of
innovation to economic shocks over time.

0; are firm fixed effects so that we are looking at how changes in wages affect changes
in automation innovations.?® d;; are industry-year fixed effects. The industry j of a
firm is the industry of manufacturing and corresponds to its 2-digit industry in Orbis.
Appendix Table A.1 gives the distribution of firms and patents across the main industries
in our sample. In some specifications, we include country-year fixed effects ., where
the firm’s country is defined as the country with the largest weight k;.. Finally, €, is
an error term. In the baseline specification, we cluster standard errors at the firm level.

We lag the right-hand side variables by 2 years in the baseline regressions for two
reasons. First, the empirical literature suggests a 2-year lag between R&D investment
and the first results materialized by a patent application. Second, at the time of their
R&D investment, innovators would use contemporaneous wages as predictive of future

wages. Section 4.3 considers alternative timing assumptions.

3.5 Baseline sample

We now describe the firm sample we rely on to estimate equation (3). Since wages

are available for 1995-2009, our baseline datasets rely on firms that applied for at least

25We use a depreciation rate of 15% when computing stocks at the firm or country level. The weights
in the spillover variables correspond to the location of firms’ innovators (obtained from PATSTAT)
pre-sample in 1971-1994. When computing the log of stocks or spillovers, we replace 0’s with 1’s and
add a dummy variable to indicate where stocks or spillovers are zero.

26We use the Hausman, Hall and Griliches (1984, HHG) method in our baseline specification to control
for firm-level fixed effects. This is the count data equivalent to the within-group estimator. Technically,
this method is inconsistent with equation (3) as it requires strict exogeneity and hence prevents the
lagged dependent variable from appearing on the right-hand side (which it does here to a limited extent
through the knowledge stock K 4yt .t—2). Yet, we show in Section 4.3, that our coefficients of interest are
unsurprisingly not affected by Nickell’s bias by either removing the stock control or by implementing the
Blundell, Griffith and Van Reenen (1999) method, which uses the pre-sample average of the dependent
variable to proxy for the fixed effect, in line with the patent literature.
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Table 3: Descriptive statistics of the firms in our baseline regression

Sample Auto95 Auto90 Auto95  Auto90

(1) 2 3) (4) (5) (6)
Automation patents Per year 1997-2011 Per year 1997-2011 Country weights
Mean 0.56 11.98 0.64 13.70 Largest country 0.47 0.46
SD 3.58 54.21 3.94 62.31 Second largest 0.17 0.18
P50 0 2 0 2 Us 0.21 0.21
P75 0 6 0 7 Japan 0.17 0.15
P90 1 20 1 22 Germany 0.20 0.21
P95 2 43 2 49 France 0.09 0.09
P99 10 194 11 215 UK 0.09 0.09
Number of firms 3236 4821

Notes: Summary statistics for the firms used in our baseline regression. Columns (1), (2) and (5) consider
the regression sample when the dependent variable is the count of auto95 patents. Columns (3), (4) and (6)
consider the regression sample when the dependent variable is the count of auto90 patents. Columns (1) and
(3) give statistics on the count of automation patents per year and Columns (2) and (4) for the whole period.
Columns (5) and (6) give statistics on firms’ country weights.

one biadic automation patent between 1997 and 2011. These firms must also have at
least one patent before 1995, for us to compute weights on geographical coverage and on
inventors’ location. We further exclude wholly domestic firms (i.e. those which patented
in only one country pre-sample), though our results are very similar if we include them.
Our baseline sample for the auto95 measure corresponds to 3,236 firms.

Appendix Table A.3 shows that our sample of firms covers a considerable share of
worldwide automation innovations. Orbis’ coverage is excellent: we can assign 84.1% of
all biadic auto95 patent families in 1997-2011 to a firm. Moreover, most heavy patenters
had already patented in at least 2 countries pre-sample: the firms of our sample account
for a disproportionate 53.2% of all biadic auto95 patent families.

Table 3 gives descriptive statistics on the number of automation patents per year and
the country weights for the firms in our sample. The distribution of auto95 patents is
strongly skewed: over the period 1997-2011, the median firm in the sample filed 2 auto95
patent applications, whereas the 99" percentile filed 194. The largest country for a given
firm has, on average, a weight of 0.47 (for auto95), and the second largest a weight of
0.17. For regressions with country-year fixed effects, the latter is more relevant. The
three countries with the largest weights on average are the United States, Germany, and
Japan. Appendix Table A.4 lists our sample’s ten biggest automation innovators.

Appendix Table A.5 gives standard deviations and a correlation matrix for the firm-

level macroeconomic variables, residualized on firm and industry-year fixed effects.?” We

2TWe note that the correlation between low-skill and middle-skill wages is very high. As a result, we
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still find significant variation in the residualized (log) low-skill wages since the standard
deviation is 0.03 (by comparison, the standard deviation is 0.1 when residualizing only
on firm fixed effects). Appendix A.7 provides additional statistics computed at the level
of the shock of our shift-share variable (see Appendix Table A.29).

4 Global Wages and Induced Automation

We present our results in three steps: First, we demonstrate a positive effect of low-
skill wages on automation innovations. Second, we show that this effect does not exist
for non-automation innovation in machinery. Third, we build on the recent shift-share
literature (notably Borusyak, Hull and Jaravel, 2022) and argue that the effect of low-
skill wages on automation innovations is causal. We then discuss additional results,

notably on the minimum wage, and provide robustness checks.

4.1 Main results

Table 4 presents our baseline results. Columns (1) to (3) control for firm and industry-
year fixed effects. An increase in the low-skill manufacturing wage paid by the down-
stream producers of an innovating firm predicts an increase in automation innovation.
The estimated coefficient is an elasticity, so an increase of 1% in the low-skill wage is
associated with between 2.7% and 3.6% more automation patents. In contrast, high-skill
wages predict a decrease in automation innovation with a magnitude roughly similar to
that of low-skill wages. The regressions also control for the business cycle (GDP gap),
labor productivity in manufacturing (in Column (2)), or GDP per capita (in Column
(3)) in the customers’ countries. None of these macroeconomic controls have consistent
significant effects. A higher stock of automation knowledge at the firm level predicts
fewer automation innovations in the future—so that firms do not seem to specialize in
automation technologies over time. The spillover coefficients indicate that firms exposed
to more knowledge in automation technologies tend to undertake more automation inno-
vations. The long-run effect of an increase in low-skill wages on innovation may therefore
differ from its short-run effect (see Appendix A.8).

Country-year fixed effects. Columns (4) to (6) of Table 4 reproduce Columns (1)

to (3) but add country-year fixed effects, where the country of a firm continues to be

will not look at the effect of middle-skill wages separately.
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Table 4: Baseline regressions: effect of wages on automation innovations (auto95)
Dependent variable Auto9s
Domestic and foreign Foreign
(1) (2 (3) (4) () (6) () ®) )

Low-skill wage 2.977* 2,727 3.64%"" 2.24™ 2.617 3.64%"" 4.19*** 5.30%"" 4.43*"

(0.80) (0.85) (0.96) (1.01) (1.14) (1.28) (1.34)  (1.57)  (1.80)
High-skill wage -2.23%*F 2,647 -1.56* -2.81%** -2.04* -1.87* -4.477 -2.91% -4.33***

(0.73) (0.80) (0.82) (0.97) (1.08) (1.07) (1.32) (1.48) (1.42)
GDP gap -3.80 -4.34 -2.26 4.56 5.53 6.95 0.04 2.40 0.50

(2.62) (2.71) (2.81) (6.87) (6.90) (7.21) (4.59) (4.91) (5.24)
Labor productivity 0.96 -1.77 -2.53

(0.92) (1.78) (1.61)
GDP per capita -1.86 -3.45 -0.42
(1.32) (1.97) (2.12)

Stock automation -0.12***  -0.12***  -0.12***  -0.12*** -0.12***  -0.12***  -0.12***  -0.13**"  -0.12"**

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Stock other 0.51"** 0.51™** 0.51*** 0.52*** 0.52*** 0.52*** 0.51**" 0.51**" 0.51**"

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Spillovers automation 0.61"" 0.64™" 0.76™* 1.36"** 1.34*** 1.35%* 1.33"* 1.29"* 1.32%*

(0.30) (0.30) (0.31) (0.47) (0.47) (0.47) (0.46) (0.46) (0.46)
Spillovers other -0.20 -0.25 -0.33 -0.97**  -0.93"**  -0.99"*  -0.97"*  -0.97""  -0.98"""

(0.22) (0.22) (0.24) (0.36) (0.36) (0.36) (0.35) (0.35) (0.35)
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country x year fixed effects - - - Yes Yes Yes Yes Yes Yes
Observations 47812 47812 47812 47453 47453 47453 47453 47453 47453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson fixed effects re-
gressions (HHG). Standard errors are clustered at the firm-level and reported in parentheses. All columns include firm and industry-
year fixed effects. Columns 4-9 add country-year fixed effects. In Columns 7-9 the macroeconomic variables are the normalized
foreign variables previously defined. * p < 0.1; ** p < 0.05; *** p < 0.01
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the country with the largest weight. Unobserved country-level shocks in the innovator’s
country can impact both wages and innovation by affecting the cost of innovation or the
demand for automation equipment through other channels than downstream wages. For
instance, a tax reform in Germany could affect both German low-skill wages and the
incentive to innovate. Shocks that affect firms mainly through their home country can
be captured through home country-year fixed effects. As further discussed in Section 4.2,
our identification assumption is then that foreign wages are exogenous to the automation
innovation of the firm, given our controls. We still obtain a positive effect of low-skill
wages on automation innovations and a negative effect for high-skill wages with similar
elasticities. In unreported regressions, using the headquarters’ location to define the
home country gives similar results.

Foreign wages. Columns (7) to (9) go further and only consider the foreign compo-
nent of wages and other macro variables. Specifically, we decompose total low-skill wages
wr,;¢ into their home and foreign components as wy;; = K; pWr pt + Ki pWL Ft, Where
ki p is the home weight, wr, p the home wage, k; p = 1 — K; p the foreign weight and
wy, rt the average foreign wage. We use the normalized foreign (log) low-skill wage which
Ri, FWL F,0

is defined as ==L logwy, gy The ratio

— captures that more internationally

exposed firms are more affected by foreign wages. We compute it at the beginning of the
sample. With this specification, we can still interpret our coefficient as an elasticity on

w . .
F-LE0 dlog wy, gy, an increase in

total wages. As dlogwy,;; = “222L0dlogwy, py + F""’wL "
sy

the normalized foreign low-skill Watg;goby 0.01 corresponds to an increase in total wages by
1%. We define normalized foreign high-skill wages, GDP per capita, and labor produc-
tivity similarly (as GDP gap is already an average of logs, we directly interact the foreign
variables with k; ). Again, we find a positive effect of low-skill wages on automation
innovation and a negative effect for high-skill wages. Neither ADHMYV nor other papers
using their methodology include country-year fixed effects or focus on foreign variation.
As argued below, these will generally be important for identification in such settings.
Appendix Table A.6 reproduces similar regressions with fewer controls. Regardless of
the control variables included, we find a very stable effect of low-skill wages on automa-
tion. The elasticities are between 2.2 and 3.7 when we focus on total wage and slightly
larger, between 4.2 and 5.3, when we focus on foreign wages. To interpret the size of these
elasticities, note that our analysis focuses on innovation with a high automation content

and reflects the behavior of firms undertaking automation innovations.?® Appendix A.8

28By comparison, the elasticities of clean and dirty patents wrt. fuel price in ADHMYV are slightly
smaller (between 0.5 and 3).
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Table 5: Effect of wages on non-automation innovations

Dependent variable Placebo Machinery
Domestic and foreign Foreign
0] 2 @) 4) () (6) (M ®) )
Low-skill wage 0.87 0.96 1.74% 0.34 0.53 0.95 1.05 1.71 1.21
(0.72)  (0.78)  (0.89) (0.97) (1.03) (1.29) (1.53) (1.64) (1.78)
High-skill wage -0.47 -0.32 0.30 -0.72 -0.33 -0.35 -1.51 -0.59 -1.42
(0.82) (0.79) (0.84) (1.16) (1.21) (1.18) (1.57) (1.75)  (1.68)
GDP gap -2.13 -1.96 0.22 3.40 3.80 4.51 -0.24 1.10 0.05
(1.56)  (1.62)  (1.90) (4.30) (4.29) (4.29) (2.90) (3.01) (2.97)
Labor productivity -0.33 -0.86 -1.45
(0.74) (1.27) (1.40)
GDP per capita -2.33" -1.42 -0.26
(1.32) (1.91) (1.74)
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry X year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country x year fixed effects - - - Yes Yes Yes Yes Yes Yes
Observations 42538 42538 42538 42405 42405 42405 42405 42405 42405
Number of firms 2848 2848 2848 2845 2845 2845 2845 2845 2845

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Pois-
son fixed effects regressions (HHG). Standard errors are clustered at the firm-level and reported in parentheses.
The sample is restricted to firms having done an auto95 innovation in the sample period. Placebo machinery are
innovations in machinery excluding auto90, denoted pauto90. All columns include firm and industry-year fixed
effects. Columns 4-9 add country-year fixed effects. In Columns 7-9 the macroeconomic variables are the normal-
ized foreign variables previously defined. Spillover and stock variables are calculated with respect to the dependent
variable (pauto90). * p < 0.1; ** p < 0.05; *** p < 0.01

runs a simulation to illustrate the macroeconomic effect of our coefficients.

Clustering level. In the baseline specification, we cluster at the firm level to account
for auto-correlation in errors. As firms might also be affected by common country shocks,
we cluster standard errors at the home country level in Appendix Table A.7. If anything,
this tends to reduce the standard error on low-skill wages.? We discuss inference in the
shift-share setting in Section 4.2.

Auto90. Appendix Table A.8 reproduces Table 4 but for the auto90 measure of
automation. The results are very similar, but the coefficients on low-skill wages tend to
be of a smaller magnitude, in line with auto95 being a stricter measure of automation.

Non-automation innovations. Is the effect of wages on automation innovations
specific to automation, or does it affect machinery patents in general? To answer this

question, we now look at non-automation innovations in machinery. Specifically, we

29A potential explanation for the negatively correlated error terms is that a successful innovation
by one firm captures the market and reduces the innovation of its competitors. In addition, standard
errors may overstate confidence levels if the number of clusters is small or the size distribution of
clusters is skewed. To address this, Appendix Table A.7 also includes p-values for low-skill wages using
the BDM bootstrap-t approach of Cameron, Gelbach and Miller (2008). All coefficients of interest
remain significant.
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reproduce the regressions of Table 4 but for machinery innovations that are not auto90.
We denote these pauto90. We restrict attention to the sample of firms included in the
baseline regressions. We recompute knowledge stocks and spillover variables for these
innovations (“own”) and for all innovations except those (“other”). Table 5 reports the
results. The coefficients on low-skill and high-skill wages are much smaller and only
significant in one specification without country-year fixed effects for low-skill wages.?"

Appendix Table A.9 shows additional placebo regressions, where we either include the
full sample of firms undertaking pauto90 innovations or look at all machinery innovations
excluding auto95 innovations (pauto95). Again, the coefficients on low- and high-skill
wages are not significant. The table also shows regressions of the number of auto95
patents controlling for the number of non-automation innovations (pauto90) patents.
This control ensures that our results are not driven by a general tendency for firms to
innovate or patent more conditional on innovating. Our coefficients of interest remain
unaffected.

The placebo regressions suggest that the effect of wages on innovation is specific to
automation innovation. These results validate both our measure of automation and our
empirical approach. Suppose our results were explained by another reason than a causal
link from low-skill wages to automation innovation. In that case, that alternative reason
should also not lead to a comovement between low-skill wages and other innovations in
machinery by the same firms.

Skill premium. The previous results suggest that the skill premium is a driver of
automation innovations since the coefficients on low-skill and high-skill wages are of a
similar magnitude but opposite signs. Table 6 directly regresses automation innovation
on the log of the inverse of the skill premium. The coefficient on the inverse skill premium
is similar to that on low-skill wages in previous specifications and significant at the 1%

level in all specifications.

4.2 Shift-share structure and identification

The previous results establish a correlation between firms’ automation innovations and
the low-skill wages faced by their customers. We now argue that this correlation reflects

a causal effect of an increase in low-skill wages on automation innovation.

30We drop some firms from the sample of Table 4 because they do not have pauto90 patents during this
period. Needless to say, the baseline results on auto95 innovations remain unchanged when restricting
attention to the common subsample of Table 5.

26



Table 6: Effect of the inverse skill premium on auto95 innovations

Auto95

Domestic and foreign Foreign
M ) ®3) (4) ©) (6) () ®) )

Low-skill / High-skill wages ~ 2.52***  2.68"* 253"  2.53*** 239" 263" 439" 420" 437"
(0.70)  (0.70)  (0.70)  (0.89)  (0.88)  (0.89)  (1.28)  (1.25)  (1.27)

GDP gap -4.12 -4.40" -4.14 4.77 5.15 5.50 -0.02 0.66 0.40
(2.59) (2.61) (2.61) (6.79) (6.73) (6.85) (4.60) (4.64) (4.68)
Labor productivity 1.03 -1.21 -0.59
(0.64) (1.10) (0.73)
GDP per capita 0.04 -1.62 -0.33
(0.71) (1.14) (0.89)
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country X year fixed effects - - - Yes Yes Yes Yes Yes Yes
Observations 47812 47812 47812 47453 47453 47453 47453 47453 47453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: The independent variables are lagged by two periods. Standard errors are clustered at the firm-level and reported in
parentheses. The coefficients are estimated with conditional Poisson fixed effects regressions (HHG). All columns include firm
and industry-year fixed effects. Columns 4-9 add country-year fixed effects. Columns 7-9 compute the normalized foreign
(log) inverse skill premium as the difference between the normalized (log) foreign low-skill wages and the normalized (log) for-
eign high-skill wages previously defined. In these columns, GDP gap, GDP per capita and labor productivity also correspond
to their normalized foreign values. * p < 0.1; ** p < 0.05; *** p < 0.01

Conditionally randomly assigned wage shocks. Since our measure of wages
has a shift-share structure, we rely on the recent literature that discusses the identifying
assumptions in this type of set-up. We interpret our results through the lens of Borusyak,
Hull and Jaravel (2022). In the language of our setting, they show that the random
assignment of wage shocks conditional on weights and our controls can be sufficient for
identification. The inference is valid if many country-year pairs are affected by weakly
correlated shocks (we argue that these conditions are met in Appendix A.7).3!

Wages are an equilibrium outcome. So, how can wage/labor costs shocks be condi-
tionally randomly assigned in our context? We include country-year fixed effects and
focus on foreign wages. Additionally, our analysis controls for high-skill wages and finds
that the skill premium largely drives automation innovation. As such, we are foremost
interested in foreign shocks that affect low-and high skill wages differently. We can think
of wage shocks as coming from four sources of variation: changes in regulation, labor
supply shocks, demand shocks, and technology shocks. We discuss these in turn.

Changes in regulation or labor supply shocks in manufacturing present an ideal source

of variation. The introduction of a minimum wage, demographic or education shocks, or

31The Herfindahl index for our weights at the country level is 0.13 and, therefore, with 15 years,
0.009 at the country-year level. For foreign weights, these numbers are 0.09 and 0.006, respectively. In
Appendix A.7, we argue that there is significant variation within countries.

27



Table 7: Including additional controls

Dependent variable Auto9s
Domestic and foreign Foreign
(1) (2 (3) (4) (5) (6) (7) (8) 9) (10)
Low-skill wage 1.99** 2.07" 3.09"* 2.56™" 247" 4.14** 6.94"* 5.19"* 5.28"** 6.96"*
(1.01)  (1.25)  (1.17)  (1.16)  (1.18)  (1.34)  (L76)  (1.53)  (L.56)  (1.88)
High-skill wage -2.49™* -1.14 -1.24 -1.87* -2.26™  -4.38""* -3.80™" -2.97* -2.74* -2.99*
(0.97)  (1.01)  (1.01)  (1.07)  (1.15)  (1.32)  (1.49)  (1.47)  (1.46)  (1.73)
GDP gap 6.68 7.32 5.68 6.20 5.31 1.62 4.15 3.08 3.05 3.60
(6.81)  (6.82)  (6.89)  (7.00)  (6.85)  (4.61)  (4.99)  (5.33)  (4.88)  (5.45)
Labor productivity -2.36 -2.93* -1.66 -1.62 -5.19** -2.11 -2.76 -3.65""
(1.86)  (1.70)  (1.79)  (1.79) (2.11)  (1.56)  (1.59)  (1.74)
Manufacturing size -0.49** -0.54***
(0.19) (0.20)
Recent auto95 innovation -2.51%* 1.24
(1.26) (0.93)
Recent other innovation 1.56** -0.47
(0.78) (0.80)
Offshoring 11.65** -1.87
(5.47) (4.55)
Long-term interest rate 0.08 -0.03
(0.11) (0.06)
Low-skill wage (iw) -0.00 0.05
(0.47) (0.55)
High-skill wage (iw) 0.27 -0.23
(0.37) (0.46)
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country X year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 47453 47453 47453 47158 46693 47453 47453 47453 47060 35248
Number of firms 3233 3233 3233 3209 3181 3233 3233 3233 3205 2413

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson fixed effects re-
gressions (HHG). Standard errors are clustered at firm-level and reported in parentheses. All columns include firm, industry-year, and
country-year fixed effects. Manufacturing size denotes the log of weighted averages of manufacturing value added in the customer’s
countries. Recent auto95 innovation, recent other innovation, offshoring and long-term interest rate similarly denote the log weighted
averages of respectively auto95 innovations in the last 3 years, other innovations in the last 3 years, the share of foreign value added in
the gross value added in manufacturing, and the real yield on 10-year government bonds. Low-skill wages (iw) and high-skill wages (iw)
compute log weighted averages of wages in the countries where the firm’s inventors are located. Columns 6-10 use the normalized foreign
variables previously defined. Normalized foreign manufacturing size, recent innovation variables and offshoring are defined similarly to
normalized foreign low-skill wages; normalized foreign long-term interest rate is defined like normalized foreign GDP gap. Columns 4
and 9 restrict attention to countries for which interest rates are available. * p < 0.1; ** p < 0.05; *** p < 0.01

shifts in labor demand in non-manufacturing sectors, for instance, are unlikely to affect
automation innovations through any other channel than an increase in labor costs and
can be a source of conditionally randomly assigned wage shocks. In principle, regulation
or labor supply shocks could also affect the production costs of innovating firms and
thereby innovation. However, as long as production is concentrated in the home country;,

t.32

country-year fixed effects will absorb the effec In Section 5, we will focus on a specific

labor-market shock, the Hartz reforms in Germany.

32Tf a firm serves a foreign market through local production instead of exporting, higher foreign low-
skill wages in production would increase the price of machines and therefore bias our coefficient on
low-skill wages toward 0.
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Foreign demand shocks, in contrast, can directly affect both foreign manufacturing
wages and the demand for automation equipment and innovation. To address this issue,
we have already included several macro controls: GDP gap, GDP per capita, and labor
productivity in manufacturing.®® In Table 7, Columns (1) and (6), we additionally
control for the size of the manufacturing sector, computed as the weighted average of
country-level manufacturing value added. Our coefficients on low- and high-skill wages
remain very similar. Manufacturing size itself has a significant but small negative effect.?*

Our control for labor productivity addresses foreign technology shocks if they are
not skill-biased. Nevertheless, one may still be concerned by skill- (or unskill-) biased
foreign technology shocks. For instance, a recent period of higher than usual automation
innovation might leave both wages and the incentive for further innovation low, creating
a spurious positive correlation. To address this, we construct a measure of recent inno-
vation analogous to that of the low-skill wages: for each country we compute the number
of automation innovations (from our set of firms or others) applied for in the last three
years and build firm-specific measures. We build a similar control for other innovations.
Columns (2) and (7) of Table 7 report the results. Our coefficients on low-skill wages
remain similar, and these controls do not show a consistent effect across specifications.??

A related but distinct issue is that of reverse causality. Distinct because reverse
causality concerns the effect of firms’ own innovations on wages. As a result, this issue
is largely addressed by country-year fixed effects: a shock that leads German firms
to introduce more automation innovations will lower German wages but is unlikely to
strongly affect non-German wages. In addition, we include a lag between automation
innovations and wages and control for past automation innovations in the form of the
knowledge stocks at the firm level.

To summarize, we consider that conditional on high-skill wages, macro-controls, and
the set of fixed effects; our low-skill wages can be considered as good randomly assigned

(or similarly, that the skill premium is as good as randomly assigned conditional on

33A foreign demand shock should increase low- but also high-skill wages and the demand for all
machines. It will be associated with a higher GDP gap and higher GDP per capita. If the shock occurs
in manufacturing, it will lead to an increase in the manufacturing sector and, if value added increases
more than employment, higher labor productivity.

34We remove the control for labor productivity in manufacturing since it is closely related to that
control—though keeping it does not change the results. Controlling for the share (instead of the size)
of manufacturing in GDP leads to similar results in unreported regressions.

35 An additional concern might come from low-skill human capital shocks (captured by (i) in the
model of Appendix A.5), which we cannot directly control for. However, a positive shock to low-
skill human capital would be associated with higher wages and less automation innovation and would
correspondingly bias our estimates downwards.

29



macro-control and the fixed effects). The stability of our coefficients to various controls
suggests that once one controls for high-skill wages, the shocks that identify an effect of
low-skill wages on automation innovations are primarily the labor supply and regulation
shocks mentioned earlier. The stability of our coefficients can also be seen as a test of
the exclusion restriction (Borusyak et al., 2022, Aghion et al., 2022).

Alternative explanations. Borusyak et al. (2022) recommend considering other
shock-level variables that may bias results. Accordingly, we control for offshoring, the
real interest rate, and inventor-located weighted wages. Increased offshoring in the for-
eign country might reduce both wages and the willingness to buy automation technology.
We construct a measure of offshoring at the country level based on the methodology of
Timmer et al. (2014): the share of foreign value added in the gross value added in
manufacturing. Then, as for other variables, we build the firm-specific value and control
for it in Columns (3) and (8) of Table 7. The real interest rate covaries with the business
cycle and is potentially an important determinant of the cost of purchasing equipment.
Columns (4) and (9) control for the real yield on 10-year government bonds.>® Labor
costs could affect inventing firms through their R&D costs. We re-build our firm-specific
wage variables using weights based on the location of inventors instead of patent of-
fices and control for these inventor-location-weighted wages in Columns (5) and (10) of
Table 7. These regressions provide an additional placebo test, treating firms with the
same macroeconomic shocks but weighing them differently. Across the specifications,
our coefficients on total and foreign low-skill wages remain largely stable.

Placebo. Perhaps most importantly, our coefficients on low-skill wages should be
compared to those from regressions with the placebo innovations. In Table 5, we reported
regressions with non-automation innovations in machinery and found persistently little
effect from low-skill wages on innovation. Therefore, if our result on the effect of low-
skill wages on automation innovations came from a bias, then that bias would have to
be absent for other types of machinery innovations undertaken by the same firms.

Shift-share checklist. Borusyak et al. (2022) show that (in our context) shift-
share firm-level regressions are equivalent to weighted shock-level (i.e. country-year
level) regressions. In Appendix A.7, we consider a linear setting for which such an
equivalence result applies: we use arcsinh of the count of automation patents as the
dependent variable and replace our log of average macro variables with the average

of logs. The linear setting allows us to give summary statistics on our shock variable

36We obtain data for 21 countries (AT AU BE CA CH DE DK ES FI FR GB GR IE IT JP KR LU
NL PT SE US) from the IMF and the OECD and deflate nominal yields using the manufacturing PPI.
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Table 8: Monte-Carlo

simulation to address Adao et al. (2019) s.e. bias

Auto95
Domestic and foreign Foreign
1 (2) 3) (4) (5) (6) (7) (®) 9)
Low-skill wage 2.97" 2.72%*" 3.64™** 2.24™ 2.61" 3.64 4.19"* 5.30"" 4.43™
[0.015] [0.003] [0.008] [0.020]  [0.077] [0.118] [0.003] [0.030] [0.018]
High-skill wage -2.237* -2.64" -1.56*** -2.81 -2.04 -1.87* -4.47 -2.91** -4.33*
[0.010]  [0.069]  [0.005]  [0.179] [0.152]  [0.048]  [0.184]  [0.023]  [0.060]
GDP gap Yes Yes Yes Yes Yes Yes Yes Yes Yes
Labor productivity - Yes - - Yes - - Yes
GDP per capita Yes Yes Yes
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country X year fixed effects - - - Yes Yes Yes Yes Yes Yes
Observations 47812 47812 47812 47453 47453 47453 47453 47453 47453
Firms 3236 3236 3236 3436 3436 3436 3436 3436 3436

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson fixed ef-
fects regressions (HHG). P-values are reported in brackets. Columns 1-3 include firm and industry-year fixed effects. Columns
4-9 add country-year fixed effects. Columns 7-9 use the normalized foreign macro variables previously defined. All regres-
sions include controls for stocks and spillovers. The p-values are computed by sampling with replacement the entire path of
macroeconomic variables for each firm with 4000 draws. * p < 0.1; ** p < 0.05; *** p < 0.01

and unpack the relationship between the inverse skill premium and automation in the
data. Appendix Figure A.11 shows bin-scatter plots of the shock-level regressions of
residualized automation measures on the inverse skill premium: the relationship appears
linear and not driven by outliers. We also report how balanced our shocks are with
respect to observables. In addition, we show that a single country does not drive our
results by sequentially excluding the six largest countries.

Adao, Kolesar and Morales (2019) show that shift-share design applications tend to
over-reject the null. In our application, a problem arises when the residual errors of
firms with similar country distributions are correlated, and it is not solved by standard
clustering. To address this issue in our Poisson setting, we implement a Monte Carlo
simulation similar to those of Borusyak and Hull (2021). We base our simulation on
the regressions of Table 4. Specifically, for each firm, we keep the automation activity,
the stocks of innovations, the spillover variables, and the distribution of country weights
based on actual data. Then, for each country, we sample with replacement the entire
path of macroeconomics variables (wages, labor productivity, GDP per capita, and GDP
gap) from the existing set of countries. For each sample, we compute firm-level macro
We run the

regressions, store the coefficients on low-skill and high-skill wages and repeat 4000 times.

variables as the weighted average of these new country-level variables.

Table 8 reports the p-values of the original coefficients on low-skill wages and high-skill
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wages based on the simulated distribution of coefficients. The p-values are not markedly
different from those in Table 4. In particular, the low-skill wage coefficients are significant
at least at the 10% level (except in Column 6 with a p-value of 0.12) and at the 5%
level when we focus on foreign wages. In the language of Adao et al. (2019), the set
of controls soaks up most country-specific shocks affecting the outcome variable and,
consequently, no shift-share structure is left in the regression residuals. Figure A.4 plots

the distribution of coefficients we obtain for Columns 2, 5, and 8.37

4.3 Additional Results and Robustness Checks

In this section, we discuss additional results and robustness checks.

Table 9: Effect of the minimum wage

Auto95
Domestic and foreign Foreign
1) (2) 3) (4) (5) (6) (M) (8) 9)
Minimum wage 2.12%** 1.86*** 2.12%** 1.84™" 1.99** 2.04* 2.33" 2.43* 1.22
(0.63) (0.64) (0.79) (0.89) (0.94) (1.07) (1.20) (1.26) (1.44)
High-skill wage -1.88"** -2.54™ -1.87* -3.66™*" -3.08" -3.30" -3.617"" -3.25" -5.38"**
(0.67) (0.79) (0.84) (1.03) (1.26) (1.44) (1.38) (1.87) (1.87)
GDP gap -2.56 -3.51 -2.55 7.48 8.22 8.25 3.25 3.66 -1.48
(2.51) (259)  (2.79)  (6.46)  (6.53)  (7.07) (479  (5.27)  (6.22)
Labor productivity 1.30 -1.04 -0.46
(0.79) (1.50) (1.63)
GDP per capita -0.01 -0.73 3.66
(1.23) (2.07) (2.57)
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country X year fixed effects - - - Yes Yes Yes Yes Yes Yes
Observations 47767 47767 47767 47436 47436 47436 46287 46287 46287
Number of firms 3233 3233 3233 3231 3231 3231 3148 3148 3148

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson fixed ef-
fects regressions (HHG). Standard errors are clustered at the firm-level and reported in parentheses. All columns include firm
and industry-year fixed effects. Columns 4-9 add country-year fixed effects. In Columns 7-9 the macroeconomic variables are
the normalized foreign variables previously defined. * p < 0.1; ** p < 0.05; *** p < 0.01

Minimum wage. In Table 9, we look at a particular type of labor market regulation,
namely the minimum wage. We have data for 22 countries instead of 41.3% Replacing low-

skill wages with the minimum wage, we find a positive effect on automation innovations.

3TBorusyak and Hull (2021) show that a regression based on a logged shift-share measure may be
biased due to the non-linearity of the log function. We implement their correction to remove this
potential bias in Appendix A.7.

38We use data from the OECD. Importantly, not all countries have government-mandated minimum
wages, and for some countries, we follow the literature and use sectorally bargained minimum wages.
See details in Appendix A.6.1. We do not use the minimum wage as an instrument for low-skill wages
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The coefficients are similar to those on low-skill wages for regressions on total wages
(Columns (1)-(6)) but smaller and, in one case, insignificant for regressions on foreign
wages. This is not surprising: First, we focus on manufacturing, where low-skill wages
tend to be substantially above the minimum wage. Second, the minimum wage only
captures part of the labor costs. Third, we lose nearly half of our countries.
Macroeconomic magnitude. To illustrate the macroeconomic magnitude of our
coeflicients and the effect of spillovers and stock variables, we run a simulation in Ap-
pendix A.8 where we uniformly and permanently decrease the global skill premium by
10%. This increases the share of automation innovations in machinery by 4.8 p.p. over
1997-2011, with 2.7 p.p. coming from the adjustment of stocks and spillovers. We com-
bine this estimate with the coefficients from our industry-level analysis of Section 2.6,
specifically Columns (1) and (4) in Table A.27. We find that the 10% increase in the skill
premium would lead to a decline in routine cognitive tasks of 7.5 centiles and a decline
in routine manual tasks of 6.2 centiles over a decade (for comparison, routine cognitive
and manual tasks declined at 2.5 and 2.3 centiles per decade in the sectors considered).
Timing and pre-trends. In Appendix Figure A.5, we look at alternative lags (and

39 We consider two specifications, both controlling

leads) for the dependent variables.
for GDP gap, labor productivity, and country-year fixed effects. In Panel a, we look at
total wages, corresponding to Column 5 of Table 4. In Panel b, we only consider foreign
wages, corresponding to Column 8. The 2-year lag delivers the highest coefficient in both
cases. This is in line with the empirical literature on induced innovation using patent
data which often finds effects peaking with a 2-3 year lag (see among many ADHMYV or
Popp, 2002). A possible interpretation of this fast response is that firms may prioritize
existing automation projects over starting new projects.*’

Figure A.5 also looks at the effect of leads of wages on automation innovations. The
early leads (up to 2 years) show significant effects for high-skill wages. This is not

surprising: wages are auto-correlated and firms may anticipate shocks at short horizons.

because it would be inconsistent: if low-skill wages are endogenous, then high-skill wages are likely
endogenous too, so we would need a second instrument.

39We keep a lag of two periods for the stock variables; otherwise, the dependent variable would be
included in the RHS in the lead and contemporaneous cases.

“OIn contrast, it is unlikely that our regressions only capture the effect of patenting off-the-shelf
inventions which already exist within the firm and have become commercially viable. First, Hall,
Griliches and Hausman (1986) and Kaufer (1989) show patent applications to be timed closely to
research expenditures because the first-to-file rule provides inventors with a strong incentive to patent
as early as possible in the R&D process (Dechezleprétre et al., 2017). Second, if that were the case,
then the largest effect of wages on patents should be contemporaneous.
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Importantly, though, we find no significant effect for longer leads, suggesting that there
are no pre-trends (testing for such pre-trends is one of the recommendations of Borusyak,
Hull and Jaravel, 2022).

Additionally, innovators should only care about current wages insofar as they are
predictive of future wages. In Appendix Table A.10, we compute predicted future wages
at time t — 2 based on an AR(1) process with country-specific trends instead of directly
using lagged wages. The results are similar to our baseline.

Long-difference. For most of our regressions, we follow the large patent literature
and rely on the Poisson estimator, which best handles the count data nature of our
dependent variable. In Appendix Table A.11, we conduct a long-difference estimation.
To allow for zeros in the number of patents, we use the arcsinh transformation and
construct ten 5-year overlapping differences from our 15 years of data. Columns (1)-(6)
focus on firms that patented at least once over the time considered (now 1995-2013),
mirroring what a Poisson regression would do. We find a positive effect of low-skill
wages and a negative effect of high-skill wages — though, in some specifications, the
positive effect of low-skill wages is non-significant. The inverse skill premium, however,
always has a positive and significant effect. The diminished significance of low-skill wages
reflects the noisy behavior of one-time patenters and the difference in functional forms
between the log function and arcsinh for low patent counts. Columns (7)-(9) restrict
attention to firms that have patented at least twice and recover the same results as in
our Poisson regressions. These results suggest that automation responds to medium-run
changes in wages.

Innovation types. In Appendix Table A.12, we look at other definitions or sub-
categories of automation innovations in regressions with foreign wages. The results are
robust to excluding the codes that we added to the definition of the machinery techno-
logical field listed in footnote 9. Though the coeflicients are a bit smaller, they are also
robust to using the laxer auto80 definition of automation innovations. Subcategories of
automation innovations are defined by re-classifying codes according to the prevalence
of each category of automation keywords. We find large effects of low-skill wages on
automat® and robot patents; but no significant effect on CNC patents, for which the
sample size is smaller.

Pre-determined weights. Goldsmith-Pinkham, Swan and Swift (2020) show that
alternatively, identification in a shift-share design can be obtained if the weights are

exogenous. In our context, as argued in Section 4.2, firms’ decision to innovate may be
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affected by other macro shocks in the destination countries, the exposure to which would
be captured by our weights. This is why we rely on Borusyak et al. (2022). Nevertheless,
we note that our weights are pre-determined and do not reflect firms’ expectations of
future wage growth. Appendix Table A.13 shows that country-level growth rates in low-
and high-skill wages between 1995 and 2000 have no predictive power on firm weights in
1995. Appendix Table A.14 shows that our results are robust to excluding automation
patents from the weights. We also use a longer lag between the period used to compute
the weights and the regression period, either by computing weights only up to 1989 or
by dropping the first 5 years of the regression.*!

Additional robustness checks. Appendix Table A.14 looks at alternatives to
premultiplying our patents weights with GDP%3%: with no multiplication, multiplying
by GDP, or with total payment to low-skill workers raised to the power of 0.35, (w LL)0'35.
These weights may better measure the potential market for technology that automates
low-skill work. The results remain similar.

Our regressions include the stock of automation innovations and may suffer from
Nickell’s bias. Appendix Table A.15 removes stocks or uses the standard method of
Blundell, Griffith and van Reenen (1999) instead, which proxies for the fixed effect with
the firm’s pre-sample average of the dependent variable. We obtain similar results.

Appendix Table A.16 investigates whether our results are robust to focusing on
patents of higher quality and weighs patents by citations. We add to each patent the
number of citations received within 5 years normalized by technological field and year of
application. The results are weaker with total wages and country-year fixed effects but
are very similar to the case without weighing patents in our preferred specification with
foreign wages and country-year fixed effects.*?

Firms of different sizes may be on different trends in automation innovation. In Ap-
pendix Table A.17, we group firms into four bins according to their number of automation
patents in 1995 and allow for bin-year fixed effects. We find similar results. Appendix
Table A.18 shows that our results (using foreign wages and country-year fixed effects)
are robust to using different deflators, converting in USD yearly or replacing manufac-
turing wages with total wages. As mentioned previously, Appendix A.7 contains several

exercises linked to our shift-share setting including removing large countries sequentially.

41The table also shows that the results are robust to dropping the earlier years from the weights.
42This reflects in part that the number of citations is quite right-skewed. Once it is winsorized at the
99" percentile, the t-stats for Columns (4) and (5) rise from 1.2 and 1.27 to 1.43 and 1.56.
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5 Event study: the Hartz reforms in Germany

We now focus on a specific exogenous labor shock, namely the German Hartz reforms.
This complements our main analysis, which was agnostic about the exact nature of
the labor market shocks driving automation innovations. The Hartz reforms were a
series of labor-market reforms in Germany first designed in 2002 and implemented be-
tween January 1st 2003 and January 1st 2005. In order to reduce unemployment and
increase labor-market flexibility, the government reformed employment agencies, dereg-
ulated temporary work, offered wage subsidies for hard-to-place workers, reduced or
removed social contributions for low-paid jobs, and reduced long-term unemployment
benefits. Krause and Uhlig (2012) among others have given the reforms an important
role in the remarkable performance of the German labor market since, in particular, in
increasing labor supply and improving matching efficiency.

Such reforms should reduce the incentive to automate low-skill labor by both directly
and indirectly decreasing labor costs through an increase in labor supply and a reduction
in the expected cost of vacancies. These are perhaps the most salient labor market
reforms in a major country during our time period and are an ideal setting for us. They
are unlikely to have affected the direction of innovation in non-German firms through
channels other than the German labor market and were the major macroeconomic shock
in Germany at the time. Furthermore, they had a large and immediate effect: Appendix
Figure A.3.b shows that the inverse skill-premium in Germany started to decline as soon
as the Hartz reforms were implemented in 2003 while it was flat beforehand. In contrast,
there is no such trend for the aggregate rest of the world.

We use an analogous approach to before, measuring innovation and firms’ exposure to
international markets. However, we exclude German firms since the Hartz reforms likely
affected them through channels other than the labor costs faced by their customers. We

run the following regression over the years 1997-2014:
PATutir = exp (Bpet - 0tkipe + Bralnt Kautit—2 + Bro It Kotherit—a + 0 4+ 054 + det)+€i s

We keep a 2-year lag on the innovation stocks. As before, PAT 4, counts automation
patents, Kaysi—2 and Koiperit—2 denote firm knowledge stocks, d;, 6+, and d., are firm,
industry-year, and country-year fixed effects, respectively. k; pg is the fixed German
weight of the firm; and J; is a set of year dummies (with 2005 the excluded year). Spg:

are the coefficients of interest. They state by how much more a firm exposed to Germany
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Figure 3: Effect of German exposure on automation innovations. Panel (a) reports coefficients on
the interaction between the German weight and a set of year fixed effects in a Poisson regression
of auto95 innovations controlling for a full set of fixed effects and firm innovation stocks with
2154 firms. Panel (b) reports coefficients on the triple interaction between the German weight,
a dummy for auto95 innovations, and a set of year fixed effects in a Poisson regression of auto95
and other machinery innovations controlling for a full set of fixed effects, firm innovation stocks
and the interaction between the German weight and a set of year fixed effects with 6690 firms.
Standard errors are clustered at the firm level and the shaded areas represent 95% confidence
intervals. The figure shows that the relative trend in automation innovation for firms more

exposed to Germany reversed after the Hartz reforms.

tends to file automation patents in a given year relative to 2005.

Figure 3.a reports the results. The coefficient of —2.68 in 2010 means that, on
average, a firm with a German weight of 0.1 (the mean value is 0.104) had a 26.8%
smaller increase in automation innovations between 2005 and 2010 than a firm with no
German exposure. This aligns with our regression results: Between 2003 and 2008, the
inverse skill-premium in Germany declined by 12.3% relative to the rest of the world.
Using the elasticity of 2.5 of Column (4) in Table 6, this would correspond to a decline
in automation innovations of 30.8% between 2005 and 2010.

From 2000 to 2004, firms more exposed to Germany increased their propensity to
introduce automation innovations. As expected, the trend reversed between 2006 and
2009, consistent with the Hartz reform increasing labor supply from 2003 onward and
decreasing the incentive to introduce automation innovations from 2005. From 2010,
the coefficients increase again. This reversal may suggest only temporary effects of the
Hartz reform on the direction of innovation, or it was the result of the Great Recession.

Since Germany was less affected than other countries by the recession starting in 2008,
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the relative cost of labor may have risen, leading to a relative increase in automation
innovation 2 years later.

We conduct a triple difference exercise to show that the trends above are specific
to automation innovations. We compare automation innovations with non-automation
machinery innovations by firms more or less exposed to Germany over time. Formally,

we run the following regression:

Bpey - 0kipe + Bh s - 0tki DB k=aut + Bra 10 K autii—2
PAT} ;= exp o 0 K gurig—2le=au + Brp 0 Kpaurii—2 + B In Kpautit—2lk=aut | kit
+Bro It Kotherit—2 + BRI Kother.it—2lhmaut + Oki + Ok jit + Ok et

(4)
k denotes the type of an innovation which is either auto95 or other machinery innova-
tion (pauto95), d; represents a set of innovation type dummies, J;; represents a set of
innovation type firm fixed effects, dy ., innovation type country-year fixed effects, dy
innovation type industry year fixed effects and 13—, is a dummy for an auto95 inno-
vation. K pgyeis is the stock of other machinery innovations (pauto95) and Kyper ;¢ the
stock of non-machinery innovations. (%%, are the coefficients of interests. For each
year, they measure how much exposure to Germany increases the relative propensity
to introduce automation innovations compared to other forms of machinery innovations
relative to 2005. The coefficients Spg; measure the effect of German exposure common
to all machinery innovations. Figure 3.b reports the results: the pattern is, if anything,
more pronounced than in Figure 3.a.

To formally test that the Hartz reform created a trend break, we replace the set of
year fixed-effects &; in BHE - 01ki pplp—aut 0 equation (4) with a time trend ¢ — 2005
and a time trend interacted with a post 2005 dummy (¢ — 2005);~2005. We focus on the
years 2000-2010 to have a panel centered on 2005 and avoid the effects of the Great
Recession on innovation. Table 10 reports the result. Column (2) corresponds exactly
to this specification. We find a significant time trend in the effect of German exposure
on the relative propensity to innovate in automation between 2000 and 2005. However,
the trend sharply reverses in the following five years. Column (1) omits the controls
for the stock variables. Column (3) replaces the flexible set of year dummies times
German exposure, 0;k; pg, by a time trend times German exposure and a time trend
times German exposure post 2005. Finally, instead of looking at auto95 and pauto95

(i.e. all non-auto95 machinery innovations) innovation, Column (4) considers auto95 and
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Table 10: Innovation and exposure to Germany: triple diff exercise

Auto95 and pauto95 Auto95 and pauto90
1) @ (3) (4)
Time trend X auto95 dummy x German exposure X post  -1.06"**  -1.10""*  -1.09"** -1.12%
(0.33) (0.33) (0.33) (0.33)
Time trend X auto95 dummy X German exposure 0.50*** 0.477** 0.46*** 0.47*
(0.19) (0.18) (0.18) (0.18)
Time trend x German exposure X post 0.31
(0.22)
Time trend x German exposure -0.34**
(0.15)
Firm innovation stocks x innovation types - Yes Yes Yes
Year dummy x German exposure Yes Yes - Yes
Industry x year X innovation types FE Yes Yes Yes Yes
Country x year X innovation types FE Yes Yes Yes Yes
Firm X innovation types FE Yes Yes Yes Yes
Observations 76026 76026 76026 74091
Number of firms 5415 5415 5415 5279

Notes: The coefficients are estimated with conditional Poisson fixed effects regressions (HHG). Standard errors are
clustered at the firm-level and reported in parentheses. All regressions control for firm innovation types fixed ef-
fects, country-year-innovation types fixed effects, and industry-year-innovation types fixed effects. Innovation types
are auto95 and pauto95 (all other machinery innovations) in columns 1-—3 and auto95 and pauto90 in Column 4. Col-
umn 2—4 control for innovation stocks lagged by two periods interacted with innovation types dummies. Column 3
controls for a linear time trend times the German exposure instead of yearly dummies times the German exposure.

pauto90 innovations (which we used as the default non-automation innovations in Table
5). In all cases, the trend break on automation innovations remains with a consistent
magnitude. Overall, this section shows that, in line with our theory, the Hartz reforms
reduced automation innovation of foreign firms highly exposed to Germany, both in

absolute terms and relative to other types of machinery innovation.

6 Conclusion

In this paper, we identify automation patents and present evidence that firms respond
to increases in downstream firms’ low-skill labor costs with an increase in automation
innovations. We develop a method to classify patents in machinery as automation or not,
covering a broad range of technologies. Then, we use this classification to measure the
use of automation technology by industry at a highly disaggregated level and find that
our automation measure predicts a decline in routine tasks across US sectors. Future
research could adapt our classification method to automation patents beyond machinery.
Such an extension would allow for an analysis of automation in the service industry or
automation of high-skill tasks through Artificial Intelligence.

Further, we use our classification to analyze labor market conditions’ effect on ma-

chinery automation innovations. Relying on global data, we find that automation inno-
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vations are very responsive to changes in low-skill wages with elasticities between 2 and
5. Exploiting the German Hartz reforms, we find a relative decrease in automation inno-
vations by foreign firms with high exposure to Germany after the reform. Though using
different variations in the data, both exercises emphasize that automation innovations
are much more responsive to changes in labor costs than other innovations.

These results suggest that policies that increase labor costs for low-skill workers,
such as increases in the minimum wage, will induce innovations that replace them.
Therefore, endogenous technological change is likely to reduce the costs of such policies
for the overall economy, as well as limit the welfare gains of these policies for low-skill
workers. Our paper provides a building block toward estimating the extent to which a

policy-induced increase in low-skill wages could be undone through innovation over time.
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A Main Appendix

A.1 Additional Figures and Tables
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Figure A.1: Share of biadic patent applications in the different technical fields in 1997-2011.
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Figure A.2: Trends in automation (for biadic applications)
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Figure A.4: Distribution of coefficients in Monte-Carlo simulations. We run Monte-Carlo simula-

tions where for each country, we sample with replacement the entire path of macroeconomics

variables (wages, labor productivity and GDP gap) from the existing set of countries. We

then re-run our regressions 4000 times. The figure reports histograms on the distribution of

low-skill wage coefficients. The vertical red lines correspond to the coefficients of the true

regressions. Each panel corresponds to a different column in Table 8.
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Figure A.5: Lag and leads. This figure reports regression coefficients on low-skill and high-skill wages at
different lags and leads. Each panel and each year corresponds to a different Poisson regression
of auto95 innovations on wages, GDP gap, labor productivity, stocks, spillovers, firm fixed
effects, industry-year fixed effects, and country-year fixed effects. Explanatory variables are
computed at year ¢t 4+ the year marked on the x-axis except the stocks for which we keep
the same lag of 2 years throughout. Panel a consider the total macroeconomic variables
while Panel b looks at the normalized foreign variables previously defined. The shaded area
represent 95% confidence interval, standard errors are clustered at the firm level. Panel a,
year -2 corresponds to Column 5 of our baseline Table 4, and Panel b, year -2 corresponds to

Column 8. The leads test for the presence of pre-trends.

Table A.1: Industry of innovators

Industry Share auto95 (%) Share firms (%)
20  Manufacture of chemicals and chemical products 2.14 3.43
25 Manufacture of fabricated metal products, except machinery and equipment 1.18 4.42
26 Manufacture of computer, electronic and optical products 23.26 7.66
27 Manufacture of electrical equipment 9.47 2.9
28 Manufacture of machinery and equipment n.e.c. 24.29 21.11
29 Manufacture of motor vehicles, trailers and semi-trailers 5.32 3.55
30 Manufacture of other transport equipment 4.58 1.17
46 Wholesale trade, except of motor vehicles and motorcycles 1.32 3.31
64 Financial service activities, except insurance and pension funding 1.68 0.99
72  Scientific research and development 2.05 2.38

Other industries 12.96 26.83

No information on industry 11.75 22.22

Notes: The table reports the industry of patenting firms included in our baseline regression with industry-year fixed effects
at the NACEv2 division level, and the share of biadic auto95 families for each industry. Industries representing less than
1% of patents are summed up in the "Other industries" category.
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Table A.2: Low-skill wages and the skill premium in manufacturing for selected countries

Country Low-skill wages High-skill wages Skill premium
(1995%) (1995%) (HSW/LSW)
1995 2009 1995 2009 1995 2009
India 0.19 0.28 0.89 1.38 4.79 4.98
Mexico 0.89 0.61 3.46 2.56 3.90 4.21
Bulgaria 1.29 0.71 4.27 1.60 3.32 2.25
United States 11.57 13.67 28.42 41.23 2.46 3.02
Belgium 29.50 41.89 45.98 61.24 1.56 1.46
Sweden 19.92 42.16 34.44 55.92 1.73 1.33
Finland 23.41 43.63 28.10 63.71 1.20 1.46

Note: Wages data, taken from WIOD. The table shows manufacturing low-skill and high-skill
wages (technically labor costs) deflated by (manufacturing) PPI and converted to USD using av-
erage 1995 exchange rates. Skill-premium is the ratio of high-skill to low-skill wages. The table
shows the three countries with the lowest low-skill wages in 2009, the three with the highest and
the US.

Table A.3: Coverage of the regression sample

Applications  Families Biadic Families Firms (with auto95 bia)

Patstat 1997-2011 430783 179025 60941 -
Matched with Orbis 347242 139538 51250 4231
Firms in sample 206313 85371 32397 3236

Notes: This table reports the number of auto95 patent applications, families, biadic families
and firms for the time period 1997-2011 for three different samples based on PATSTAT: the
whole sample, the sample of firms observed in ORBIS and the sample of firms included in our
baseline regression.

Table A.4: Top 10 auto95 innovators in our sample

Company Number of biadic auto95
patents in 1997-2011

Siemens Aktiengesellschaft 1781
Honda Motor Co., Ltd. 815
Fanuc Co. 779
Samsung Electronics Co., Ltd. 718
Mitsubishi Electric Co. 669
Robert Bosch GmbH 663
Tokyo Electron, Ltd. 583
Murata Machinery, Ltd. 502
Kabushiki Kaisha Toshiba 491
Panasonic I.P.M. Co., Ltd. 460

Notes: This table reports the 10 firms with the most auto95
patent families in our baseline sample.
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Table A.5: Summary statistics on the firm-level macro variables

Low-skill wage Middle-skill wage High-skill wage GDP gap GDP per capita Labor productivity

Low-skill wage 1.000

Middle-skill wage 0.942 1.000

High-skill wage 0.608 0.749 1.000

GDP gap -0.063 -0.051 -0.032 1.000

GDP per capita 0.709 0.805 0.732 0.114 1.000

Labor productivity 0.674 0.736 0.772 0.039 0.668 1.000
Standard deviation 0.032 0.029 0.034 0.004 0.026 0.026

Notes: This table shows the correlation of residuals for the auto95 baseline regression sample, controlling for firm and year-industry
fixed effects. The last row shows the standard deviation of the residual variables.

Table A.6: Baseline regressions with fewer controls

Auto95
Domestic and foreign Foreign

(1 2 () (4) (5) (6) () (®) (9)
Low-skill wage 3.42%*" 2.65™"" 3.01"*" 2.72%** 2.65""" 2.24™* 4.67* 4.19"* 4.19"*
(0.76) (0.76) (0.80) (0.98) (0.76) (1.01) (1.33) (1.32) (1.33)
High-skill wage -1.56™* -1.51% -2.217 -2.72%" -1.51% -2.83" -4.947* -4.517 -4.477
(0.68) (0.65) (0.73) (0.93) (0.65) (0.97) (1.39) (1.33) (1.32)
Stock automation -0.117*  -0.12*** -0.11***  -0.12"** -0.117**  -0.12"**
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Stock other 0.51""* 0.51"* 0.51** 0.52™** 0.50"** 0.51**
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Spillovers automation 0.58** 1.35%* 1.337*
(0.29) (0.47) (0.46)
Spillovers other -0.19 -0.97* -0.97"*
(0.22) (0.36) (0.35)

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Country x year fixed effects - - - Yes Yes Yes Yes Yes Yes
Observations 47812 47812 47812 47453 47812 47453 47453 47453 47453

Number of firms 3236 3236 3236 3233 3236 3233 3233 3233 3233

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson fixed ef-
fects regressions (HHG). Standard errors are clustered at the firm-level and reported in parentheses. All columns include firm and
industry-year fixed effects. Columns 4-9 add country-year fixed effects. In Columns 7-9 the macroeconomic variables are the nor-
malized foreign variables previously defined. * p < 0.1; ** p < 0.05; ¥** p < 0.01
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Table A.7: Baseline regressions for auto95 with country-level clustering

Auto95
e 2 @) (4) (5) (6) (7 8) 9)

Low-skill wage 2.97 2.72 3.64 2.24 2.61 3.64 4.19 5.30 4.43

(0.70) (0.77) (1.11) (0.73) (0.55) (1.59) (0.86) (1.65) (1.79)

[0.000] [0.000] [0.001] [0.002] (0.000] [0.022] [0.000] [0.001] [0.013]

{0.027}  {0.000}  {0.001}  {0.039}  {0.054} {0.061}  {0.016}  {0.022}  {0.005}
High-skill wage Yes Yes Yes Yes Yes Yes Yes Yes Yes
GDP gap Yes Yes Yes Yes Yes Yes Yes Yes Yes
Labor productivity - Yes - - Yes - - Yes -
GDP per capita - - Yes - - Yes - - Yes
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country X year fixed effects - - - Yes Yes Yes Yes Yes Yes
Observations 47812 47812 47812 47453 47453 47453 47453 47453 47453
Firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: This table reproduces the baseline table using different inference procedures. The standard errors in parentheses are clus-
tered at country-level (instead of firm-level). The [ ] brackets report the associated p-values. The account for few clusters, the {
} brackets report cluster-bootstrapped p-values following Cameron et. al (2008).

Table A.8: Auto90 innovations

Dependent variable Auto90
Domestic and foreign Foreign
1 @) 3) (4) (&) (6) (M (8) 9)
Low-skill wage 2.33""" 2.06™"* 3.29" 1.69™" 1.72* 2.80""" 3.26™"" 3.83 3.87"
(0.67) (0.69)  (0.79)  (0.83)  (0.90) (1.07)  (1.14)  (1.34)  (1.47)
High-skill wage -1.95""* -2.44"* -0.91 -1.79" -1.73* -1.05 -3.73"* -2.88" -3.37"
(0.60) (0.66) (0.67) (0.82) (0.93) (0.87) (1.18) (1.31) (1.24)
GDP gap -3.61" -4.27 -1.21 3.68 3.77 5.58 -0.32 0.92 0.89
(2.09) (2.15) (2.25) (5.28) (5.36) (5.47) (3.27) (3.54) (3.71)
Labor productivity 1.12 -0.15 -1.36
(0.73) (1.31) (1.35)
GDP per capita -2.72% -2.73* -1.10
(1.06) (1.49) (1.57)
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country x year fixed effects - - - Yes Yes Yes Yes Yes Yes
Observations 71656 71656 71656 71367 71367 71367 71367 71367 71367
Number of firms 4821 4821 4821 4818 4818 4818 4818 4818 4818

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson fixed ef-
fects regressions (HHG). Standard errors are clustered at the firm-level and reported in parentheses. All columns include firm
and industry-year fixed effects. Columns 4-9 add country-year fixed effects. In Columns 7-9 the macroeconomic variables are
the normalized foreign variables previously defined. Stock and spillover variables are calculated with respect to the dependent
variable (auto90). * p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.9: Additional regressions with non-automation patents

Dependent variable Pauto90 Pauto95 Auto95
Dom. and Fgn. Fgn. Dom. and Fgn. Fgn. Dom. and Fgn. Fgn.
(1 2 ®3) () (5) (6) (7 ®) )
Low-skill wage 0.73 0.33 1.01 0.95 0.49 1.60 2117 2.37°" 4.75°*
(0.59) (0.77) (1.21) (0.76)  (1.00)  (1.61) (0.73) (0.99) (1.35)
High-skill wage -0.22 -0.35 -0.62 -0.44 -0.43 -0.81  -2.15" -2.13™ -2.94™
(0.56) (0.86) (1.26) (0.74)  (1.18)  (1.71) (0.66) (0.98) (1.33)
GDP gap -3.06™ 1.34 0.38 -2.03 3.49 0.77 -2.55 2.13 3.83
(1.35) (3.39) (2.33) (1.57)  (4.16)  (2.87) (2.24) (5.54) (4.19)
Labor productivity -0.11 0.02 -0.91 -0.11 -0.58 -1.14 0.89 -1.46 -1.90
(0.60)  (0.96)  (1.01) (0.71) (1.22) (1.35)  (0.84)  (1.62)  (1.41)
Arcsinh pauto90 0.51***  0.51"**  0.51™*
(0.02)  (0.02)  (0.02)
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country x year fixed effects - Yes Yes - Yes Yes - Yes Yes
Observations 149580 149345 149345 43809 43686 43686 47812 47453 47453
Number of firms 10012 10009 10009 2932 2929 2929 3236 3233 3233

Notes: The independent variables are lagged by two periods. Standard errors are clustered at the firm-level and reported
in parentheses. The coefficients are estimated with conditional Poisson fixed effects regressions (HHG). In columns 1-3 the
dependent variable is pauto90 (machinery patents excluding auto90). In columns 4-6 the dependent variable is pauto95
(machinery patents excluding auto95), and the sample is restricted to the firms in the baseline auto95 regression. In
columns 7--9 the dependent variable is auto95 innovation and we control for contemporaneous placebo innovations, de-
fined as the arcsinh of pauto90 patents. All columns include firm and industry-year fixed effects, Columns 2, 3, 5, 6, 8 and
9 add country-year fixed effects. In Columns 3, 6, and 9 the macroeconomic variables are the normalized foreign variables
previously defined. * p < 0.1; ¥* p < 0.05; *** p < 0.01

Table A.10: Predicted wages

Auto95
Domestic and foreign Foreign
(1 (2 3) (4) (5) (6) (M) (®) 9)
Low-skill wage 2.447 1.84™ 2.46™"" 1.64" 1.56 1.65" 3.827 424 381"
(0.82) (0.82) (0.82) (0.94)  (1.02)  (0.94) (1.30)  (141)  (1.31)
High-skill wage S2.787 475 283" 331777 -3.5577 -3.32777 4527 -3.56"° -4.5177
(0.83) (1.08) (0.83) (1.04)  (1.42)  (1.04) (1.33)  (1.53)  (1.34)
GDP gap -4.40" -3.77 -4.45 4.67 4.66 4.68 -0.13 0.74 -0.10
(2.61) (2.56) (2.61) (6.80) (6.81) (6.80) (4.55) (4.59) (4.58)
Labor productivity 2.85""" 0.35 -1.59
(0.94) (1.57) (1.50)
GDP per capita 0.14 0.03 -0.01
(0.11) (0.12) (0.14)
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country X year fixed effects - - - Yes Yes Yes Yes Yes Yes
Observations 47812 47812 47812 47453 47453 47453 47453 47453 47453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson fixed effects
regressions (HHG). Standard errors are clustered at the firm-level and reported in parentheses. We estimate for each country an
AR(1) process with time trends for wages, labor productivity, and GDP per capita. We then use the estimated process to predict
with the information available at time t-2 the average values between the years t+2 and t+7, which are in turn the independent
variables in these regressions. All columns include firm and industry-year fixed effects. Columns 4-9 add country-year fixed effects.
In Columns 7-9 the macroeconomic variables are the normalized foreign variables previously defined. * p < 0.1; ** p < 0.05; ***

p <0.01
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Table A.11: Five-year difference estimation

Dependent variable A Arcsinhauto95
Firm restriction At least one auto95 innovation At least two auto95 innovations
Domestic and Foreign Foreign Dom. and Fgn. Fygn.
(1 2 @) (4) (5) (6) ) ®) 9)
A Low-skill wage 0.98"** 0.58 0.61 1.817* 1.34™* 1.80™
(0.31) (0.40) (0.60) (0.48) (0.62) (0.90)
A High-skill wage -0.98** -1.19" -1.62%* -1.58"**  -1.80"** -2.82%%
(0.30) (0.44) (0.63) (0.46) (0.66) (0.93)
A Low-skill / High-skill wages 0.98"** 0.83** 1.08**
(0.25) (0.33) (0.52)
A GDP gap -1.54 -1.54 -0.68 -0.27 -1.01 -0.19 -2.54" -2.95 -1.61
(1.15)  (1.13)  (2.38)  (2.33)  (1.80)  (1.63)  (1.54)  (3.38) (2.56)
A Labor productivity -0.00 0.00 0.41 -0.17 0.86 0.06 -0.02 0.13 0.96
(0.42)  (0.29)  (0.65)  (0.43)  (0.61)  (0.27)  (0.62) (0.97) (0.93)
Spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country X year fixed effects - — Yes Yes Yes Yes - Yes Yes
Observations 32360 32360 32330 32330 32330 32330 21710 21690 21690
Number of firms 3236 3236 3233 3233 3233 3233 2171 2169 2169

Notes: Estimation is done by OLS. Standard errors are clustered at the firm-level and reported in parentheses. t = 2000 — 2009:
The dependent variable is the difference between the arcsinh of the sum of yearly auto95 patents in t to t + 4 and the arcsinh of
the sum of yearly auto95 patents in t - 5 to t - 1. All the independent variables are the sum of yearly counterparts from t - 4 to t.
Columns 1-6 focus on firms that have at least patented once in 1995-2013 while columns 7-9 restrict attention to firms that patented
at least twice in 1995-2013. Columns 1, 2, and 7 include industry-year fixed effects, while 3, 4, and 8 and include industry-year and
country-year fixed effects. In Columns 3, 4, and 9 the macroeconomic variables are the normalized foreign variables previously de-
fined. * p < 0.1; ** p < 0.05; *** p < 0.01

Table A.13: Predicting weights using subsequent wages

Weight Foreign weight
1 2 ) (4) (5) (6)
Growth in low-skill wages, 1995-2000 -0.14 -0.26 -0.13 -0.10 -0.31 -0.33
(0.12) (0.28) (0.29) (0.11) (0.26) (0.30)
Growth in high-skill wages, 1995-2000 0.13 0.01 0.20 0.23
(0.24) (0.27) (0.21) (0.24)
Patent weighted - - Yes - - Yes
Observations 132676 132676 132676 129440 129440 129440
Firms 3236 3236 3236 3236 3236 3236

Notes: OLS regressions of firm-level weights on country growth rates for low-skill and high-skill wages
between 1995 and 2000. Columns 3 and 6 weigh observations by the number of auto95 patents between
1997 and 2011. In columns 4-6, the dependent variable is the the foreign weight component only. Stan-
dard errors are clustered at the country-level. * p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.12: Innovation categories

Dependent variable Auto95  AutoX95 Auto80  Automat*90  Automat*80  Robot90  Robot80 CNC90 CNCS80
(0) ©) (2) ®3) (4) (5) (6) (7 ®)
Foreign:
Low-skill wage 5.30"" 5.42"* 3.53" 8.977* 6.13" 6.16" 7.49" 1.68 -1.56
(1.57) (1.62) (1.32) (3.04) (1.99) (3.39) (2.54) (4.80) (3.05)
High-skill wage -2.91** -1.42 -2.11 -1.14 -2.13 -0.10 -3.06 6.49 1.75
(1.48) (1.63) (1.32) (2.95) (1.80) (3.12) (2.37) (6.12)  (3.61)
GDP gap 2.40 0.74 1.97 9.61 4.17 4.83 1.22 -1.69 -1.17
(4.91) (4.58) (2.85) (6.30) (4.48) (7.99) 6.79)  (13.10)  (9.68)
Labor productivity -2.53 -3.87" -1.78 -8.49"* -4.53* -7.38"* -5.70"* -8.37 -1.03
(1.61) (1.71) (1.22) (2.50) (1.76) (2.83) (2.25) (5.50)  (3.25)
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 47453 45838 97449 22517 48032 15049 23268 6476 13617
Number of firms 3233 3144 6544 1595 3272 1096 1632 508 1001

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson fixed effects regressions
(HHG). Standard errors are clustered at the firm-level and reported in parentheses. All regressions include firm fixed effects, industry-year
and country-year fixed effects. AutoX95 excludes the C/IPC codes which we added when defining the machinery technological field. Auto80
lowers the threshold to define automation innovation to the 80th percentile of the C/IPC 6 digit distribution. Automat*90 and Automat*80
only count words associated with automat. Robot90 and Robot80 only count words associated with robot. CNC90 and CNC80 words as-
sociated with CNC. 90 and 80 refer to the threshold used to delimit patents which is the 90th or the 80th percentile of the distribution of
automation keywords for 6 digit C/IPC codes. The macroeconomic variables are the normalized foreign variables previously defined. Stocks
and spillovers are computed with respect to the dependent variable. * p < 0.1; ** p < 0.05; *** p < 0.01

Table A.14: Alternative weights

Auto95
Weights 1971-1989  1985-1994  start 2000 pauto9s  GDP° GDP'  (wr-L)**
1) 2) (3) (4) (5) (6) (7
Foreign:
Low-skill wage 541" 5.12%"* 6.64"* 5.55"" 4.15** 6.15°** 5.30"*
(1.92) (1.52) (2.11) (1.72) (1.40) (1.71) (1.54)
High-skill wage -3.46™* -1.39 -3.03 -2.94" -3.62%*" -3.26™ -3.56™""
(1.70) (1.55) (2.05) (1.66) (1.35) (1.63) (1.35)
GDP gap 0.85 3.41 0.69 7.62" -2.13 -0.76 -0.50
(4.15) (4.81) (3.91) (4.10) (3.67) (3.89) (3.76)
Labor productivity -2.48 -3.87"" -4.80""" -2.61" -1.60 -1.93 -2.23
(1.79) (1.62) (1.78) (1.55) (1.44) (1.59) (1.57)
Stock automation -0.13"** -0.12%** -0.317*" -0.12%* 012" -0.12"** -0.12%**
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Stock other 0.60"** 0.53*** 0.49*** 0.58"** 0.51*** 0.51*** 0.51***
(0.05) (0.05) (0.06) (0.05) (0.04) (0.04) (0.04)
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes
Industry X year fixed effects Yes Yes Yes Yes Yes Yes Yes
Country x year fixed effects Yes Yes Yes Yes Yes Yes Yes
Observations 33752 43262 25854 44672 47318 47457 47338
Number of firms 2319 2949 2624 3057 3230 3231 3234

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson
fixed effects regressions (HHG). Standard errors are clustered at the firm-level and reported in parentheses. All regres-
sions include firm, country-year and industry-year fixed effects. Firms’ country weights for the macroeconomic variables
are computed over the period 1971-1989 in column 1; and over the period 1985-1994 for Column 2. Columns 3-7 use the
baseline pre-sample period of 1971-1994. Column 3 restricts the sample to the years 2000-2009. Column 4 uses weights
calculated using pauto95 patents applications (i.e., machinery patents excluding auto95); Column 5 does not adjust for
GDP in the computation of the weights; Column 6 uses GDP instead of GDP®? to adjust for country size and Column
7 replaces GDP with total low-skilled payment wL in the baseline formula. In all columns the macroeconomic variables
are the normalized foreign variables previously defined. * p < 0‘1'5** p < 0.05; ¥** p < 0.01



Table A.15: Addressing Nickell’s bias

Auto95
Domestic and foreign Foreign
1) (2 (3) (4) (5) (6)

Low-skill wage 2,677 226" 2.68" 257 480"  3.86""

(0.80) (0.78) (1.07) (1.02) (1.46) (1.39)
High-skill wage -2.55"* -1.16 -2.22" -1.74* -2.76™ -2.17

(0.78) (0.80) (1.02) (1.00) (1.40) (1.47)
GDP gap -4.32 -3.02 4.95 6.31 1.85 0.87

(2.77) (3.46) (7.04) (7.31) (4.97) (5.24)
Labor productivity 0.85 0.49 -1.48 -1.15 -1.92 -0.91

(0.90) (0.98) (1.69) (1.44) (1.50) (1.50)
Stock automation No Yes No Yes No Yes
Stock other Yes Yes Yes Yes Yes Yes
Spillovers Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes
Country X year fixed effects - - Yes Yes Yes Yes
Estimator HHG BGVR HHG BGVR HHG BGVR
Observations 47812 47812 47453 47453 47453 47453
Number of firms 3236 3236 3233 3233 3233 3233

Notes: The independent variables are lagged by two periods. The coefficients are estimated
with conditional Poisson regressions fixed-effects (HHG) in columns 1, 3, and 5. In columns 2,
4, and 6, the coeflicients are estimated with Poisson regressions where the firm fixed effects are
replaced by the pre-sample mean, following Blundell, Griffith and Van Reenen (1999, BGVR).
All columns include firm and industry-year fixed effects. Columns 3-6 add country-year fixed
effects. In Columns 5 and 6 the macroeconomic variables are the normalized foreign variables
previously defined. Standard errors are clustered at the firm-level and reported in parenthe-
ses. * p < 0.1; ** p < 0.05; *** p < 0.01

Table A.16: Citations-weighted patents

Dependent variable

Citations-weighted auto95

Domestic and foreign Foreign
) )] 3) 4 (5) (6) (7 ®) 9)
Low-skill wage 2.03** 1.74 3.05"** 1.27 1.64 3.35™" 3.617" 4.52%* 3.93*
(1.00) (1.11) (1.14) (1.23) (1.46) (1.53) (1.71) (1.87) (2.23)
High-skill wage -2.28™  -2.81"*" -1.11 -3.15"  -2.227 -1.72 -4.377 23227 -4.19™
(0.96)  (0.98)  (1.09)  (1.30) (1.32) (1.42)  (1.61)  (1.88)  (L.74)
GDP gap -2.95 -3.65 -0.38 0.66 1.97 4.41 -0.40 1.60 0.24
(3.23) (3.42) (3.32) (7.90) (8.06) (8.07) (5.23) (5.64) (5.88)
Labor productivity 1.22 -2.06 -1.92
(1.22) (2.29) (1.82)
GDP per capita -2.98" -5.15" -0.56
(1.63) (2.41) (2.66)
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country x year fixed effects - - - Yes Yes Yes Yes Yes Yes
Observations 47812 47812 47812 47453 47453 47453 47453 47453 47453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson fixed
effects regressions (HHG). Standard errors are clustered at the firm-level and reported in parentheses. Patents are citations-
weighted: we add to each patent the number of citations received within 5 years normalized by technological field and year of
application. All columns include firm and industry-year fixed effects. Columns 4-9 add country-year fixed effects. In Columns
7-9 the macroeconomic variables are the normalized foreign variables previously defined. * p < 0.1; ¥* p < 0.05; *** p < 0.01
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Table A.17: Firm bin size - year fixed effects

Auto95
Domestic and foreign Foreign
1) 2 3) (4) (5) (6) (7 (®) 9)
Low-skill wage 3.127 2.84™"* 3.63"" 237" 2,78 3717 445" BT1ITY 4.687F
(0.79) (0.85) (0.96) (0.99) (1.13) (1.27) (1.32) (1.56) (1.78)
High-skill wage -2.40"" -2.85""" -1.89" -2.89"" -2.02" -2.01" -4.79"" -3.03" -4.66™""
(0.72) (0.78) (0.81) (0.95) (1.08) (1.05) (1.33) (1.48) (1.42)
GDP gap -2.83 -3.46 -1.67 4.46 5.55 6.75 -0.12 2.50 0.33
(2.72) (2.82)  (290)  (6.77)  (6.82)  (7.11)  (4.66)  (4.93)  (5.28)
Labor productivity 1.09 -2.00 -2.85%
(0.91) (1.78) (1.63)
GDP per capita -1.42 -3.28" -0.41
(1.34) (1.99) (2.10)
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bin x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country X year fixed effects - - Yes Yes Yes Yes Yes Yes
Observations 47812 47812 47812 47453 47453 47453 47453 47453 47453
Number of firms 3236 3236 3236 3233 3233 3233 3233 3233 3233

Notes: The independent variables are lagged by two periods. Standard errors are clustered at the firm-level and reported in
parentheses. The coefficients are estimated with conditional Poisson fixed effects regressions (HHG). Firms are classified into
five bins by the stock of total patents in 1995 with 25th, 50th, 75th, and 95th percentiles as four thresholds. All columns include
firm, industry-year and bin-year fixed effects. Columns 4-9 add country-year fixed effects. In Columns 7-9 the macroeconomic
variables are the normalized foreign variables defined previously. * p < 0.1; ** p < 0.05; *** p < 0.01

Table A.18: Robustness to total wages and different deflators

Dependent variable Auto95
Sector Manufacturing Total
Manufacturing PPI,  US manufacturing PPI, GDP deflator, Manufacturing PPI,  US manufacturing PPI,
Deflator L . - Lo .
conversion in 2005 conversion every year conversion in 1995 conversion in 1995 conversion every year
(1) 2 3) (4) (%)
Foreign:
Low-skill wage 5.16"** 4.48** 5.12%** 5.85"* 5.39"**
(1.54) (1.43) (1.96) (2.79) (2.06)
High-skill wage -2.63" -3.66™" -2.56" -2.53 -3.42
(1.40) (1.43) (1.49) (2.34) (2.30)
GDP gap 2.60 1.52 2.52 1.09 0.33
(4.85) (4.91) (4.91) (4.50) (4.64)
Labor productivity -2.71" -1.39 -2.70" -3.63 -3.01
(1.54) (1.57) (1.64) (3.10) (2.93)
Stocks and spillovers Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes
Country X year fixed effects Yes Yes Yes Yes Yes
Observations 47453 47453 47453 47453 47453
Number of firms 3233 3233 3233 3233 3233

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson fixed effects regressions (HHG).
Standard errors are clustered at the firm-level and reported in parentheses. All regressions include firm fixed effects, industry-year fixed effects and
country-year fixed effects. Columns 1-3 use manufacturing wages and columns 4 and 5 total wages. In column 1, macroeconomic variables are deflated
with the local manufacturing PPI and converted to USD in 2005. In Columns 2 and 5 they are converted to USD every year and deflated with the
US manufacturing PPI. In Column 3, macroeconomic variables are deflated with the local GDP deflator and converted to USD in 1995. In Column 4,
macroeconomic variables are deflated with the local manufacturing PPI and converted to USD in 1995. In all columns, the macroeconomic variables are
the normalized foreign variables previously defined. * p < 0.1; ** p < 0.05; *** p < 0.01
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A.2 Appendix on the classification of automation patents

This Appendix provides additional information on our classification of automation patents
in machinery. First, we report details on our approach not contained in the main text in
Appendix A.2.1. Then, we show additional statistics at the technological category level
in Appendix A.2.2 and at the patent level in Appendix A.2.3. Appendix A.2.4 shows that
our classification is stable. Finally, Appendix A.2.5 gives the prevalence of automation

keywords for a few technology categories and examples of automation patents.

A.2.1 Additional details on our classification

We derived the exact list of keywords in Table 1 after experimenting extensively with
variations around them and looking at the resulting classification of technology cate-
gories and the associated patents. Relative to the original list of technologies given in
the Survey of Manufacturing Technologies (Doms, Dunne and Troske, 1997), we did not
include keywords related to information network, as these seem less related to the au-
tomation of the production process and the patents containing words such as “local area
network” do not appear related to automation. We also did not count all laser patents
as they are not all related to automation—but we obtain patents related to automation
using laser technologies thanks to our other keywords. Furthermore, the Y section of the
CPC classification is organized differently from the rest and is only designed to provide

additional information. As a result, we ignore Y codes.

A.2.2 Statistics on the classification at the technological category level

Table A.19: Summary statistics on the prevalence of keywords

IPC/CPC 6 digit IPC4 + (GO05 or GO6) IPC4 pairs
Share All Robot  Automat* CNC Labor All Robot  Automat* CNC Labor All Robot  Automat* CNC
Mean 0.21 0.04 0.11 0.03 0.06 0.53 0.15 0.32 0.11 0.10 0.19 0.05 0.09 0.02
SD 0.15 0.09 0.10 0.06 0.04 0.19 0.18 0.11 0.17 0.04 0.16 0.10 0.10 0.05

P25 0.11 0.01 0.04 0.00 0.03 0.40 0.07 0.27 0.01 0.07 0.08 0.01 0.03 0.00
P50 0.18 0.02 0.09 0.00 0.05 0.54 0.10 0.32 0.03 0.10 0.14 0.02 0.05 0.00
P75 0.27 0.05 0.15 0.02 0.08 0.64 0.16 0.40 0.16 0.11 0.23 0.04 0.11 0.01
P90 0.40 0.09 0.25 0.06 0.11 0.78 0.36 0.43 0.38 0.15 0.37 0.09 0.22 0.04
P95 0.48 0.14 0.30 0.13 0.13 0.86 0.44 0.45 0.55 0.16 0.52 0.15 0.31 0.08
P99 0.76 0.60 0.46 0.33 0.19 0.90 0.83 0.60 0.57 0.18 0.84 0.59 0.45 0.22

Notes: This table computes summary statistics on the share of patents with any automation keywords, robot keywords, automat* keywords, CNC
or labor keywords for each type of technological categories (6 digit codes, pairs of 4 digit codes and combinations of ipc4 codes with GO5 or G06) v

Table A.19 gives summary statistics on the prevalence of automation keywords across

technology categories in machinery, p(t), as well as the prevalence of the 4 main sub-
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groups of keywords: automat*, robot, numerical control (CNC) and labor. The 95 and
90" percentile for the prevalence of automation keywords for 6-digit codes in machinery
define the thresholds used to categorize auto95 and auto90 patents. The distributions
are quite similar for the C/IPC 6-digit codes and for pairs of IPC 4-digit codes and
shifted to the right for combinations of C/IPC 4-digit codes with GO5 or G06 (see also
the histograms below). All prevalence measures are right-skewed, particularly for 6-digit
codes and 4-digit pairs, and even more for the robot and CNC patents. The automat*
keywords are also more common as the prevalence of automat® is significantly higher
than that of the other keywords. Nevertheless, the difference narrows somewhat in the
right tail: the 95" percentile for 6-digit codes is 30% for automat* and 14% and 13%
for robot and CNC. In fact, the thresholds (5 and 2) used in the definition of the au-
tomat™ keywords were chosen such that the distributions of the prevalence measures are
somewhat comparable. The right tails of the distribution are similar for the prevalence
of the robot and CNC keywords.

Table A.20: Correlation between the main prevalence measures

Keywords Automat Robot CNC Labor

Automat 1.000

Robot 0.379 1.000
CNC 0.210 0.205 1.000
Labor 0.394 0.224 0.085 1.000

Notes: Correlation between the prevalence of the
main keywords, computed for C/IPC 6-digit codes.

Table A.20 shows the correlation between the prevalence of the 4 mains keyword
categories (automat™®, robot, CNC and labour) for 6-digit C/IPC codes. These measures
are positively correlated with a coefficient above 0.2 in all cases except CNC and labour.
The broadest category, automat™®, is the one with the highest correlation coefficients.

Figure A.6.a gives the histograms of the prevalence of automation keywords for ma-
chinery technology categories which are pairs of C/IPC 4-digit codes. The histograms
are very similar to those of C/IPC 6-digit codes in Figure 1. Figure A.6.b shows the
histograms for all combinations of machinery C/IPC 4-digit codes with GO5 or G06. The
distribution is considerably shifted to the right. This is in line with expectations as G05
proxies for control and GO6 for algorithmic, two set of technologies which have been used
heavily in automation. There are, however, many fewer combination of these types, and

accordingly fewer patents can be characterized as automation innovations this way.
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Figure A.6: Histograms of the prevalence of automation keywords. These only include technology
categories with at least 100 patents. The p90 and p95 lines, based on the 6-digit distribution,

mark the thresholds used to define auto90 and auto95 technological categories.

A.2.3 How are auto90 and auto95 patents identified?

Given that our classification procedure is relatively complex, we assess here which fea-
tures dominate. To do so, we focus on biadic patent families in 1997-2011, the set of
innovations which we use for our main regressions. There are 61,497 auto95 biadic patent
families and 104,886 auto90 ones. Table A.21.a gives the share of biadic patents which
are identified through a C/IPC 6-digit code, a pair of 4-digit codes or a combination of
4-digit code with G05/G06 (the shares sum up to more than 100% since patents may be
identified as automation innovations in several ways). 6-digit codes are the most relevant
since they identify more than 80% of either auto90 or auto95 patents alone.

Similarly, one may wonder which keywords are the most important in identifying
automation patents. To assess that, we define robot95 patents as patents which contain
a technology category with a prevalence of “robot” keywords above the threshold used
to define auto95 (namely 0.480). Therefore, those patents are a subset of the auto95
patents. We define CNC85, automat*95, robot90, CNC90, automat*90, robot80, CNC80
and automat*80 similarly. The other keywords are much less common. Table A.21.b
reports the share of auto95, auto90 and auto80 patents which belong to each subcategory.
“Automat™*” is the most important keyword: 71% of auto95 patents are also automat*80
patents. “Robot” matters as well with 34% of auto95 patents which are robot80 and 19%
which are even robot95 (more than automat*95). CNC does not matter much: only 13%
of auto95 patents are CNC80.
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Table A.21: Identification of automation technology categories

(b) Auto patents and subcate-

(a) Type of C/IPC codes identifying gories of automation innova-
auto90 and auto95 patents tions
IPC codes / Patents Auto90  Auto95 Sources / Patents Auto80 Auto90 Auto95
Matches ipc6 82.1%  83.3% Auto80 100.0% 100.0% 100.0%
Matches ipc4 pair 16.4%  22.8% Automat*80 35.8%  53.6%  T1.2%

Matches ipc4 - G05/GO06 combination  40.7%  41.9% CNC80 5.0% 8.4% 13.3%
Notes: Share of innovations classified as automation innova- Robot80 12.2%  203%  34.4%
tion through ipc6 codes, ipcd pairs or ipcd - G05/G06 pairs. Auto90 59.9%  100.0%  100.0%
Statistics computed on biadic patents from 1997-2011. Automat*90 10.6% 17.7% 27.1%

CNC90 1.8% 2.9% 5.0%
Robot90 7.6% 12.6% 21.5%
Auto9s 352%  58.6%  100.0%
Automat*95 3.3% 5.5% 9.3%
CNC95 1.6% 2.6% 4.4%
Robot95 6.6% 10.9% 18.6%

Notes: Share of auto95 (auto90 and auto80,
respectively) innovations which are also classi-
fied as automat*80/90/95, CNC80/90/95, and
robot80/90/95 innovations. Statistics computed on
biadic patents from 1997-2011.

Table A.22: Correlation between the prevalence of automation keywords for different periods

Prevalence of automation keywords by period:

Keywords 1978-2017 1997-2011 1978-1997 1998-2017

1978-2017 1.000

1997-2011 0.958 1.000
1978-1997 0.906 0.851 1.000
1998-2017 0.963 0.972 0.851 1.000

Notes: Correlation matrix for the prevalence of automation key-
words by C/IPC 6-digit codes in machinery using EPO patents
over different time periods. We exclude catch-all categories
made at the 4-digit level.

60



Table A.23: Confusion table for different classification periods

Auto95 based on the Auto95 based on the Auto95 based on the

Confusion Matrix 1978-1997 classification  1998-2017 classification  1997-2011 classification Total
Yes No Yes No Yes No
Auto95 based on  Yes 51,243 10,254 55,290 6,207 52,027 9,470 61,497

the 1978-2017 No 4,378 3,121,661 5,243 3,120,796 5,752 3,120,287 3,126,039
classification Total 55,621 3,131,915 60,533 3,127,003 57,779 3,129,757 3,187,536

Notes: This table classifies all biadic patent families from 1997-2011 as auto95 or not, but using EPO patents from
different time periods to classify technological categories as automation or not. Our baseline measure uses all patents
from 1978-2017, while the other measures use patents from the first half of the sample, the second half, or the regres-
sion period time.

A.2.4 Stability of the classification

To assess the stability of our classification, we redo exactly the same exercise but instead
of using EPO patents from 1978 to 2017, we restrict attention to EPO patents from the
first half of the sample (1978-1997), the second half (1998-2017) or the period of our main
regression analysis (1997-2011). There is a modest increase in the share of patents with
automation keywords within each technology category. At the C/IPC 6-digit level in
machinery, the share of patents with an automation keyword increases on average from
0.19 in the first half of the sample to 0.21 in the second half. Nevertheless, the ranking
of codes is remarkably stable as shown in Table A.22 which reports the correlations of
the prevalence measures for the different time periods.

Further, focusing on the same set of biadic patent families in 1997-2011, Table A.23
shows confusion tables on the classification of patents as auto95 according to each of
the classification period. Regardless of the time period used the number of automation
patents stays roughly constant. In particular, 84.6% of the baseline auto95 patents are
still auto95 if we run the classification over the years 1997-2011. This common set of
patents then represent 90% of all biadic patents classified as auto95 patents when using
the period 1997-2011 instead of the full sample.

A.2.5 Examples

To better illustrate our approach, we now give a few examples. First, Table A.24 shows
a few 6-digit C/IPC codes in machinery with their prevalence of automation keywords
p(t), their rank according to that measure and the prevalence of the most important sub-
categories (automat™, robots, CNC, and labor). C/IPC codes associated with robotics
(B25J) have the highest prevalence numbers (91% for B25J5). There are also codes
associated with machine tools at the top of the distribution such as B23Q15 and codes

associated with devices used in the agricultural sector such as A01J7. The last three
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Table A.24: Examples of 6-digit C/IPC codes in machinery

Code Description # Patents Any Rank Robot Automat* CNC Labor
High Prevalence
B25J5 Manipulators mounted on wheels or on carriages 504 0.91 1 0.87 0.27 0.01 0.10
B25J9 Programme-controlled manipulators 2809 0.86 4 0.78 0.29 0.07 0.08
B23Q15 Automatic control or regulation of feed movement, 591 0.79 7 0.09 0.36 0.65 0.06
cutting velocity or position of tool or work
A01J7 Accessories for milking machines or devices 395 0.77 9 0.62 0.52 0 0.1
GO05B19  Programme-control systems 7133 0.70 17 0.22 0.39 0.25 0.08
B65G1  Storing articles, individually or in orderly arrangement, 1064 0.58 30 0.18 0.46 0.01 0.11

in warehouses or magazines

Low Prevalence

B23P6 Restoring or reconditioning objects 613 0.26 262 0.07 0.06 0.05 0.09

A01B63  Lifting or adjusting devices or arrangements for 264 0.24 301 0.01 0.20 0 0.04
agricultural machines or implements

B66D3 Portable or mobile lifting or hauling appliances 215 0.13 665 0.02 0.07 0.01 0.06

Notes: Prevalence of automation keywords for a few 6 digit C/IPC codes. “Any” is the share of patents with any of the keywords.
“Rank” is the rank of the code among 1009 6-digit C/IPC codes in machinery with at least 100 patents. “Robot” , “Automat*”, “CNC”
and “labor” are the shares of patents with at least one keyword from these categories.

C/IPC codes are examples with a low prevalence of automation keywords: machine-tools
and processes for repairing or reconditioning objects (B23P6), devices typically mounted
on tractors (A01B63), and lifting or hauling appliances such as hoists (B66D3), which do
not replace workers in new tasks. The table also shows that the different sub-measures
do not capture the same technologies: the robotic codes are ranked highly thanks to
the prevalence of “robot” keyword, B23Q15 thanks to its CNC prevalence, and B65G1
thanks to its “automat™” prevalence.

Figure A.7 shows an automated storage cabinet patent. We classify it as automation
because it contains the 6-digit code B65G 1 which has a high prevalence measure (0.58,
see Table A.24). This patent itself contains several keywords: a sentence with the words

“automatic” and “storing,” and another sentence with “robot”.
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OBJECT OF THE INVENTION

[0001] The present invention, as expressed in the
wording of this specification, relates to an automatic plant
for storing and dispensing goods, essentially applicable
to the pharmaceutical sector, although it is also applica-
ble to any other sector needing to store and dispense
different small-sized goods.

[0002] The products are stored in principle in modular
shelves, which may be inclined or not, shelves that are
partof characteristic modular shelving units thatalso con-
figure an elongated shelving structure in the longitudinal
direction.

[0003] Based on this premise, the essence of the in-
vention is based on characteristic modular horizontal
guides along which respective modular subsets (robots)
move, for the loading and unloading of products with re-
spect to the shelves of the modular shelving units, mod-
ular horizontal guides that can easily adaptto the required
length of the elongated structure of shelving units, so that
both loading and unloading subsets have a horizontal
translation movement parallel to said elongate structure
of shelving units and a vertical movement to access the
different levels of the shelves where the products are
stored.

Figure A.7: Example of an automation patent

63



(19)

Europaisches
Patentamt
European
Patent Office

Office européen
des brevets

9

(12)

(1)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication:
07.03.2018 Bulletin 2018/10

(21) Application number: 16786556.7

(22) Date of filing: 28.04.2016

(51) IntCl.:
B65G 1/137 (2006.0)
G06Q 10/08 (201201

GO6K 17100 (2006.07)

(86) International application number:
PCT/JP2016/063339

(87) International publication number:
WO 2016/175280 (03.11.2016 Gazette 2016/44)

(84) Designated Contracting States:
AL AT BE BG CH CY CZDE DK EE ES FIFR GB
GRHRHUIEISITLILT LU LV MC MKMT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA MD

(30) Priority: 28.04.2015 JP 2015091125

(71) Applicant: Sato Holdings Kabushiki Kaisha
Tokyo 153-0064 (JP)

(72) Inventors:
* UNO, Yoshiaki
Singapore 408723 (SG)
« KASDANI, Yusita
Singapore 408723 (SG)

-~
=

Representative: Griinecker Patent- und
Rechtsanwilte

PartG mbB

LeopoldstraRe 4

80802 Miinchen (DE)

(54) STORAGE CABINET

he present invention relates to a storage cab-

EP 3 290 361 A1 met that Stores contents (items) such as products and

BACKGROUND ART

[0002] A storage cabinet is known that manages con-
tents (items) by using radio frequency identification
(RFID) technology. The patent literature 1 for example
describes that scanning is performed in a cabinet for
monitoring a product including a RF tag for the purpose
of searching for an expired product or a product that have
been manufactured in a recalled lot.

[0004] The conventional storage cabinet such as one
described above may be able to perform scanning an
item such as a product in the cabinet by using RFID tech-
nology; however, itis necessary foran operator to visually
check an expired product or a product that have been
manufactured in a recalled lot and remove them from the
cabinet. Thus, there is a drawback in the conventional
storage cabinet that, in a case in which many products
are stored in the storage cabinet for example, the oper-
ator cannot immediately recognize whether all products
to be removed have been actually retrieved from the stor-
age cabinet.

[0005] Particularly, in a case in which the storage cab-
inet is not connected to a network, the operator cannot
check whether all products to be removed have been
actually retrieved from the storage cabinet.

[0006] In view of the above, one of the aspects of the
present invention is to provide a storage cabinet from
which one can surely retrieve a desired item.

Figure A.8: Example of an automation patent without keywords

Figure A.8 shows an automation patent of a similar storage cabinet that belongs to
the same C/IPC code but does not contain any keywords and still describes a labor-

saving innovation. Appendix B.1 provides more examples.

A.3 Comparison with Mann and Piittmann (2021)

In this section, we compare our classification of automation patents with that of Mann
and Piittmann (2021, henceforth MP). We first show that our classifications are corre-
lated though ours is generally stricter than theirs. Then, we focus on outlier technologies
to understand where the differences come from.

We considered the machinery patents (according to our definition) of MP and clas-
sified them as auto95 or not. We have a lower share of automation patents (18% for
auto90 and 9.9% for auto95) than MP who have 31%. 71.5% of our auto95 patents are
classified as automation patents by MP (to analyze this number, it is useful to note that
their algorithm has a 17% false negative error rate on the training set), while we classify
22.9% of their automation patents as auto95. Therefore, our measure of automation is
generally stricter than theirs although it is not a perfect subset.

To facilitate comparison, we compute the share of automation patents at the C/IPC

6-digit level according to their classification and compare this number with our measure
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Figure A.9: Histograms of the share of automation patents in MP and of the prevalence of
automation keywords in this paper at the 6-digit level in machinery.

of the prevalence of automation keywords. The correlation between these two measures is
high (at 0.59). Figure A.9 shows the histograms of the two distributions. Our prevalence
measure is more skewed (with a kurtosis of 7 versus 3.5), and as such, it more clearly
identifies a small set of outliers among 6-digit C/TPC codes.

We compute the difference between our prevalence measure and their share of au-
tomation patents and look at the codes with the highest and lowest values (focusing on
codes with at least 100 patents in both their dataset and our EPO dataset). Table A.25
lists the 6 codes with the largest positive difference among auto95 codes, which corre-
spond to codes that we more strongly identify as automation than MP do, and the 6 codes
with the largest (in absolute value) negative difference among non-auto90 codes, which
correspond to codes that MP more strongly identify as automation than we do. 3 of the
codes with a high difference belong to the manipulator subclass (B25J): joints (B25J17),
gripping heads (B25J15) and accessories of manipulators (B25J19). MP classify a large
share of these patents as automation but our prevalence number is even higher. In their
definition of automation patents, MP specify that they exclude innovations which only
refer to parts of a machine. This accounts for some of the patents in these codes that
they do not classify as automation. DO1H9 corresponds to “arrangements for replacing
or removing bobbins, cores, receptacles, or completed packages at paying-out or take-up
stations” for textile machines. The share of automation patents in MP is low at 0.38,
however their “raw share” (computed before they exclude certain patents) is quite high at

0.71. The excluded patents are not chemical or pharmaceutical patents (as emphasized
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Table A.25: Outliers 6-digit C/IPC codes in the comparison between our measure and MP’s

measure
Code Simplified description Prevalence of Share of
automation automation
keywords (DHOZ) patents (MP)
Positive outliers among auto95 codes
B25J17 Manipulators (joints) 0.84 0.54
DO01H9 Textile machines (arrangements for replacing or removing various elements) 0.62 0.38
B25J15 Manipulators (gripping heads) 0.71 0.50
B23P23 Metal working machines (specified combinations n.e.c) 0.67 0.46
B25J19 Manipulators (accessories) 0.89 0.69
B33Y70 3D printing materials 0.52 0.32
Negative outliers among non-auto90 codes
B66B2201 Control systems of elevators 0.19 0.97
B66B3 Elevators (signalling and indicating device applications) 0.19 0.92
B41J23 Typerwriters / printing machines (power drive) 0.08 0.82
B66B1 Elevators (control systems) 0.16 0.89
B41J19 Typerwriters / printing machines (characters and line spacing mechanisms) 0.14 0.84
B41J5 Typerwriters / printing machines (controlling character selection) 0.21 0.91

Notes: This table lists the 6 auto95 codes with the largest positive difference between the prevalence of automation keywords in our data and
the share of automation patents according to MP in their data; and the 6 non-auto90 codes with the largest negative difference between the
two measures. We restrict attention to codes with at least 100 patents in both datasets.

in the paper), but belong to the “other” technological field (according to the Hall-Jaffe-
Trajtenberg classification). B23P23 is a machine tool subclass (specifically “Machines
or arrangements of machines for performing specified combinations of different metal-
working operations not covered by a single other subclass”) which often involves CNC
technologies. Finally, B33Y70 refers to materials adapted for additive manufacturing
(e.g. 3D printing). These are typically inputs for automation machines but not full ma-
chines themselves, which may explain why they are excluded by MP. Regardless, very
few of our auto95 patents are identified through the 3D printing keyword.

The non-auto90 codes where MP find a high share of automation patents but for
which we have a comparatively low prevalence measure are of two types. Among the top
6, half are in the subclass B66B which corresponds to elevators and the other half are in
the subclass B41J which corresponds to typewriters and printing machines. In fact, the
first 32 6-digit C/IPC codes belong to either B66B, B41J or the subclass B65H which
is about handling thin or filamentary material and also involves patents associated with
printing machines. It is not surprising that our classifications differ for these types of
innovation, since they do correspond to processes performed independently of human
action (in line with MP’s criterion); yet elevators and printers do not (or at least, no

longer) replace humans in existing tasks.
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A.4 Reproducing ALM

We detail how we build the variables used in Section 2.6 and provide further results.

A.4.1 Data for the ALM exercise

Except for the automation measures, we take the variables directly from ALM. We refer
the reader to that paper for a detailed explanation. The task measures are computed
using the 1977 Dictionary of Occupational Titles (DOT) which measure the tasks content
of occupations. Occupations are then matched to industries using the Census Integrated
Public Micro Samples 1% extracts for 1960, 1970, and 1980 (IPUMS) and the CPS
Merged Outgoing Rotation Group files for 1980, 1990, and 1998 (MORG). The task
change measure at the industry level reflects changes in occupations holding the task
content of each occupation constant, which ALM refer to as the extensive margin. Since
tasks measures do not have a natural scale, ALM convert them into percentile values
corresponding to their rank in the 1960 distribution of tasks across sectors. Therefore,
the employment-weighted means of all tasks measure across sectors in 1960 is 50. Our
analysis starts in 1980 and drops a few sectors but we keep the original ALM measure
to facilitate comparison. As in ALM, the dependent variable in Table 2 corresponds
to 10 times the annualized change in industry’s tasks inputs. Computerization AC;
is measured as the change per decade in the percentage of industry workers using a
computer at their jobs between 1984 and 1997 (estimated from the October Current
Population Survey supplements). For all regressions, observations are weighed by the
employment share in each sector.

To map patents to sectors we proceed in 4 steps. First, we build a mapping between
C/IPC 4-digit codes and the SIC sector that holds the patent (inventing sector). To do
that, we use Autor et al. (2020) who match 72% of domestic USPTO corporate patents
to firms in Compustat. This allows us to assign a 4-digit SIC sector to this subset of
patents. We match the USPTO patents to our patent family data from PATSTAT,
which we use to get the full set of C/IPC codes of the family. We then restrict attention
to granted patents in machinery applied for in the period 1976-2010. Each patent family
for which we have a sector creates a link between its C/IPC codes and that sector. We
weigh that link inversely to the number of 6-digit C/IPC codes in the patent. Counting
these connections allows us to build a weighted concordance table between 656 4-digit
C/IPC codes and 397 SIC codes (at different levels of aggregation), where the industries

refer to the industry of invention / manufacturing.
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Table A.26: Sectors with the highest and lowest shares of automation patents

Sectors with highest share of automated patents Sectors with lowest share of automated patents
Industry code and description Auto95 Industry code and description Auto95
756 Automotive services and repair shops 0.110 801 Bowling alleys, billiard and pool parlors 0.042
206 Household appliances (e.g., radio, TV, equipment) 0.106 100 Meat products 0.046
470 Water supply and irrigation 0.098 102 Canned and preserved fruits and vegetables 0.046
271 Iron and steal foundaries 0.096 110 Gain milk products 0.046
130 Tobacco manufactures 0.093 112 Sugar and confectionary products 0.046
212 Misc. plastic products 0.093 101 Dairy products 0.046

Notes: The share is the share of auto95 (95th percentile threshhold) patents out of all patents in machinery in 1980-1998 in the respective
sector. The industry codes and descriptions are SIC 1987.

Second, to obtain the sector of use we rely on the 1997 “investment by using indus-
tries” table from the BEA (at the most disaggregated level, 180 commodities for 123
industries) which gives the flows of investment from commodities to industry available
at www.bea.gov/industry/capital-flow-data. Since machines are a capital input, this is
the appropriate equivalent of a standard IO table. Beforehand, we assign commodities
to industries using the 1997 make table at the detailed level from the BEA (available at
www.bea.gov/industry /historical-benchmark-input-output-tables) which gives the com-

modities produced by each industry.*?

We dropped commodities associated with the
construction sector which are structures. Combining the two BEA tables, we obtain an
investment flow table at the industry level. We combine that table with the C/IPC to
industry of manufacturing table previously derived to get an C/IPC to industry of use
table mapping 656 4-digit C/IPC codes into 966 SIC industries.

Third, we allocate patent families fractionally to their C/IPC 4-digit codes and use
the previous table to assign them to an industry of use in the SIC classification (having
restricted attention to the C/TPC codes which appear in the table). Fourth, we use
a concordance table from the US Census Bureau from SIC industries to the Census
industries from 1990 (ind90) given by Scopp (2003) and ALM concordance table from
ind90 to consistent Census industries (ind6090) in order to allocate patents to their
industry of use in ALM’s classification.

Finally, for each sector, we compute the sums of automation patents and machinery

43Since our industries are in SIC 1987, we use concordance tables from the IO industries to NAICS
1997 provided by the BEA and then the weighed concordance table between NAICS 1997 and SIC 1987
from David Dorn’s website https://www.ddorn.net/data.htm which we complete with a concordance ta-
ble from the Census available here (www.census.gov/eos/www /naics/concordances/concordances.html).
To generate weights in the mapping between IO industries and NAICS 1997 and to dis-
aggregate the NAICS industries from the capital flow table, we use CBP data from 1998
(https://www.census.gov/data/datasets /1998 /econ/cbp/1998-cpb.html).
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patents over the time period 1980-1998 and take the ratio to be our measure of au-
tomation intensity. Table A.26 shows the sectors with the highest and lowest shares of
automation patents in machinery.

To compute the share of automation patents in machinery according to the industry
of manufacturing / invention, we proceed as above but skip step 3 with the investment
flow table. Once patents are assigned to a SIC industry of manufacturing, we use the
same concordance tables to assign patents to an ind6090 industry of manufacturing.

Finally, in robustness checks, we also use an alternative mapping from patents to
sectors based on Lybbert and Zolas (2014) who provide a concordance table between
IPC codes at the 4-digit level and NAICS 1997 6-digit industry codes. The concor-
dance table is probabilistic (so that each code is associated with a sector with a cer-
tain probability). The Lybbert and Zolas concordance tables are derived by match-
ing patent texts with industry descriptions, and as such they cannot a priori distin-
guish between sector of use and industry of manufacturing. We checked, however, that
patents associated with “textile and paper machines” for instance are associated with
the textile and paper sectors and not with the equipment sector. Therefore, we think
of this mapping as rather corresponding to the using sector as well. In addition, it
has the advantage of providing a much more direct mapping between C/IPC codes
and industries. We attribute patents to sectors fractionally in function of their C/IPC
codes. To assign patents to the consistent Census industry codes used by ALM, we first
use a Census concordance table (https://www.census.gov/topics/employment /industry-
occupation/guidance/code-lists.html) to go from NAICS 1997 to Census industry codes
1990, and then again use ALM concordance table.

A.4.2 Additional results

We now provide a few additional results which complements those in the main text.
Figure A.10 shows scatter plots of the change in routine tasks and skill composition and
the share of automation patents in 1980-1998. This figure shows the raw data underlying
the regressions in Table 2 Columns (1), (3) and (5); the only difference being that the
figure does not control for computerization.

We carry a number of robustness checks in Table A.27. In Columns (1), (4) and (7),
we compute the share of automation patents using only granted USPTO patents which
are also biadic. The results are similar to those in Table 2 though less precise for the

skill ratio. In Columns (2), (5) and (8), we use the share of auto90 patents in machinery
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Figure A.10: Scatter plots of routine tasks and skill composition changes and automation
intensity (auto 95) in 1980-1998 in the United States.

Table A.27: Changes in routine task intensity and different measures of sectoral automation

A Routine cognitive

A Routine manual

A High/low skill workers

Lybbert Lybbert Lybbert
Biadic Auto90 and Zolas Biadic Auto90 and Zolas  Biadic = Auto90 and Zolas
(1 ) 3) (4) (%) (6) (7) (8) 9)
Share automation -134.82***  -80.84"**  -20.69™*  -103.76™**  -58.13"** -10.97** 2.67 1.86 0.45*
(28.23) (19.85) (5.74) (32.38) (18.29) (4.80) (1.88) (1.16) (0.23)
A Computer use -20.03*** -17.56™* -19.34" -20.88"** -18.74** -13.09 0.99"**  0.96"** 0.58"
(1984-1997) (7.29) (7.21) (10.43) (7.79) (7.80) (8.60) (0.26) (0.26) (0.29)
R? 0.23 0.22 0.39 0.17 0.15 0.22 0.17 0.18 0.28
Mean dependent variable -2.5 -2.5 -2.7 -2.27 -2.27 -1.35 12 12 .1
Observations 133 133 71 133 133 71 133 133 71

Notes: Each column represents a separate OLS regression of ten times the annual change in industry-level task input between 1980 and 1998,
measured in centiles of the 1960 task distribution, on the share of automation patents in machinery, the annual percentage point change in
industry computer use during 1984-1997, and a constant. Estimates are weighted by mean industry share of total employment in FTEs in 1980
and 1998. Robust standard errors are reported in parentheses. In columns 1-3 the dependent variable is the change in routine cognitive tasks,
in columns 4-6 the change in routine manual tasks, and in columns 7-9 the change in the ratio of high-skill workers (college graduates) over
low-skill workers (others). Biadic uses only biadic auto95 patents, Auto90 defines automation patents as auto90 patents. In both cases, patents
are allocated to their sector of use. Lybbert and Zolas uses auto95 patents and allocates patents using a concordance table between C/IPC
codes and industries from Lybbert and Zolas (2014). * p < 0.1; ** p < 0.05; *** p < 0.01
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to measure automation in the sector of use. The results are similar but with smaller
coefficients than in the regressions using auto95, in line with auto95 being a stricter
measure of automation. In Columns (3), (6), and (9), we instead map patents to sectors
based on a concordance table from Lybbert and Zolas (2014) between 4-digit C/IPC
codes and sectors. This method has the advantage of mapping more directly patents to
sectors but cannot distinguish between manufacturing and using sectors. We still find
that sectors with a high share of automation patents experienced a decline in routine
tasks. The coefficients are smaller, but given that the standard deviation of the share
of automation patents in that case is 0.089, the standardized coefficients are relatively
similar.

In unreported regressions, we also find that our results are robust to considering the
different time periods analyzed by ALM: the 1970s, 1980s and 1990-1998.

A.5 A Simple Model

We incorporate the business features described in 3.1 into a simple model built on Hé-
mous and Olsen (2022). A manufacturing good is produced with a continuum of interme-
diate inputs according to the Cobb-Douglas production function Y = exp ( fol Iny () dz’) ,
where y(i) denotes the quantity of intermediate input ¢. The manufacturing good is the
numéraire. Each intermediate input is produced competitively with high-skill labor (hy

and potentially hsy;), low-skill labor, ;, and potentially machines, x;, according to:
yi =" (v (@) i+ () v (1= v) v athi”)” (5)

v(7) is the productivity of low-skill workers, a(i) is an index which takes the value 0
for non-automated intermediates and 1 for automated intermediates and v and [ are
parameters in (0,1). Machines are specific to the intermediate input ¢. If a machine is
invented, it is produced monopolistically 1 for 1 with the final good so that the monop-
olist charges a price p,(i) > 1. At the beginning of the period, for each non-automated
intermediate ¢, there is an innovator. The innovator creates a machine specific to inter-
mediate ¢ with probability A if she spends XYY /(1) + 1) units of the manufacturing
good with ¢ > 0.

For an automated intermediate input («(i) = 1), the downstream producer is indif-
ferent between using low-skill workers or machines together with high-skill workers in

production whenever w%pl™ = wr /v(i). Therefore, the machine producer is in Bertrand
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competition with low-skill workers. As a machine costs 1, the machine producer charges a
price p, (i) = max{(wL/’y(z'))ﬁ w;f%”, 1} such that machines are used if wr /v(i) > wY,.
Since the manufacturing good is produced according to a Cobb-Douglas production func-
tion, we get p(i)y(i) = Y for all intermediates. We can then derive the profits of the
machine producer as 7' = max (1 — (’y(i)/wL)ﬁ w?, 0) vBY.

In turn, at the beginning of the period, the potential innovator solves max Am! —
ONT1Y /(¢ + 1), giving the equilibrium innovation rate A = [771/(6Y)] /Y. As a result,

the number of automation innovations is equal to:

Aut — (%)W /01 (1—a (i) [max ((1 - (%?) wH> o)] "

This expression is increasing in the low-skill wage w; and decreasing in the high-skill

wage wy with a magnitude which is larger for a lower . Intuitively, the incentive
to replace low-skill workers with machines (and high-skill workers) increases with low-
skill wages, leading to a higher demand for machines. The reverse holds for high-skill
wages. An upward shift in low-skill worker productivity, v(7), also reduces the number
of automation innovations. Our empirical analysis aims at computing 01n Aut/0Inwy,.

To contrast automation with other types of innovations, assume that the production

of an intermediate takes place according to:
) — /- . . v —v UV —v 6
yi = (ama)” by (v (D)l + (i) v (1= ) ™ alhysY)”

where m; denotes non-automation “Hicks” machines with quality ¢;. Hicks machines are
also produced 1 for 1 with the final good. Each period one innovator may improve on
the available quality of Hicks machines for intermediate ¢ by a factor p by investing
in R&D. If she spends 0,,A\%1Y /(1) + 1) units of the final good, she is successful with
probability A,,. In that case, the innovator becomes the monopolistic provider of Hicks
machine ¢ under the pressure of a competitive fringe which has access to the previous
technology, and the technology diffuses after one period. Otherwise, the good is produced
competitively.

The previous analysis on automation innovations remains identical. A successful
Hicks innovator can charge a mark-up u leading to profits 71 = (1 — u=!)§Y. The
innovation rate is then \,,, = [(1 — 1) 6/ Gm]l/ ¥ so that the number of Hicks innovations

is a constant given by A,,. In contrast to automation innovations, the number of non-
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automation innovations is independent of low- or high-skill wages.

A.6 Data Appendix for the main analysis

This Appendix provides details on the data and the variable construction for our main

analysis.

A.6.1 Macroeconomic variables

Our main source of macroeconomic variables is the World Input Output Database (WIOD)
from Timmer et al. (2015) which contains information on hourly wages (low-skill, middle-
skill and high-skill) for the manufacturing sector and the total economy from 1995 to 2009
for 40 countries. It further contains information on GDP deflators and PPIs, both for
manufacturing and for the whole economy. They employ the ISCED skill-classification,
where category 142 denote low-skill (no high-school diploma in the US) 3+4 denote
middle-skill (high-school but not completed college) and 5+6 denotes high-skill (college
and above). Switzerland is not included in the WIOD database and we add data on skill-
dependent wages, productivity growth and price deflators using data obtained directly
from Federal Statistical Office of Switzerland.

We supplement this data with data from UNSTAT on exchange rates and GDP
(and add Taiwan from the Taiwanese Statistical office). We calculate the GDP gap as
the deviations of log GDP from HP-filtered log GDP using a smoothing parameter of
6.25. To compute the offshoring variable we follow Timmer et al. (2014) and compute
the share of foreign value added in manufacturing from the WIOD 2013 (except for
Switzerland where we use the 2016 release and assign to the years 1995-1999 the same
value as in 2000). For the nominal interest rate, we use the yield on 10-year government
bonds with data from the OECD for AT AU BE CA CH DE DK ES FI FR GB IE IT
JP NL PT SE US and from the IMF for KR GR LU.

The primary data source for the hourly minimum wage data is OECD Statistics.** For

the US, we use data from FRED for state minimum wages and calculate the nation-level

4Not all countries have government-imposed hourly minimum wages. Spain, for instance, had a
monthly minimum wage of 728 euros in 2009. To convert this into hourly wage we note that Spain has
14 “monthly” payments a year. Further, workers have 6 weeks off and the standard work week is 38 hours.
Consequently we calculate the hourly minimum wages as monthly minimum wagex14/[(52 — 6) x 38],
which in 2009 is 5.83 euros per hour. We perform similar calculations, depending on individual work
conditions, for other countries with minimum wages that are not stated per hour: Belgium, Brazil,
Israel, Mexico, Netherlands, Poland and Portugal.
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minimum wage as the weighed average of the state-by-state maximum of state minimum
and federal minimum wages, where the weight is the manufacturing employment in
a given state. Further, the UK did not have an official minimum wage until 1999.
Before 1993, wage councils set minimum wages in various industries (see Dickens, Machin
and Manning, 1999). We compute an employment-weighed industry average across
manufacturing industries and use the 1993 nominal value for the four years in our sample
(1995-1998) with no minimum wage. Finally, Germany did not have a minimum wage
during the time period we study. Instead, we follow Dolado et al. (1996) and use the
collectively bargained minimum wages in manufacturing which effectively constitute law
once they have been implemented. These data come from personal correspondence with

Sabine Lenz at the Statistical Agency of Germany.

A.6.2 Merging Orbis firms

For our analysis, we need to decide the level at which R&D decision are undertaken.
Orbis IP links patent data to companies. For companies in the same business group,
R&D decisions could happen at the group level, though treating a group as one agent is
often too aggressive (as subsidiaries might be in different sectors). Therefore, for firms
within the same business group, we normalize company names by removing non-firm
specific words such as country names or legal entity types and then merge firms with the
same normalized name. All other firms are treated as separate entities. E.g., Siemens
S.A., Siemens Ltd. or Belgian Siemens S.A. are merged, but Primetals Technologies
Germany Gmbh which belongs to the same group remains a separate entity in our

regressions.

A.6.3 Firm-level patent weights

We give further details on the firm level patent weights. As mentioned in the text, we
only count patents in machinery because some of the biggest innovators in automation
technologies are large firms which produce a wide array of products with different spe-
cialization patterns across industries. Further, we exclude firms which have more than
half of their patents in countries for which we do not have wage information.

In Europe, firms can apply both at national patent offices and at the EPO, in which
case they still need to pay a fee for each country where they seek protection. We count a
patent as being protected in a given European country if it is applied for either directly

in the national office or through the EPO. In addition, we take the following steps in
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order to deal with EP patents. We assign EP patents to countries when they enter into
the national phase. A firm’s untransferred EP patents are assigned using information
on where that firm previously transferred its EP patents. If a firm does not have any
already transferred EP patents, we assign the patent based on a firm’s direct patenting
history in EPO countries. Untransferred EP patents that are still left are assigned to
countries based on the EPO-wide distribution of transfers. We also drop a firm if more
than half of its patents are EP patents assigned using the EPO-wide distribution.
Finally, as mentioned in the text, we only count patents in families with at least one
(non self-) citation. Including all patents generally increases the weight of the country
with the most patents, in line with the finding that poor quality patents tend to be
protected in fewer countries. However, further increasing the threshold from 1 to more

citations does not significantly change the distribution of weights.

A.7 Shift-share analysis

This appendix presents a number of additional results related to our shift-share set-up.
We first do a “shock-level” analysis as recommended by Borusyak et al. (2022, henceforth
BHJ), then we show that our results do not depend on a single country and finally, we
address Borusyak and Hull (2021)’s concern regarding the use of a nonlinear shift-share.

Shock-level regressions. BHJ show that identification in a shift-share setting can
be obtained from conditionally randomly allocated shocks. Key to their argument is an
equivalence result between what in our context would be a linear firm-level regression and
a linear regression run at the level of the shocks (country-year). They advise practitioners
to run the shock-level regression and to provide several statistics showing that there are
enough variations in the shocks, that there are sufficiently many shocks, and how the
shocks correlate with other variables.

To follow their approach we need to turn to a linear setting. To do that, we first
replace our dependent variables which are defined as log of averages with average of
logs. In addition, it is easier to map our analysis with theirs if we consider a single
shock. Therefore, given the previous results showing that low- and high- skill wages
often have coefficients of opposite magnitude, we directly look at the effect of the inverse

skill premium. We define it here as:

ISP, =Y kicln (M> . (6)

WH .t
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Table A.28: From firm-level to shock level regressions

Dependent variable Auto95
Firm-level Country-level
©) (2 (3) (4) (5)
Low-skill / High-skill wages 2.49" 0.40"** 0.40™* 0.32* 0.36™"*
(0.87) (0.15) (0.08) (0.16) (0.07)
Labor productivity -0.32
(0.50)
GDP gap -0.30
(1.88)
Estimator Poisson  Linear (arcsinh)  Linear (arcsinh)  Linear(arcsinh)  Linear (arcsinh)
Stocks and spillovers Yes Yes Yes Yes No
Firm fixed effects Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes
Country x year fixed effects Yes Yes Yes Yes Yes
Observations 47453 48495 615 615 615
Firms / Countries 3233 3233 41 41 41

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson
fixed effect regressions (HHG) in column 1 and OLS in columns 2-5. The dependent variable in columns 2-5 is the
arcsinh transformation of auto95 innovations. Standard errors are reported in parentheses. Standard errors are clus-
tered at the firm-level in columns 1 and 2 and country-level clustered in columns 3-5. Columns 3-5 run equivalent
shock-level regressions following Borusyak, Hull and Jaravel (2022, BHJ) (see text for details). All regresions include
firm fixed effects, industry-year fixed effects and country-year fixed effects. * p < 0.1; ** p < 0.05; *** p < 0.01

We also define the other macro variables (GDP per capita, labor productivity, etc) as
average of logs. Second, we switch from a Poisson estimator to a linear one where we use
arcsinh of the count of patents as a dependent variables (the arcsinh is approximately
linear for low values and approximately log for higher values which allows us to deal
with 0s). That is we replace (3) with:

arcsinh (PAT auti +) (7)

BrsplSPrii—o + BxXit—2 + BraIn Kautit—2 + Bro I Koherit—2
+B3a I SPILL gyt 1—2 + BsoIn SPILLotherit—2 + 0 + 054 4 Oct + €5t .

Finally, we focus this analysis on total wages (with country-year fixed effects) since this
set-up is more easily transcribed in the BHJ framework.

Table A.28 shows the results. Columns (1) and (2) report regressions at the firm-level.
In Column (1), we only replace the previous definition of the inverse skill premium (the
difference between the log average of low- and high-skill wages) with that of equation (6).
We control for firm, industry-year and country-year fixed effects, stocks and spillovers
but not for any other macro variables in order to focus on the direct effect of the shock
in consideration. We obtain a coefficient much in line with those of Table 6. Column
(2) runs a linear regression at the firm level as in (7). We obtain a similar result — the

magnitude is smaller as the range of variations for arcsinh is smaller than for the log
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function.

Column (3) follows the BHJ approach and runs a shock-level regression. That is,
we first residualize our automation measure on our controls (fixed effects, stocks and
spillovers) and similarly residualize the inverse skill premium measure. We then compute
a weighted average of the residualized automation measure at the country-year level,
where, for each country, we weigh each firm-year observation by the firm-country weight
Ki.. We then run a linear regression of that average measure of automation on the inverse
skill premium at the country-year level. Each country-year observation is weighted by
its average weight at the firm level. As demonstrated by BHJ, we get exactly the
same coefficient. Column (4) adds controls for labor productivity in manufacturing and
Column (5) removes the controls for stocks and spillovers so that the only controls are
the fixed effects. While the original regression looks at the effect of a weighted average
of wages on firms’ innovations, this “shock-level” regression inverts the relationship and
looks at the effect of wages on a weighted average of firms’ innovations. It is important
to realize that this does not mean that our original shift-share approach would simply
mean re-weighing firm-level variables to run a country-level regression. Our measure
of automation innovation arcsinh (PAT 4, ;) is first residualized on country-year fixed
effects, so that we remove the average contribution of domestic firms to automation
innovation when we run the shock level regression.?

To unpack our regression results, Figure A.11 shows a bin-scatter plot of the residu-
alized measures of automation and the inverse skill premium at the country-year level.
The figure corresponds to the regression of Column (5) in Table A.28 which only controls
for fixed effects. We group observations in 100 bins of equal weights. The overall rela-
tionship between automation and the inverse skill-premium does not seem to be driven
by outliers or specific parts of the inverse skill premium distribution.

Shock-level summary statistics. Table A.29 reports summary statistics on the
shock-level regressions following BHJ’s recommendation. In line with Table A.5 and the
distribution shown in Figure A.11, the standard-deviation of the shock, namely the log
inverse skill premium residualized on firm, industry-year and country-year fixed effects

is 0.9%. This is a significant amount of variation given that the standard deviation of

45 As already mentioned, we run this analysis at the level of the inverse skill premium because this
allows us to keep track of only one shock. In addition, regressions with arcsinh and separate low- and
high- skill wages do not show a significant effect for low-skill wages when we use the full sample. This
is due to the difference in functional forms between the arcsinh and log. We recover our original result
when we focus on firms with at least 2 patents over the full time period. This result is exactly in line
with our long-difference regressions that also use arcsinh (see Appendix Table A.11).
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Figure A.11: Bin-scatter plot of the shock-level regression. We residualized both arcsinh(auto95)
and the inverse skill premium on firm, industry-year and country-year fixed effects and on
stocks and spillover variables. We then compute weighted average of the residuals at the
shock (i.e. country-year) level following BHJ. We then group observation in 100 bins of the

inverse skill premium.

Table A.29: Shock-level summary statistics

) 2 ®3) (4)

Panel A: Descriptive statistics on the inverse skill premium

Mean -0.78 0 0 0
Standard deviation (%) 36.4 2.1 0.9 1.0
Interquartile range (%) 55.7 2.9 1.1 1.0

Residualizing on

F fixed effect Yes Yes Yes
IY+CY fixed effects Yes Yes
Stocks/Spillovers Yes

Panel B: Herfindahl-Hirschman index of weights

Total weights ~ Foreign weights

Country 0.133 0.090
Country and year 0.009 0.006

Notes: Panel A reports descriptive statistics for the log inverse skill
premium weighted by the average country weight in our regression
sample as in Borusyak et al. (2022). The log inverse skill premium
is residualized on firm fixed effects (columns 2, 3 and 4), industry-
year and country-year fixed effects (columns 3 and 4) and stocks and
spillovers (column 4). Panel B reports the Herfindahl-Hirschman in-
dex of weights at the country and country-year level for both the to-
tal weights and foreign weights (normalized to sum up to 1).
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Figure A.12: Residualized inverse skill premium in the 6 most important countries. This
figure reports our identifying shocks: namely the log inverse skill premium residualized on
firm fixed effects, industry-year and country-year fixed effects, stocks and spillovers variable

and aggregated at the country level following BHJ’s methodology.

the log inverse skill premium residualized only on firm fixed effects (i.e. only taking
away level differences across countries) is 2.1%. The Herfindahl index of the weights at
the country level is 0.13 (as reported in Table 3, the largest weight is the US weight
with a value of 0.21). With 15 years, however, the Herfindahl index of the weights at
the country-year level is 15 times smaller (at 0.009). For foreign weights, the Herfindahl
index are 0.09 at the country-level and 0.006 at the country-year level. The “true” level
of variation depends on how much variation there actually is in the time dimension for
a given country.

Figure A.3.a shows the evolution of the inverse skill premium for the 6 countries
with the largest average weights in the raw data. Figure A.12 does the same thing
but residualizes the log inverse skill premium on the full set of fixed effects, stocks and
spillovers (i.e. as in Column 3 of Table A.28). The two figures look overall similar:
there is a significant amount of variation both across and within countries. Of course,
the inverse skill premium is correlated from year to year, but after a few years, the
correlation is much weaker. We find no correlation between the log skill premium and
its fifth lag, so loosely speaking one may consider that we have at least 3 “separate
observations” for each country.

Shock-level balance tests. In Table A.30, we look at the balance of our shocks
against observables. We regress the macro variables on the log inverse skill premium

at the country-year level. All variables are residualized on our full set of fixed effects,
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Table A.30: Shock balance tests

Estimate SE

(1) (2)

GDP Gap 000  (0.01)
Labor Productivity -0.22 (0.17)
GDP per capita 0.04 (0.19)
Manufacturing size -0.11 (0.10)
Offshoring 0.01 (0.03)
Recent auto95 innovation -1.01***  (0.38)
Recent other innovation -1.35**  (0.67)
Stocks and spillovers Yes

Fixed effects F+IY+CY
Number of country-years 615

Notes: This table reports coefficients from separate re-
gressions of country-level observables on the log inverse
skill premium. The respective independent variables
are residualized on firm, industry-year, and country-
year fixed effects. Standard errors are reported in col-
umn 2 and clustered at the country-level.

stocks and spillovers, and observations are weighted following the BHJ procedure. The
only macro variables that are significantly correlated with the skill premium are the
recent innovation variables. More automation innovations are associated with a higher
skill premium as one would expect. This holds true for all other innovations—mnote that
these include non machinery innovations such as innovations in computers, for instance.
Table 7 shows that controlling for recent innovations does not affect the effect of wages
on automation innovations in our central regressions.

Excluding one country at the time. Next, we check whether our results are
driven by a specific country. We go back to our original firm-level Poisson regressions.
We successively remove the six largest countries by average weight (US, JP, DE, GB,
FR, IT, and ES). Excluding a country means that we treat it like the home country
when computing normalized foreign wages. We also include the weight of the excluded
country times a year dummy as a control. Table A.31 reports the results (with foreign
wages and controlling for labor productivity). The coefficient on low-skill wages always

remains positive and significant.*

46Goldsmith-Pinkham, Sorkin and Swift (2020) suggest carrying out a similar exercise by excluding
countries with a large Rotemberg weight. Rotemberg weights require a linear shift-share instrument, we
check that when wages are computed as average of logs, the six countries with the largest Rotemberg
weights are the UK, FR, SE, DE, US, and BE. Our results are also robust to excluding Belgium and
Sweden.
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Table A.31: Excluding one country at the time

Auto95
Excluded country None Us DE JpP GB FR 1T ES
Average weight 0.21 0.20 0.17 0.09 0.09 0.03 0.03
(0) 1 (2 ®3) (4) (5) (6) (7)
Foreign:
Low-skill wage 530" 5.617**  3.80"""  3.59"**  4.95"*  3.55" 547" 502"
(1.57) (1.70) (1.41) (1.34) (1.34) (1.51) (1.48) (1.54)
High-skill wage -2.917" -2.42% -1.77 -1.56 -0.77 -2.15 -4.617" -2.39
(1.48) (1.47) (1.32) (1.32) (1.36) (1.33) (1.93) (1.51)
GDP gap 2.40 2.37 3.44 2.50 3.19 2.03 2.05 2.09
(4.91) (5.08) (5.63) (3.95) (4.90) (5.05) (5.22) (4.97)
Labor productivity -2.53 -4.00"" -2.52" -1.73 -3.64™" -1.86 -1.12 -2.77"
(1.61) (1.68) (1.39) (1.50) (1.60) (1.49) (1.66) (1.58)
Excluded country weight x year dummy - Yes Yes Yes Yes Yes Yes Yes
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Country X year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 47453 46677 46984 47274 47045 47393 47318 47382
Number of firms 3233 3181 3199 3221 3206 3229 3224 3228

Notes: The independent variables are lagged by two periods. The coefficients are estimated with conditional Poisson fixed
effects regressions (HHG). Standard errors are clustered at the firm-level and reported in parentheses. All columns include
firm, industry-year and country-year fixed effects. In column 0, the macroeconomic variables are the normalized foreign vari-
ables previously defined. Columns 1-7 exclude the country in the column header in addition to the domestic country when
computing the normalized foreign macroeconomic variables. Additionally, columns 1-7 control for the weight of the excluded
country times year dummies. The average weight in the header reports the average country weight for the firms in the sample
of column 1. * p < 0.1; ** p < 0.05; *** p < 0.01

Borusyak and Hull (2021). Borusyak and Hull (2021) show that a regression
using a logged shift-share measure may be biased due to the non-linearity of the log
function. Table A.28 already shows firm-level regressions with a linear independent
variable (the average of log inverse skill premium). Table A.32 implements Borusyak and
Hull (2021)’s suggested correction in our default specification to remove the potential

bias.*” The results remain very similar.

4TThe correction consists in rescaling the original variables as follows: We sample with replacement
the entire path of macroeconomic variables for each firm. We take the average across many draws and
remove it from the original macroeconomic variables.
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Table A.32: Borusyak and Hull (2021)’s correction

Auto95
Domestic and foreign Foreign
@) () @) (4) (5) (6) () (®) (9)
Low-skill wage 2.44"** 2.32% 3.84™" 1.57 2.23" 4.06"" 5.24™"* 5.45"" 3.44™
(0.78) (0.85) (0.96) (0.96) (1.11) (1.26) (1.45) (1.52) (1.68)
High-skill wage -2.077 L2277 -0.94 -2.76™* -1.28 -1.60 -3.817*  -3.54™F -3.87F
(0.72) (0.78) (0.80) (0.95) (1.05) (1.03) (1.25) (1.57) (1.24)
GDP gap Yes Yes Yes Yes Yes Yes Yes Yes Yes
Labor productivity Yes Yes Yes
GDP per capita Yes Yes Yes
Stocks and spillovers Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country x year fixed effects - - - Yes Yes Yes Yes Yes Yes
Observations 47783 47783 47783 47424 47424 47424 47424 47424 47424
Number of firms 3234 3234 3234 3231 3231 3231 3231 3231 3231

Notes: The independent variables are lagged by two periods. Standard errors are clustered at the firm-level and reported in
parentheses. The coefficients are estimated with conditional Poisson fixed effects regressions (HHG). All columns include firm
and industry-year fixed effects. Columns 4—9 add country-year fixed effects. Columns 7--9 use the normalized foreign macro
variables previously defined. All regressions include controls for stocks and spillovers. The macroeconomic variables in log, low-
skill wages, high-skill wages, GDP per capita and labor productivity are adjusted following the correction suggested in Borusyak
and Hull (2021): we sample with replacement the entire path of macroeconomic variables for each firm with 1000 draws, take
the average value and subtract it from the original macroeconomic variable. * p < 0.1; ** p < 0.05; *** p < 0.01

A.8 Macroeconomic interpretation of the regression coefficients

In this section, we analyze the economic magnitude of our regression coefficients by
estimating the effect of a change in the skill premium on tasks demand that runs through
automation. To do that, we can combine our regressions results with the results of
Section 2.6. Two issues prevent us from simply directly multiplying coefficients: First,
our regressions control for the stock of knowledge of firms and the knowledge spillovers
that they are potentially subject to — both change as a change in wages affect (all) firms’
innovation decisions. Second, in Section 2.6, we looked at the effect over a decade of
changes in the share of automation patents over total machinery patents, so we need to
jointly estimate the effect on automation innovations and other machinery innovations.

Therefore, we run a simulation where we consider a uniform and permanent decrease
in the skill premium by 10% between 1995 and 2009 in all countries. We use our regres-
sion results to recompute the share of automation innovations in machinery over that
period. Importantly, we stress that one must not interpret the result of this simula-
tion as predictive, notably because a change in innovation should in turn affect the skill
premium. Yet, our analysis could be used to calibrate a model which predicts that the

direction of innovation reacts to changes in the skill premium. We focus on a changes
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in the skill premium as it is easier to interpret than a change in low-skill wages keeping
high-skill wages constant.

Specifically, we consider the regression results reported in Panel a of Figure A.13.
Given our goal of computing changes in the share of automation innovations in ma-
chinery, this regression differs slightly from the ones in the paper. We regress both
auto9b innovations and all other machinery innovations (pauto95) on the inverse of the
skill premium, the GDP gap, stock and spillover variables and firm and industry-year
fixed effects and we consider separately the stocks and spillovers of auto95 innovations,
pauto95 innovations and all other innovations.*®

Figure A.13 reports the results averaged over 1000 simulations (using the median
gives similar results).?® We first compute the direct effect of a decrease in the skill
premium (keeping stocks and spillover variables constant) on the share of automation
innovations in machinery. This is captured by the gap between the data curve and the
counterfactual (direct effect) curve. This gap reflects the elasticity of 2.36 of auto95
innovations with respect to the inverse skill premium (with an elasticity of 0.26 for other
machinery innovations). Taking into account the response of firms’ own innovation
stocks slightly decreases the effect of low-skill wages reflecting the negative effect of
the automation stock on auto95 innovations and its positive effect on other machinery
innovations.

We then assess the importance of knowledge spillovers by recomputing the spillover
variables for the auto95 innovations and other machinery innovations (but not the non-
machinery innovations). This involves two complications. First, our model only applies
to the number of innovations and not their location. To allocate innovations to countries,
we assign the simulated innovations proportionally to the firm’s inventor weights (used
to construct the spillover variables). Second, firms in our sample account for only 53.2%
of all biadic innovations in 1997-2011. We assume that the other firms respond similarly,
so that when we assign simulated innovations to countries, we increase innovations by
out-of-sample firms to keep the ratio of in-sample to out-of-sample innovations constant.

The overall effect of an increase in the inverse skill premium is then captured by the
gap between the baseline curve and the counterfactual one. The baseline curve and the

data series differ because the baseline is an average while the data series is only one

48For technical reasons, we also use In(1+) for spillovers and stocks instead of replacing 0’s with 1’s
and adding a dummy for 0 stocks or spillovers as in the baseline regressions.

49The figure reports the share of automation patents for the firms in our regression sample. This
differs from Figure 2 since the latter reports the share of automation patents for all firms.
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Dependent variable Auto95 Pauto95
(1) 2

Low-skill / High-skill wages 2.36™*" 0.26
(0.68) (0.50)

GDP gap -4.51* -2.98**
(2.69) (1.35)
Stock automation -0.15"** 0.12***
(0.05) (0.03)
Stock non-automation 0.34"** 0.28"**
(0.06) (0.03)
Stock other 0.34"** 0.25***
(0.06) (0.04)
Spillovers automation 1.04™** -0.14
(0.36) (0.21)
Spillovers non-automation 1.12* 2.24***
(0.61) (0.38)
Spillovers other -1.677 -1.89"**
(0.74) (0.49)
Firm fixed effects Yes Yes
Industry x year fixed effects Yes Yes
Observations 47812 155183
Number of firms 3236 10382

Notes: The independent variables are lagged by two
periods. Standard errors are clustered at the firm-
level and reported in parentheses. The coefficients
are estimated with conditional Poisson fixed effects
regressions (HHG). Both regressions include firm and
year-industry fixed effects. * p < 0.1; ** p < 0.05;
K p < 0.01

(a) Supporting regression
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(b) Simulation result

Figure A.13: Simulation of a permanent and global 10% decrease in the skill premium on
the share of automation innovations in machinery
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possible realization. Knowledge spillovers increase the overall elasticity of the share of
automation patents with respect to low-skill wages. The average share of automation
innovations in machinery between 1997 and 2011 increases by 4.8 p.p. from 10.4%
to 15.3%. This is 2.7 p.p. more than the direct effect. This 4.8 p.p. increase can be
compared to the 4.4 p.p. increase in the data over the same time period. As mentioned in
Section 4.3, we can then combine these effects with the results of Section 2.6, and obtain
that this 4.8 p.p. increase in the share of automation innovation would be associated
with a decline in routine cognitive tasks of 7.5 centiles and a decline in routine manual
tasks of 6.2 centiles. Though one should not interpret these numbers as causal, they
indicate that the effect of the skill premium on automation innovations is economically

significant.
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B Supplemental material

B.1 Additional examples

We provide a few additional examples of automation and non-automation patents. Fig-
ure B.1 shows the example of a robot with a patent containing the IPC code B25J9.
The patent describes a multi-axis robot with a plurality of tools which can change the
working range of each arm. This essentially increases the flexibility of the robot. Figure
B.2 shows an automation innovation used in the dairy industry. The patent contains the
code A01J7 which is a high automation code (see Table A.24). It describes a system in-
volving a robotic arm to disinfect the teats of cows after milking. The patent argues that
this reduces the need for human labor and therefore saves costs. Figure B.3 describes an
automated machining device — yet another example of a high automation innovation —
which contains the code B23Q15 (a high automation code described in Table A.24). The
devices features a built-in compensation system to correct for errors thereby reducing
the need for a “labor-intensive adjustment process”. Figure B.4 describes another high
automation patent belonging to the same IPC code as well as to G0O5B19. This is also
a machining device. The patent explains that innovations in machining have aimed at
making the process as automated as possible by involving some feedback mechanism (as
in the previous older patent). This invention aims at better predicting the machining
requirements in the first place.

In contrast, Figure B.5 describes a low automation innovation in machinery (none
of the codes are above the 90th percentile in the 6-digit C/IPC distribution). The
innovation relates to a “conveying belt assembly for a printing device”, which is about
the circulation of paper in the printing machine. This innovation does not directly
involve automation. Similarly Figure B.6 describes a winch to raise and lower people,
another low-automation innovation in machinery. This innovation seems rather low-skill
labor complementary as its goal is to enable workers to move in a plurality of directions.
Finally, Figure B.7 describes a harvester (which also counts as a machinery innovation
since the code AO1B63 belongs to other special machinery). This is also a low-automation
innovation as its goal is to ensure that the harvester can both operate in the field and

travel on roads.
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Figure B.1: Example of a high automation patent: an industrial robot
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[0003] According to embodiments of the present dis-
closure, disadvantages and problems associated with
previous systems supporting dairy milking operations
may be reduced or eliminated.

[0004] In certain embodiments, a system for applying
disinfectant to the teats of a dairy livestock includes a
carriage mounted on a track, the carriage operable to
translate laterally along the track. The system further in-
cludes a robotic arm including a first member pivotally
attached to the carriage such that the first member may
rotate about a point of attachment to the carriage, a sec-
ond member pivotally attached to the first member such
that the second member may rotate about a point of at-
tachment to the first member, and a spray tool member
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example, certain embodiments of the present disclosure
may provide an automated system for applying disinfect-
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embodiments of the present disclosure may minimize
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reducing the volume of disinfectant used, certain embod-
iments of the present disclosure may reduce the cost
associated with applying disinfectant to the teats of dairy
livestock in certain dairy milking operations. Further-
more, the use of the automated system of the present
disclosure in conjunction with a rotary milking platform
may increase the throughput of the milking platform,
thereby increasing the overall milk production of the milk-
ing platform.

Figure B.2: Example of a high automation patent: a milking robot
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Figure B.3: Example of a high automation patent: an automated machining device
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TECHNICAL FIELD

This invention relates to a high-productivity,
twin-spindle turning center featuring a built-in com-
pensation system to correct for processing errors,
and, more particularly, to an improved two-spindle
machining device having a built-in tool compensa-
tion system which provides for individual process
control for each spindle.

Heretofore, the industry has attempted to ad-
dress the problems of these inherent errors by
measuring resulting parts and assigning offset er-
rors which can be compensated for by providing
adjustable tool blocks, or by undertaking tedious
shimming operations of the tools themselves. Often
a machinist had no other choice but to average the
errors between the two tools, and attempt to adjust
the tools and/or tool blocks to compensate. Once
these initial errors were reduced sufficiently as a
result of such labor-intensive adjustment proce-
dures, it was often necessary to slow the turning
process down to reserve tool life and, thereby,
delay the tedious process of replacing worn tools
as long as possible. Such compromise directly
undermined productivity levels, and the process of
averaging errors does not generally yield part ac-
curacies which are competitive with the quality of
parts made on single-spindle machines, let alone
achieving the higher level of accuracy demanded in
this industry.

Consequently, heretofore, there_has not been
available a reliable, low-cost, built-in tool compen-
sating system for lathe machines. Moreover, com-
pensation systems previously available could not
effectively provide a multi-spindle machine tool
wherein individual process control for each spindle
was possible. While multi-spindle machines have
been available for quite some time, there has not
been presented a compensation system which can
consistently maintain high production rates on each
spindle in a relatively simple and efficient manner.
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Figure B.4: Example of a high automation patent: another automated machining device
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(54) CONVEYING BELT ASSEMBLY FOR A PRINTING DEVICE

Figure B.5: Example of a low automation patent: a printer
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[0001] The present invention relates to a winch for
raising and lowering persons, comprising a housing pro-
vided with a first attachment member, a first opening
formed in the housing substantially opposite to the first
attachment member, an electric motor coupled to the in-
put of a reduction gearing, a reel component coupled to
the output of the reduction gearing, and a flexible elon-
gated traction member connected to the reel component
for winding and unwinding the traction member for rais-
ing and lowering a person. Further, the invention relates
to the use of a winch according to the invention as a
ceiling lift. The invention also relates to a ceiling lift as-
sembly, comprising an overhead rail with at least one
carriage guided therein, the carriage being provided
with an attachment member, a winch provided with at
least one attachment member on the winch housing and
the winch comprising a flexible elongated traction mem-
ber with an attachment member on its free end and a
spreader bar with an attachment member.

(54) A winch for raising and lowering persons

Figure B.6:

Européisches Patentamt
European Patent Office

Office européen des brevets

(19) g)

[0004] Against this background, it is an object of the
present invention to provide a winch of the kind referred
to initially, which overcomes or at least reduces the
above mentioned problems by allowing it to operate in
a plurality of orientations. This object is achieved in ac-
cordance with claim 1 by providing a winch of said kind
with the housing having a second opening so that the
traction member can be guided through the first opening
or through the second opening.

[0005] Thus, itbecomes possible to operate the winch
in more orientations

Example of a low automation patent: a winch
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[0001] The invention relates to an agricultural ma-
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(21) Application number: 02075380.2

(22) Date of filing: 28.01.2002

(51) Intct”: A01B 63/00, AO1B 73/00

chine provided with at least one pair of wheels and at
least one wheel for performing operations on the land.
[0002] Such agricultural machines are generally
known.

[0003] In order to perform operations on the land, it is
important for stability that the wheels are placed far
apart, while for travel without performing operations it is
important that the wheels are placed closer together to
improve the quality of travel.
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[0004] The object of the invention is to provide a ma-
chine which can meet both requirements.

(54)  Harvester

Figure B.7: Example of a low automation patent: a harvester

B.2 Validating our weights approach

We compare our firm-level weights to bilateral trade flows and show that they are

strongly correlated. The first step is to compute patent-based weights at the coun-

try level. For this exercise (and this exercise only), we define the home country d of

a firm based on the location of its headquarters according to the country code of its
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Figure B.8: Bilateral patent flows and trade flows in machinery. Panel (a) plots log patent based
weights, which are a weighted average of the destination country’s weights in the (foreign)
patent portfolio of firms from the origin country, against export shares in machinery over the
years 1995-2009. The size of each circle represents the product of the GDP of both countries,
which is used as a weight in the regression. Panel (b) focuses on the weights from the listed

countries and observations are weighted by the GDP of the partner country.

identifier in the Orbis database. For firms which we merged, we keep the country code
of the largest entity by biadic machinery patents in 1997-2011. We compute the foreign
weights for each firm ¢ by excluding the home country. Therefore, the foreign weight for
country ¢ # d for firm ¢ is given by x; /(1 —k;4) (recall that these weights are computed
based on patenting from 1971 to 1994). We then build the foreign patent-based weight
in country ¢ for country d as a weighted average of the foreign weights in country c of the
firms from country d, where each firm is weighted according to the number of machinery
biadic patents in 1997-2011.

The second step is to build similar weights based on exports. To do that, we collect
sectoral bilateral trade flow from UN Comtrade data between between 1995 and 2009 for
40 countries (Taiwan is not included in the data). To obtain trade flows in machinery, we
use the Eurostat concordance table between 4-digit IPC codes and 2 or 3-digits NACE
Rev 2 codes (van Looy, Vereyen, and Schmoch, 2014): this concordance table matches
IPC codes to the industry of manufacturing. The concordance table assigns a unique
industry to each IPC code. Then, for each industry, we compute the share of biadic
patents over the period 1995-2009 that are in machinery according to our definition.?®

This gives us a machinery weight for each industry code and each country. We then

50To do that we use a fractional approach: each patent is allocated NACE sectoral weights (and
machinery weights) depending on the share of IPC codes associated with a NACE sector or machinery.
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Figure B.9: Foreign low-skill wages for each country computed either with patent-based
weights or with trade-based weights. Wages are computed for the years 1995-2009.
Panel (a) plots log foreign low-skill wages using either patent-based weights or trade-based
weights. Panel (b) plots the residuals of foreign wages according to both methods control-
ling for country and year fixed effects. Observations are weighted by the number of biadic
machinery patents by firms from the country over the years 1997-2011.

multiply sectoral trade flows (after having aggregated the original data to the NACE
Rev 2 codes used in the concordance table) by this weight to get bilateral trade in
machinery. We then compute the export share in machinery across destinations. We
compute trade based weights for each year in 1995-2009 and take the average (there are
a few missing observations for 1995).

Figure B.8 plots the patent-based weights against the trade-based weights. Panel (b)
focuses on a few origin countries while Panel (a) plots all countries together. We find a
strong correlation between the two measures with a regression coefficient of 0.94 (when
observations are weighted by the trade flow in 1996).

Figure B.9 goes further and compares low-skill wages computed with either sets of
weights. For each country, we compute “foreign low-skill wages” as a weighted average of
foreign wages where the weights are either the patent-based weights or the trade-based
weights derived above. Foreign wages are deflated with the local PPI and converted
in USD in 1995 as in our main analysis. Panel (a) then reports foreign log low-skill
wages according to both types of weights in 1995-2009 and finds that they are strongly
correlated. Panel (b) reports the same foreign log low-skill wages but taking away
country and year fixed effects. The regression coefficient is 0.56, when observations are
weighed by the number of machinery patents in the country between 1997 and 2011.

Overall, this exercise shows that there is tight relationship between our patent-based

93



weights and (future) trade flows, suggesting that we can use these patent-based weights

as proxies for firms’ markets exposure.
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