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Abstract

This paper argues that relational contracts will under certain circumstances create dynamic

inefficiencies. We consider the repeated interaction between final good producers and inter-

mediate input suppliers, where the provision of the intermediate input is noncontractible. We

build a cooperative equilibrium where producers can switch suppliers and start cooperation im-

mediately with new suppliers. We first consider broad innovations: every period, one supplier

has the opportunity to create a higher quality input that can be used by all producers. We

show that (i) innovations need to be larger to break up existing relationships in the cooperative

equilibrium than in either a set-up where the input is contractible or when we preclude coop-

eration in long-term relationships and (ii) the rate of innovation in the cooperative equilibrium

is lower than in the contractible case, and may even be lower than in the non-cooperative

equilibrium. We contrast this case with relationship-specific innovations which we show are

encouraged by the establishment of relational contracts. We illustrate the predictions of the

model using the recent business economic history of the United States and Japan. We further

use patent data to show that U.S. patents are more general than Japanese and even more

so in sectors using more differentiated inputs. Finally, we show that the possible negative

consequences of relational contracts are not limited to innovation.
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tos, Pol Antràs, Emmanuel Farhi, Oliver Hart, David Laibson, Jacob Leshno, Claire Lelarge, James
Malcomson, Nathan Nunn, Jennifer Page, Daniel Trefler and Timothy Van-Zandt for their thought-
ful comments. We also thank seminar participants at Harvard University, the INSEAD-Georgetown
University conference and CUNEF.
†University of Zürich and CEPR
‡IESE Business School, University of Navarra



JEL: C73, K12, L14, O31, O43

KEYWORDS: contractibility, innovation, relational contracts, patents, repeated game

2



1 Introduction

An extensive literature exists on how relational contracts (that is implicit agreements

relying on mutual trust) can overcome contractual incompleteness, encourage innova-

tion and allow for risk sharing. A canonical example is the Japanese ‘keiretsu’ system of

interconnected business groups which, particularly in the 1980s, was widely seen as an

economic system to be emulated by the rest of the world. In this paper, we show that

although the establishment of relational contract can improve efficiency and encourage

innovation within a relationship, the introduced rigidity can be detrimental to economic

growth. In particular, firms engaged in relational contracting (that is, in implicit agree-

ments relying on mutual trust) may be reluctant to switch to a new potential partner

with a better technology. If so, the market size for a potential innovator is reduced,

which in turn, reduces the incentive to innovate. Based on this we compare the innova-

tion pattern in the United States and Japan: while both countries are innovative, the

U.S. inventions tend to be broader.

More generally, we show that relational contracts can be a poor substitute for good

institutions because they transform contractibility issues from a static problem of in-

efficient allocation of resources into a dynamic problem of inefficient development of

technologies. This paper clarifies this trade-off but also derives conditions under which

it does not apply. We focus on growth and innovation, but relational contracts, requir-

ing long-term relationships, can come at odds with economic efficiency, whenever the

economy would benefit from flexible relationships.

We first consider broad innovations that are not specific to a relationship: We have in

mind an industry with the following characteristics: (i) production requires the partici-

pation of producers and suppliers, where the suppliers provide complex inputs designed

specifically for the final good producer, (ii) suppliers are competing with each other, and

(iii) innovations allow them to “escape competition” and to increase their market share

at the expense of their competitors. In a non-repeated framework, non-contractibility of

the intermediate input typically creates an ex post hold-up situation leading to underin-

vestment by the supplier as in Grossman and Hart (1986). In a repeated framework, we

rely on the existence of good and bad matches between producers and suppliers to build

a “cooperative” equilibrium. Good matches are characterized by a higher productivity

level. If a match turns out to be good, the value of the relationship in the following

period is higher than the expected value of a new relationship. The supplier can capture

the rents associated with this difference in values if cooperation with the producer con-
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tinues, which induces her to invest more than the short-run interest would dictate. We

contrast this case with two other cases: an economy with the same lack of contractibility,

but where there is no cooperation in equilibrium (we refer to it as the “Nash case”) and

a setting in which inputs are fully contractible. The Nash and cooperative equilibria can

be seen as two extremes on a spectrum, and we think of Japan as being closer to the

cooperative case than the United States.

Every period, we let one supplier (the innovator) have the possibility to develop a new

technology, which is imitated by her competitors after one period. Producers already

engaged in a long-term relationship face a trade-off: switching to the innovator allows

them to have access to a more productive technology, but at the risk of entering into

a bad match. Entering into a bad match yields a lower productivity level no matter

whether the input is contractible or not; but, when the input is noncontractible bad

matches are also characterized by more severe under-investment than good matches,

since cooperation only occurs in the latter. Hence, bad matches become worse relative

to good matches. This worse bad match effect is the main force behind our result

that cooperation in a weak contractible setting magnifies rigidities in relationships. In

particular, in order for an innovator to capture a large share of the market, innovations

have to be larger in the cooperative case than in the Nash case (or the contractible

case).1 This result suggests that fewer general innovations are developed in countries

where strong relational contracts are more widespread.2

We contrast this with a setting in which innovation is done within an already estab-

lished relationship. We show that relational contracts encourage this type of innovation.

This is both because relational contracting improves the efficiency of production by

overcoming the standard hold-up problem and because the introduction of relationship-

specific innovation itself makes the parties more dependent on one another which further

encourages cooperation. In fact, the latter effect might be strong enough for the innova-

tion rate to be higher than in a “contractible” case where there are no hold-up problems.

This suggests that economies where relational contracts are more prevalent will fea-

ture relatively more relationship-specific innovations and less general innovations. Du-

1Long-term relationships also present a barrier to entry in Aghion and Bolton (1987), who show
that when an incumbent faces entry by potential competitors with superior technology, she will sign
long-term contract that reduces the risk of entry. In our set-up, however, the relationship is of a different
nature as the contract is implicit and we rule out explicit contracts that last more than a single period.

2The introduction of dynamic inefficiencies is not trivial and depends on the initial source of switching
costs. In particular, in a model of exogenous fixed cost of switching, the cost of breaking up an existing
relationship would be independent of the level of cooperation and relationships would not by themselves
imply rigidity.
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(B) Patent Citations

Figure 1: Relative Importance of Japanese and US Patents

jarric and Hagiu (2009) study the case of Japan and argue that although Japan’s keiretsu

system has ensured a highly productive manufacturing sector, hierarchical industry or-

ganizations is not conducive to radically new innovations. As a consequence, Japan has

failed to establish itself as a world leader in a number of newer industries.

Data from patents are consistent with this view. Hall, Jaffe and Trajtenberg (2001)

introduce a “generality” measure based on the number of patent classes that cite a

patent.3 Figure 1.A uses patents with at least one citation and compares the share of US

and Japanese patents in the European Patent Office (EPO) database of patents filed in

Europe for different levels of generality. Although both the United States and Japan have

around 14 per cent of patents in the European Union, the US share is gradually increasing

for the more general patents, whereas the Japanese share is gradually decreasing in line

with our model. Panel B demonstrates a similar, albeit less pronounced pattern for the

number of citations a patent receives. In section 5, we perform a more careful analysis

and show that the generality of US patents compared with Japan is more pronounced for

products that are more differentiated (in the sense of Rauch, 1999). We find the same

pattern when we use a broader set of countries and proxy for whether a country is in

the cooperative or Nash equilibrium using trust measures from the World Value Survey.

The last section of the paper presents two extensions. First, we relax the assumption

3Generality of patent i is measured as 1−Σni
j=1s

2
i.j , where si,j is the share of citations that patents i

has received from patent class j and ni is the total number of patent classes citations received by patent
i. We regress this measure on dummies for the technological field and the year a patent was filed and
use the residual in the figure. Nothing depends on these particular corrections.
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that the innovator is imitated after one period and let imitation happen gradually (which

one can think of as stronger IPR protection). We show that of the three cases, the

innovation rate for the “cooperative” one is the most negatively affected by a faster

diffusion of technology, suggesting that IPR and contract enforcement are substitutes.

Finally, we illustrate the generality of our results by considering a different cost of rigidity

of business relationships: We introduce individual TFP shocks to firms. When firms are

more likely to choose new business partners amongst those already in operation, keeping

a long-standing business partner who has suffered a low productivity shock exerts a

negative information externality on other firms. Here a “cooperative” equilibrium may,

again, be inferior to a “Nash” equilibrium.

Our paper relates to two main topics in the literature: the possibility of building

relationships under imperfect contractibility and the impact of institutions, in particu-

lar contractibility, on macroeconomic outcomes. A large body of theoretical literature

addresses the question of building relationships in the presence of contractual incom-

pleteness (Kreps, 1996; Dixit, 2004). Macaulay (1963) is the first paper to show that

interactions between firms in most markets are repeated and that firms are engaged in

relational contracts. In the law literature, the theory of relational contracts was first

developed by MacNeil (1974), followed in particular by Ellickson (1991) and MacLeod

(2006). More recently, the importance of relational contracts in developing countries has

been highlighted by Banerjee and Duflo (2000) who show that in the Indian software

industry, reputation of firms matter for the kind of contracts they are offered. Macchi-

avello and Morjaria (2015) study the establishment of relational contracts in the Kenyan

rose export market and find that the value of a relationship increases with its age; while

Macchiavello and Morjaria (2014) find that competition weakens relational contracts in

Rwanda’s coffee sector.4 The role of informal contracts extends to labor markets as

analyzed by MacLeod and Malcomson (1989) or Baker, Gibbons, and Murphy (1994).

Kranton (1996) and Ghosh and Ray (1996) show that when a producer can switch

suppliers at will, a cooperative equilibrium can only arise if there is a cost in switching

partners (this cost results from the choice of equilibrium in Kranton, 1996, and from

the existence of impatient players in Ghosh and Ray, 1996). Closer to our work, Board

(2011) considers a simple hold-up problem where a principal invests in a supplier for the

provision of an input. There are several suppliers and investment costs are stochastic.

To prevent hold-up, a principal and a set of suppliers enter a relational contract where

4Allen, Qian, and Qian (2005) and Allen, Chakrabarti, De, Qian and Qian (2006, 2008) show in
related papers that in India and China long-term relationships provide a way of financing firms.
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the principal is biased towards the suppliers with whom he has already worked (the

“insiders”). This implies that an outsider with a better technology is not systematically

chosen, in line with our results.5 Nevertheless, our paper goes further in several dimen-

sions. First, we analyze how rigidities in return affect the incentives to innovate. Second,

in our set-up, cooperation can be welfare reducing, which it never is in his paper. Third,

we also emphasize situations where the establishment of long-term relationships does

not create rigidities.

The paper closest in spirit to ours is the empirical investigation of Johnson, McMillan

and Woodruff (2002). The authors are interested in the impact of courts’ efficiency on

the extent to which firms grant trade credit to each other (a proxy for the level of

trust between firms). They use an Eastern European survey of firms and show that

in ongoing relationships, the belief in the efficiency of the court had very little impact

on the level of trade credit, which suggests that firms engage in relational contracts.

However, it matters a lot at the beginning of a relationship and for firms’ incentives to

try out new suppliers. Our model shares the same features, and may be understood as

a rationalization of their results.

Our paper also relates to the literature on the impact of institutions on growth

and development.6 Acemoglu, Antràs and Helpman (2007) have shown that countries

with weaker legal institutions adopt inferior technologies and develop a comparative

advantage in sectors where there is more substitutability across inputs. Boehm (2013)

structurally estimates the impact of weak contractibility on productivity across coun-

tries using a general equilibrium model. These papers, however, do not allow for the

establishment of relational contracts. Cowan and Neut (2007) show empirically, that

productivity is relatively larger in countries with good legal enforcement in sectors with

a more complex intermediate structure, and, similarly, Nunn (2007) show that these

countries develop a comparative advantage in sectors that rely more on relation-specific

investments. Francois and Roberts (2003) study the impact of growth on contractual

arrangements, and Caballero and Hammour (1998) relate incomplete contracts to the

amplification of macroeconomic shocks.

Finally, we can draw a parallel between our model and the Industrial Organization

literature on buyer power and supplier innovation. For instance, Inderst and Shaffer

5Similarly, Calzolari and Spagnolo (2009) find that a principal may want to limit the pool of agents
that he chooses from to induce cooperation.

6For instance, Acemoglu, Aghion and Zilibotti (2003) show that institutions that favor the estab-
lishment of long-term relationships between firms and managers are appropriate far from the frontier
but turn out to be a burden close to it. Bonfiglioli and Gancia (2014) present a similar trade-off.
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(2007) find that following a merger, a retailer can increase its profits by reducing the

number of its suppliers, which in return may lead suppliers to reduce the diversification

of their products.7 In our model, relational contracts push a buyer (the producer) to

stay with the same supplier (and therefore to reduce the number of suppliers he works

with) which reduces suppliers’ innovation.

We start out by introducing the basic model in section 2, where we describe the

cooperative equilibrium that we study and show that cooperation leads to rigid rela-

tionships. Section 3 studies the effect of cooperation on the rate of innovation. Section

4 demonstrates how cooperation encourages relationship-specific innovations. Section

5 discusses our results in light of a comparison between the United States and Japan

and tests some of our results using patent data. Section 6 introduces two extensions.

Section 7 concludes. The proofs of the main results are available in Appendix A and the

remaining proofs in the Online Appendix (Appendix B).

2 Cooperation and rigidity of relationships

In this section we show that relational contracts may lead to rigid relationships. We

develop a general equilibrium model of repeated interaction between final good producers

(he) and intermediate input suppliers (she), where some matches are exogenously more

productive than others. We define a cooperative equilibrium in which the prospect of

continuing the relationship in the following period provides suppliers in a good match

with an incentive to invest more than they would do in the one-shot interaction. In this

section, innovation occurs exogenously and grants one supplier a better technology. We

show that a producer in a good relationship will be less willing to switch to the innovator

when cooperation occurs relative to an equilibrium in which there is no cooperation

(Nash case) or a setting with contractible inputs (contractible case).

2.1 Preferences and production

We consider a quasi-general equilibrium model where a representative agent consumes

a set of differentiated goods (denoted ci) of measure 1, and a homogenous outside good

7On the other hand, both Inderst and Wey (2011) and Fauli-Oller, Sandonis and Santamaria (2011)
find that buyer power incentivizes upstream investment.
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(denoted Co). Preferences can be represented by the utility function:

U =
∞∑
t=0

1

(1 + ρ)t

(
Co,t +

σ

σ − 1

ˆ 1

0

c
σ−1
σ

jt dj

)
, (1)

where ρ is the discount rate. We drop the subscript t when this does not lead to confusion.

The outside good is produced at constant returns to scale one for one with labor

and we normalize its price and wages to 1 (we consider parameter values such that the

outside good always remains active).8 All the action in the model takes place in the

production of differentiated goods. The demand for a variety j, cj, and the quantity of

variety j produced, qj, can be written as a function solely of its own price:9

qj = cj = p−σj . (2)

There is a mass 1 of final good producer and each variety is associated with one

producer who has the monopoly right over that variety. Final good producers die with

probability δD every period and are replaced with new ones. Moreover, in every period,

each final good producer must hire a single intermediate input supplier. There is a mass

1 of infinitely-lived intermediate input suppliers, though we could equally have assumed

that the intermediate good suppliers die with probability δD. Each supplier can supply

any number of final good producers without decreasing returns to scale.

More specifically, if the monopolist j hires the supplier k, the production technology

is linear in the quantity of high quality inputs provided by the supplier:

qj = (θjkAk)
1

σ−1 X, (3)

where θjk is a match specific and verifiable permanent level of productivity, Ak is the

productivity of the intermediate input supplier k (with any producer) and X is the

quantity of intermediate inputs of high quality provided by the supplier (we will refer to

θjkAk as productivity, although, strictly speaking productivity is given by (θjkAk)
1

σ−1 ).

8Because of technological progress, the differentiated sector will eventually become so productive,
that the consumption of the homogenous good is driven to 0. Hence, technically, we present an approx-
imation which is only valid for sufficiently low productivity of the differentiated sector. Alternatively, if
the productivity of the homogenous good also grows at the rate of the technological frontier (through
a knowledge externality), then our solution is exact. Nothing of substance depends on this.

9The functional form of the utility function allows us to avoid general equilibrium effects through
wages (due to the homogenous good) or the price index of the differentiated goods (as utility is separa-
ble). These features would complicate the analysis without changing any of our central results.
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Producing one high quality intermediate input requires one unit of the homogenous good,

but the supplier can also produce an intermediate input with no value in production at

0 cost. The match-specific level of productivity θjk can take two values: θjk = 1 in

good matches or θjk = θ < 1 in bad matches. The quality of a match is revealed to

both the supplier and the producer when they are matched (but before the supplier has

to incur any investment) and is permanent.10 A producer/supplier pair is a bad match

with probability b. Once a supplier has been chosen (and the match specific productivity

revealed) a period has to pass before the producer can form new relationships.

Throughout the paper we normalize the amount of high quality inputs provided by

the supplier by θjkAk, and denote it x (such that x ≡ X/ (θjkAk)). We refer to x as

the normalized amount of high quality input or the normalized investment level (as low

quality inputs are produced costlessly). We can then express revenues as θjkAkR (x),

where R (x) ≡ x
σ−1
σ , and joint profits as θjkAkΠ (x) where Π (x) ≡ x

σ−1
σ − x. We think

of a period as corresponding to several years. Hence, the quantity of intermediate inputs

X captures not only an intermediate input per se, but different relationship-specific

investments in physical or human capital.

2.2 Contractual incompleteness

We model contractual incompleteness as a classic hold-up problem (a simpler version

of Grossman and Hart, 1986). More specifically, an input is specific to a particular

producer and is useless to any other agent in the economy. Once a producer has chosen

to work with a particular supplier, he cannot find another supplier for this period and

the two are engaged in a bilateral monopoly. We briefly consider the one shot interaction

in order to show the inefficiencies that repeated interactions can overcome.

If the input is contractible, the court can verify whether the input provided is of

high or low quality. The producer and the supplier sign a contract where the normalized

quantity of high quality inputs is at the first best level (m) given by:

m ≡ arg max
x

R (x)− x = ((σ − 1) /σ)σ .

If the input is noncontractible, the court cannot verify the quality of the input.

We further make the classic assumption that revenues and expenditures of the parties

10As explained in section 3.4, this is not a crucial assumption: the logic of our results would hold if
the type of a match is revealed after investment has occurred.
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are non-verifiable and cannot be part of a contract. There is a standard double hold-up

problem: the producer can claim that the inputs are of low quality and refuse to pay and

a supplier can costlessly deliver low quality inputs: any contract specifying the amount

of inputs of high quality to be provided is worthless. Revenues are shared through ex-

post Nash Bargaining, where β ∈ (0, 1) is the bargaining power of the supplier. Since

she bears the full cost of the investment but is only paid a share β of the revenues she

provides the amount of high quality input that maximizes her ex-post profits, the “Nash”

normalized level of investment, n, given by:

n ≡ arg max
x

βR (x)− x = βσm,

where there is naturally underinvestment: n < m.

Before the producer and the supplier start working together, an ex-ante cash transfer

can be exchanged. If all suppliers are identical (Ak ≡ 1 for all k) Bertrand competition

ensures that they make zero profits. Hence, the ex-ante transfer from the supplier to

the producer is equal to t = (1− b+ bθ) (βR (m)−m) in the contractible case, and it

is equal to t = (1− b+ bθ) (βR (n)− n) in the noncontractible one.

2.3 Innovation

We focus on “Schumpeterian” innovations where firms can improve the quality of their

products to capture larger market shares (see Aghion, Akcigit and Howitt, 2015, for the

relevance of Schumpeterian growth theory). We think of these innovations as represent-

ing broad innovations that can be adopted by several firms or sectors and study the case

of relationship-specific innovations in section 4.

For the moment, we abstract from the innovation decision and assume that an inno-

vation happens with probability δI ∈ (0, 1). As a main argument of the paper is that

long-term relationships can reduce innovations, we endogenize the innovation rate in

section 3. When innovation occurs one of the suppliers gets access to a technology γ > 1

times more productive than the previous frontier technology, but, after a single period

all suppliers have access to the new technology. This matches our view of each period

corresponding to several years but can alternatively be viewed as reflecting relatively

poor IPR protection. Section 6.1 presents the case where the innovator is progressively

imitated. We denote by A the current frontier technology, so that, in periods with-

out innovation all suppliers use technology A, and, in periods with innovation only the
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innovator uses the frontier technology while the other suppliers use γ−1A.

2.4 Timeline

The overall timeline within each period is as follows:

1.
Final good produ-
cers die with pro-
bability δD and
a mass δD of new 
final good pro-
ducers are born. 

2.
Innovation occurs 
with probability δI . 
If innovation occurs 
one supplier has 
access to a technology 
γ>1 times more 
productive. 

3.
Each supplier makes 
a take-it-or-leave-it 
offer of an ex-ante 
transfer t to each producer. 
In the contractible case, 
she also commits to 
an amount of high quality 
input conditioned on the 
quality of the match.

4.
Each producer 
chooses his sup-
plier and the 
transfer t from 
the supplier to the 
producer is paid. 

5.
The type of the 
match is revealed 
if the two parties 
are interacting for 
the first time (it is 
already known 
otherwise). 

6.
The supplier decides 
on how much high
quality input to pro-
vide in the noncon-
tractible case. 

7.
Revenues are sha-
red between the 
producer and the
supplier through 

ex post Nash bar-
gaining where the 
supplier has a 
weight of β . 

Note that every stage game has three moves: in phase 3 suppliers make their offers

for the ex-ante transfer, in phase 4 producers choose a supplier, and in phase 6 suppliers

undertake the investment. The assumption of suppliers making take it or leave it offers

simplifies matters, but is not necessary. We could extend the model to include ex ante

Nash bargaining over surplus and allow producers to pay a (noncontractible) bonus to the

supplier if she cooperates without affecting the incentive constraints in what follows (a

similar result is demonstrated in MacLeod and Malcomson ,1989, in part 3 of Proposition

1) and we leave out a formal proof here. Since the transfer is simply a cash exchange, it

is verifiable and therefore contractible.

2.5 Building a cooperative equilibrium

In the following, we consider three setups: the contractible case where the input is fully

contractible and the first best level of investment can be achieved even in a one-shot

interaction, the Nash case where the quality and delivery of the input are noncontractible

and we study an equilibrium without cooperation, and the cooperative case where the

quality and delivery of the input is noncontractible and we allow for cooperation as

described below. Whereas the cooperative and Nash cases are two different equilibria

in the same environment of noncontractibility, the contractible case is derived under

different environmental assumptions.

Contractible and Nash cases. We stress that the contractible environment is

still a world of limited contractibility as we do not allow for contracts across periods or
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between more than two parties. Hence, though the input investment can be contracted

to be at the efficient level m, the equilibrium in the contractible case need not achieve

the overall first best. In this setting, a nascent producer switches suppliers until he

finds a good match and sticks to her in periods without innovation. The good match

supplier offers an ex-ante transfer that allows her to capture the entire surplus of the

ongoing relationship over any other relationship. In periods with innovation the producer

optimally decides whether he should switch to the innovator (we study this in section

2.6). If the innovator turns out to be a bad match, the producer resumes working with

his previous good match supplier in the following period. When we preclude cooperation

(the Nash case) the same equilibrium exists but with input investment of n.

Characteristics of the cooperative equilibrium. There is a continuum of SPNEs

featuring some level of cooperation. Our goal is to model a competitive industry where

suppliers innovate in order to capture new customers. To capture this, we focus on a

class of equilibria where (under some constraints) cooperation within new relationships

is as high as possible from the beginning of the relationship. In other words, we consider

a situation where relationships are relatively flexible because it is “easy” for a supplier

to attract a producer, since she can offer him a high level of cooperation from the start.

The strategies of the cooperative equilibrium are described in Proposition 1 below.

However, for ease of presentation we first introduce them progressively together with

the equations characterizing the value functions of producers and suppliers on equilib-

rium path. We consider strategies such that the game is played independently for each

producer, and we suppose the existence of an equilibrium where the normalized level of

investment (the level of cooperation) can take three values. In the following we show that

such an equilibrium exists and in Appendix A.2 we derive an equivalent set of conditions

on the strategies. Bad match suppliers never cooperate and invest the Nash amount n.

We refer to a good match supplier with whom no deviation triggering a punishment has

occurred, as a “cooperating good match supplier”. Such a supplier makes investment x∗

if she has access to the frontier technology, and y∗ otherwise. We label a good match

supplier with whom a deviation which triggers a punishment has occurred a “deviator”.

We assume that deviators invest n.

Value functions. We normalize the value functions by the level of the frontier

technology. In a period without innovation, we use the notation V z
i to denote the

beginning of the period normalized value of a producer (z = p), a supplier (z = s) or the

total value (z = T ) in a new relationship (i = 0) or a relationship with a cooperating
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good match supplier (i = 1). By “supplier value” here we only refer to the value that

the supplier captures from working with that specific producer (since the game is played

independently, we do not have to keep track of the value the supplier captures with other

producers). In a period with innovation we similarly use W z
i to denote the value with

an outdated supplier (i = 1 for a cooperating good match and i = 0 for a new supplier).

Consider the relationship between a producer and a cooperating good match supplier

with the frontier technology. Their (normalized) joint value obeys:

V T
1 = Π (x∗) +

1− δD

1 + ρ

((
1− δI

)
V T

1 + δIγW T
1

)
. (4)

The current normalized profits are given by Π (x∗). For the next period, as long as the

producer survives, which happens with probability 1 − δD, there are two possibilities.

If no further innovation occurs, the producer keeps the same good match supplier on

equilibrium path. The situation in the next period is identical to the current one,

as we have assumed that the cooperation level is the same for all cooperating good

matches with the frontier technology, therefore the joint value is V T
1 . With probability

δI , an innovation occurs, the frontier technology moves one step and the producer has to

decide whether he should switch towards the innovator or stay with the now outdated

good match supplier. This decision depends on parameters and is the subject of section

2.6. If he stays with the outdated good match, their joint value (normalized by the

previous period’s technology) is given by γW T
1 . If he switches, Bertrand competition

implies that the innovator captures the surplus over the producer’s second best option,

namely staying with the outdated good match; so that the joint value of the producer

and the current good match is still given by γW T
1 .

The (normalized) joint value of a relationship between a producer and a cooperating,

outdated, good match supplier in periods with innovation similarly obeys:

W T
1 =

1

γ
Π (y∗) +

1− δD

1 + ρ

((
1− δI

)
V T

1 + δIγW T
1

)
. (5)

The current normalized profit flow is now given by γ−1Π (y∗): the supplier’s technology

is one step below the frontier and the supplier invests y∗ instead of x∗. If no innovation

occurs in the following period, the supplier gets access to the frontier technology and

the producer sticks to that supplier (unless a deviation has occurred), so that their

normalized joint value is V T
1 . If another innovation occurs, the situation is the same as

for equation (4) as the supplier remains just one step below the new frontier.
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Consider now a new producer or one that has not yet met a good match supplier.

Then, in a period without innovation, this producer will start a new relationship (he has

no interest in staying with a bad match whose productivity is below average and who

does not cooperate). The joint value of starting a new relationship obeys:

V T
0 = (1− b)V T

1 + bθΠ (n) + b
1− δD

1 + ρ

((
1− δI

)
V T

0 + δIγW T
0

)
. (6)

With probability 1− b, the supplier turns out to be a good match. Once this is revealed,

the supplier can invest x∗ and the joint value is simply V T
1 . With probability b, the sup-

plier turns out to be a bad match, and current profits are only θΠ(n) as both productivity

and cooperation are lower. The continuation value of a bad match supplier (with this

producer) is 0, since the producer never returns to that supplier.11 Instead the producer

will start another relationship in the next period. If no innovation occurs, several firms

will have access to the frontier technology, so that through Bertrand competition, the

producer capture the whole expected value of this new relationship: V p
0 = V T

0 . When an

innovation occurs the producer gets the value of his second best option, namely a new

relationship with an outdated supplier: γW T
0 .

Due to Bertrand competition, in periods without innovation, a cooperating good

match supplier can capture the surplus of a relationship with her over the producer’s

second best option, which is to start a new relationship. We assume that if a producer

deviates and starts a new relationship in a period without innovation, other suppliers

are willing to cooperate immediately, but this triggers a punishment from his previous

supplier, who then becomes a deviator and would be unwilling to cooperate in any future

interaction. The producer’s second best option is then V T
0 .12 Therefore, we obtain:

V s
1 = V T

1 − V T
0 and V p

1 = V T
0 . (7)

In other words, a supplier does not punish a producer for having deviated on another

supplier before (that is, suppliers do not coordinate to enforce cooperation).

11If θ is low enough, it is impossible to build an equilibrium which features cooperation in all bad
matches. For higher θ one can build mixed strategy equilibria where some, but not all, bad matches
feature some level of cooperation. Allowing for such would alter little in our general analysis, but would
complicate both exposition and notation.

12Technically, the presence of a deviator could affect the value of starting a new relationship so that
in equation 7, one should replace V T0 with V T,n0 , the value of starting a relationship when the producer
knows a deviator. Nevertheless, if the producer always prefers a new supplier to a deviator, then
V T0 = V T,n0 and (7) holds (see Appendix A.1).
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Incentive compatibility constraints. We can now describe the incentive com-

patibility constraints faced by suppliers. After the ex-ante payment, the supplier has

a short run incentive to deviate from x by investing n. She would then gain ϕ (x)Ak,

where Ak is the technology used by the supplier and:

ϕ (x) ≡ (βR (n)− n)− (βR (x)− x) . (8)

Of course the cost is that cooperation ceases. The producer will optimally decide between

trying a new supplier or sticking with the supplier who is now a deviator and will only

invest n from then on. Here, we focus on the case where after a deviation, the producer

prefers a new supplier over a deviator, so that a deviator’s continuation value with that

producer is 0. If the producer survives and there is no innovation, the producer stays

with the supplier and her continuation value is V s
1 . If there is an innovation and the

producer survives, the continuation value for the supplier is W s
1 (and derived in section

2.7) and the frontier moves one step.

Therefore, a good match supplier who has access to the frontier technology faces an

incentive compatibility constraint given by:

ϕ (x∗) ≤ 1− δD

1 + ρ

((
1− δI

)
V s

1 + δIγW s
1

)
. (9)

This incentive compatibility constraint applies to any (cooperating) good match supplier

with the frontier technology: an old supplier in a period without innovation, a new

supplier who turns out to be a good match in a period without innovation, or the

innovator if she turns out to be a good match. Indeed, at the time of the investment

decisions, all these suppliers face the same situation (in particular a good match innovator

is not different because in the next period, all suppliers will have her technology). In

return, this justifies our assumption that all good match suppliers with the frontier

technology cooperate to the same extent (as long as no deviation has occurred for them).

Without innovation, the incentive constraint of an outdated good match supplier is:

γ−1ϕ (y∗) ≤ 1− δD

1 + ρ

((
1− δI

)
V s

1 + δIγW s
1

)
. (10)

Since (9) and (10) differ, we must allow for two levels of investment: x∗ and y∗.

We focus on equilibria where investment levels x∗ and y∗ maximize joint profits under

these incentive constraints, so that either x∗ and y∗ are equal to the first best or their
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respective incentive compatibility constraint (9) or (10) bind. By definition ϕ(n) = 0,

and the investment levels are higher than the Nash level: x∗, y∗ > n. Since the right-

hand sides of (9) and (10) are identical but the left hand side of (10) is lower at equal

levels of investment, the (normalized) level of investment with an outdated supplier must

be weakly higher than with a frontier supplier, i.e. x∗ ≤ y∗(with equality if x∗ = m).

Intuitively, the incentive to deviate in a good match, is scaled by the technology currently

used, which is higher with the innovator than with the old supplier, whereas the reward

from cooperation is scaled by the technology available in the next period which is the

same for the innovator and the old supplier since imitation occurs after one period.

Forgiveness condition. Should a good match supplier also punish a producer if he

decides to switch to the innovator? We assume that the outdated supplier punishes the

producer for switching if the innovator turns out to be a good match. Otherwise, in the

following period, there would be two good matches potentially willing to cooperate with

the producer (the innovator and the previous good match) with the same technology.

This means that neither could capture any value which precludes any cooperation in the

current period. However, we assume that if the producer switches, and the innovator

turns out to be a bad match, then the previous supplier “forgives” the producer and

resumes cooperation in the following period (that innovator is no longer viewed as a

threat). As seen in section 2.6, this assumption ensures that the decision of whether

to switch or not to the innovator is jointly efficient (for the producer, the innovator

and the previous supplier). We consider the opposite assumption—where a supplier

systematically punishes a producer if he switches supplier, no matter what happens

with the new supplier—in Appendix A.4 and demonstrate that under quite general

conditions the qualitative results are the same and that the inability to revert back adds

an additional source of rigidity from cooperation.

Equilibrium. Overall, the equilibrium is described by the following proposition (see

proof in Appendix A.1, while Appendix A.2 gives a set of conditions on the strategies

which pin down the same SPNE):

Proposition 1. The following strategies form a SPNE.

- A cooperating good match supplier invests x∗ if she has access to the frontier tech-

nology and y∗otherwise. A bad match and a deviator invest n.

- A producer switches supplier until he finds a good match (in periods with innova-

tion, he tries out the innovator), who then becomes a cooperating good match. Once a

producer knows a cooperating good match, he sticks with her in periods without innova-
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tion. In periods with innovation, he optimally chooses between the outdated cooperating

good match and the innovator depending on which relationship offers the highest total

discounted profits. If the innovator turns out to be a good match she becomes the new

cooperating supplier.

- A cooperating good match supplier becomes a deviator when: i) she did not invest

x∗or y∗ when she should have, or ii) in a period without innovation, the producer picked a

different supplier, or iii) in a period with innovation, the producer chose another outdated

supplier, or iv) in a period with innovation, the producer chose the innovator and the

innovator turned out to be a good match. A cooperating good match supplier does not

become a deviator if the producer chose the innovator and the innovator turned out to

be a bad match.

- In case a deviation has occurred, the producer optimally chooses between starting

a new relationship or sticking with the innovator depending on which relationship offers

the highest total discounted profits.

- Ex-ante transfers are determined by Bertrand competition such that the producer is

indifferent between his first best and second best option, and the second best supplier is

indifferent between being chosen and not.

- The values x∗, y∗ ∈ (n,m] are chosen so as to maximize the joint value of a rela-

tionship under the incentive compatibility constraint faced by a good match supplier.

Our equilibrium satisfies a “bilateral rationality” condition for good matches, in that

a producer and a new supplier’s strategies are such that cooperation is maximized right

from the beginning of the relationship (see Appendix A.2). It is well known in the liter-

ature that generating cooperation when players can switch partners at will is difficult: If

partners can costlessly start new relationships, the threat of retaliation from the current

partner does not carry any force and the cost from not cooperating is non-existing. Kran-

ton (1996) demonstrates that in a setting with identical agents and costless switching

between partners any equilibrium featuring more cooperation than a one shot interaction

cannot be“pair-wise enforceable”: any equilibrium with cooperation requires some initial

cost of a new relationship from lower initial cooperation, but when two new partners

first meet they could credibly agree to skip the initial low level of cooperation and the

equilibrium unravels. Both Ghosh and Ray (1996) and Kranton (1996) build equilibria

that overcome this by introducing impatient players who never cooperate. The existence

of such players serve as an expected cost of establishing a new relationship and enables

cooperation. Bad matches play a similar role here. Furthermore, in our equilibrium, the
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level of cooperation is on average lower in the first period of a relationship (since it only

takes place if the supplier turns out to be a good match). This is consistent with John-

son et al. (2002) who show that the belief in the efficiency of the court matters for the

level of trust between firms at the beginning of a new relationship, but much less later;

or with Macchiavello and Morjaria (2015) who found that the value of a relationship

increases with its age in the Kenyan rose market export (they argue that this provide

support for their model which also features heterogeneity on the supplier side). It is also

consistent with Brown, Falk and Fehr (2004), who show in an experimental setting that

low effort was punished by the termination of the relationship but that effort was high

from the beginning in successful relationships.

To summarize, cooperation is enabled by the fact that a good match supplier benefits

from having been revealed as a good match. This informational advantage acts as a fixed

cost which pushes the producer to stick to the same supplier, and allows the supplier to

capture the associated rents. The prospect of capturing these rents induces cooperation

by a good match supplier in the first place. Crucially, this fixed cost interacts naturally

with the incomplete contractibility: there is no cooperation in bad matches, as bad

matches have no prospect. Hence bad matches are “even worse” relatively to good

matches in the cooperative case than in the contractibility or the Nash cases.

2.6 To switch or not to switch

Having demonstrated that long-term relationships can mitigate the under-investment

from contractual incompleteness, we now show that cooperation makes relationships

more rigid. In periods when one innovator has a superior technology, producers without

good match suppliers try her. Producers already in a good match face the trade-off of

accessing the better technology, but at the risk of engaging in a bad match.

Consider first the contractible case. The technological advantage of the innovator

lasts for only one period and, if the innovator is a bad match, the producer reverts to

his old supplier. Therefore, the producer switches to the innovator if and only if:

1− b+ bθ > γ−1, or equivalently, γ > γcon ≡ (1− b+ bθ)−1 . (11)

With probability b the new supplier is a bad match, but her technology is γ times more

productive. The Nash case is identical except with investment levels at n. Hence, the

producer switches to the innovator if and only if γ > γNash = γcon.

17



We now turn to the cooperative equilibrium built above. Because of Bertrand com-

petition, a producer previously in a good match switches to the innovator, if and only

if the expected value of joint profits with the innovator is higher than with the old sup-

plier. Again, the decision to switch depends only on expected profits in the first period

because if the innovator turns out to be a bad match, the producer can return to his

old supplier in the following period without incurring any punishment. The innovator

is a good match with probability (1− b), in which case she invests x∗ and a bad match

with probability b, in which case she invests n, while the old good match supplier in-

vests y∗ and her technology is γ times less productive. Hence, producers previously in a

good match switch to the innovator if and only if (1− b) Π (x∗) + bθΠ (n) > γ−1Π (y∗)

(Appendix A.1 provides a formal proof). This can be written as:

1− b+ bθ (Π (n) /Π (x∗)) > γ−1 (Π (y∗) /Π (x∗)) . (12)

Cooperation occurs in good matches so x∗ > n, moreover, as explained above y∗ ≥ x∗.

Therefore Π (n) /Π (x∗) < 1 and Π (y∗) /Π (x∗) ≥ 1 so that (11) is more easily satisfied

than (12), which gives us:

Proposition 2. (i) The parameter set for which innovators capture the whole market

in the cooperative case is a subset of the parameter set for which innovators capture

the whole market in the contractible or the Nash cases. (ii) In particular, the minimum

technological leap required for an innovator to capture the whole market in the cooperative

case (γcoop) is higher than that in the contractible or Nash cases: γcoop > γcon = γNash.

The intuition behind this result arises from two effects. The first one is a worse bad

matches effect : a bad match is more costly relative to a good match in the cooperative

case. Indeed, bad matches have an inherently lower productivity level, but they also

involve less investment as both parties realize that the relationship will come to an end

in the following period. This effect is captured by the term Π (n) /Π (x∗) in (12).13 In

other words, switching to the innovator is a riskier activity when the producer is engaged

in a relationship.

The second effect is an encouragement effect, which comes through the term Π (y∗) /Π (x∗)

in (12): The opportunity to receive the frontier technology in the following period en-

13Recall that for θ sufficiently small, cooperation in bad matches is necessarily impossible. For θ not
small enough, the fact that there is no cooperation in bad matches directly results from our assumption
on the equilibrium play. However, even if a pair were to deviate and start cooperating, the level of
normalized investment would be lower than in good matches, and so even this “cooperative” bad match
would be relatively worse, than in the contractible or Nash cases.
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courages an outdated supplier to provide a larger effort, which partly erodes the techno-

logical advantage of the innovator. The encouragement effect is especially strong when

imitation happens after only one period, but exists as long as the supplier has a positive

probability of getting access to the frontier (see also section 6.1).

Proposition 2 delivers the first important message of the paper: in a context of weak

contractibility, cooperation makes it more difficult to break up existing relationships.

Because of the existence of bad matches, for γ sufficiently close to 1, innovations are

not adopted by suppliers in good matches, but the threshold for adoption is higher in

the cooperative case than in the contractible or Nash cases. Importantly, so far, there

are no welfare cost from this “rigidity” of relationships and welfare in the cooperative

equilibrium is necessarily higher than in the Nash case. The reason is that the decision

to switch or not is jointly efficient for the outdated supplier, the innovator and the

producer.14 The welfare costs will only appear once the innovation rate is endogenized.

Furthermore, when γ ∈ (γcon, γcoop), Proposition 2 directly predicts that technological

differences across firms should be more important in countries with poor contractibility

institutions and high level of cooperation/trust than in countries with good institutions

or poor institutions but very low level of cooperation/trust. This is line with a large liter-

ature, started with Hsieh and Klenow (2009), which argues that productivity differences

are larger in developing than in developed countries.

2.7 Determining the level of cooperation

To close the description of the equilibrium, we now derive the right hand side of the

incentive compatibility constraints (9) and (10). We continue to focus on the case where,

after a deviation, a producer tries a new supplier (and in a period with innovation, a

new outdated supplier is also preferred to the outdated deviator).

First, a producer who starts a relationship with an outdated supplier in a period

with innovation is in a similar situation as a producer who starts a new relationship in

a period without innovation except for the current profit flows. The current normalized

profits are γ−1Π (y∗) instead of Π (x∗) if the supplier is a good match and θγ−1Π (n)

14In fact, from a welfare point of view, at a given rate of innovation, producers switch to the innovator
“too much”. Bad matches are even more detrimental to welfare than to profits, as final good producers
are monopolists (the level of normalized investment that maximizes welfare is higher than m), and
switching to the innovator inevitably involves more bad matches.
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instead of θΠ (n) if she is a bad match. Therefore, the joint value W T
0 obeys:

W T
0 = V T

0 − (1− b)
(
Π(x∗)− γ−1Π (y∗)

)
− bθ

(
1− γ−1

)
Π (n) . (13)

Together (4)-(7) and (13) determine V s
1 as a function of x∗, y∗ and n:

V s
1 =

b
((

1 + ρ− b
(
1− δD

)
δIγ
)

(Π (x∗)− θΠ (n)) + b
(
1− δD

)
δI (Π (y∗)− θΠ (n))

)
1 + ρ− b (1− δD) (1− δI + δIγ)

.

(14)

Therefore V s
1 corresponds to the appropriately discounted and weighted sum between the

difference in profits between a good match and bad match in periods without innovation

(Π (x∗)−θΠ (n)) and in periods with innovation (γ−1 (Π (y∗)− θΠ (n))). The factor b in

front of the fraction reflects that a new supplier is a bad match with probability b. Even

for x∗, y∗ arbitrarily close to n, V s
1 is positive as a good match supplier can capture the

rents associated with having revealed her type.

As a supplier forgives a producer who switches to the innovator if the innovator turns

out to be a bad match, the continuation value of a good match supplier who is not chosen

by the producer in a period with innovation is not 0, instead it is given by V s
A where

V s
A =

1− δD

1 + ρ
b
((

1− δI
)
V s

1 + δIγW s
1

)
. (15)

Indeed, in the next period, the supplier (now having access to the current frontier tech-

nology) resumes cooperating with the producer if the producer survives and the innovator

turned out to be a bad match (which occurs with probability b). Then the supplier cap-

tures V s
1 if no innovation occurs and γW s

1 if a further innovation occurs. An outdated

good match supplier must secure a continuation value equal to V s
A plus the potential

overall surplus of a relationship with her over a relationship with the innovator. That

surplus corresponds to the difference in expected profits obtained in the first period if it

is positive (see the text above equation (12) and Appendix A.1 for details). Hence we

get

W s
1 = V s

A +
(
γ−1Π (y∗)− ((1− b) Π (x∗) + bθΠ (n))

)+
, (16)

where X+ ≡ max {X, 0}. Combining (15) and (17) gives us that the reward for coop-

eration for a good match supplier—the right-hand side of the incentive compatibility
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constraints (9) and (10)—is given by

1− δD

1 + ρ

((
1− δI

)
V s

1 + δIγW s
1

)
(17)

=
1− δD

1 + ρ− b (1− δD) δIγ

((
1− δI

)
V s

1 + δIγ

(
1

γ
Π (y∗)− ((1− b) Π (x∗) + bθΠ (n))

)+
)
.

Therefore the incentive to cooperate is directly related to the value a good match supplier

captures in periods without innovation (V s
1 ). In addition, whenever the profits generated

by an outdated good match supplier exceed the expected profits with the innovator, the

difference contributes to the value of the outdated supplier and therefore to her incentive

to cooperate. Together (9), (10), (14) and (17) determine the equilibrium investment

levels x∗ and y∗. Appendix A.3 provides comparative static results on how the investment

levels depend on the parameters of the model.

3 Endogenous innovation

Subsection 2.6 showed that cooperation creates rigidity in long-term relationships. We

now turn to the issue of how this rigidity can be the source of dynamic inefficiencies by

endogenizing the rate of innovation. We show that it is reduced with noncontractibility

and may be further reduced by cooperation.

3.1 Rate of innovation

To endogenize innovation we choose a simple setting, but since the crucial element is the

impact of relational contract on the value of an innovation, it should be clear that our

results hold more generally. Every period, one supplier gets a new idea which turns into

a useful innovation with probability δI if the potential innovator invests Aψ
(
δI
)

(where

A is the frontier technological level before innovation occurs). The function ψ is convex

with ψ (0) = 0, ψ′ (0) = 0 and lim
δI→1

ψ′
(
δI
)

=∞. The size of innovation γ is a constant.

Because the probability that the potential innovator has already made a successful in-

novation is infinitesimal, the previous period market share of the potential innovator

is infinitesimal, so that, for all purposes the potential innovator is an entrant. In this

subsection, we compare the rate of innovation in the three different cases: contractible,

Nash and cooperative.
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Thanks to Bertrand competition the innovator captures the entire surplus of a re-

lationship with her over the second best option of the producer.15 Because imitation

occurs after one period and a supplier forgives a producer who switches to the innovator

if the innovator turns out to be a bad match, this surplus corresponds to the difference

in profits between the two options in the first period (if it is positive). We denote by

V s,t
I,K the value captured by the innovator (normalized by the frontier productivity level)

from a relationship with a producer, who knows a good match supplier (t = g), or does

not (t = b), for the contractible (K = con), the Nash (K = Nash) and the cooperative

cases (K = coop). In the contractible case, the values captured by the innovator from

a relationship with a producer previously not in a good match or in a good match are

respectively given by:

V s,b
I,con = (1− b+ bθ)

(
1− γ−1

)
Π (m) andV s,g

I,con =
(
1− b+ bθ − γ−1

)+
Π (m) . (18)

The situation of producers previously in a good match has been analyzed in (11). The

reasoning is similar for the other producers: joint expected profits are the same with

the innovator and any other supplier except in the first period where they are γ times

higher with the innovator. Similarly, for the Nash case, we get:

V s,b
I,Nash = (1− b+ bθ)

(
1− γ−1

)
Π (n) and V s,g

I,Nash =
(
1− b+ bθ − γ−1

)+
Π (n) . (19)

Finally, in the cooperative case, we get:

V s,b
I,coop = (1− b)

(
Π (x∗)− γ−1Π (y∗)

)
+ bθ

(
1− γ−1

)
Π (n) , (20)

V s,g
I,coop =

(
(1− b) Π (x∗) + bθΠ (n)− γ−1Π (y∗)

)+
. (21)

The case of producers previously in good matches follows from the derivation of (12): if

the producer switches his expected profits are (1− b) Π (x∗)+bθΠ (n), if he stays with his

old (good) supplier, she will deliver effort y∗, but will use a technology which is γ times

below the frontier, generating profits γ−1Π (y∗). The innovator captures the difference

if it is positive, which gives (21). For a producer who does not know a good supplier,

the alternative to starting a relationship with the innovator is to try a new (outdated)

supplier. Such supplier would bring expected profits γ−1 ((1− b) Π (y∗) + bθΠ (n)) as she

15More generally, for ex-ante Nash Bargaining, the innovator would capture only part of the difference,
but as long as she captures a positive part, the results of this subsection carry through.
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is a good match with probability 1− b but uses a technology γ times below the frontier.

The innovator captures the difference in profits, namely (20).

In equilibrium, the steady-state fraction of firms previously not in a good match is

constant given by ω = δD/
(
1−

(
1− δD

)
b
)
.16 Hence, assuming that the steady state

has been reached, the innovator solves the problem:

max
δI

γδI
[
ωV s,b

I,K

(
δI
)

+ (1− ω)V s,g
I,K

(
δI
)]
− ψ

(
δ̂
)
, (22)

for K ∈ {con, Nash, coop}. We denote by ZK = ωV s,b
I,K

(
δI
)

+ (1− ω)V s,g
I,K

(
δI
)
, the

expected total value of an innovator. The first order condition ψ′
(
δI
)

= γZK uniquely

defines the equilibrium rate of innovation in the contractible case (δcon), and in the

Nash case (δNash). In the cooperative case, the value of the innovator depends on the

equilibrium rate of innovation, so any fixed point of the first order condition would be

a solution to the problem, we consider the highest one and denote it δcoop (alternatively

we could assume that ψ is sufficiently convex to rule out multiple equilibria). A higher

expected value ZK leads to a higher rate of innovation.

From (20) and (21) the reward from innovation in the cooperative case is:

Zcoop = Π (x∗)

 ω
(

(1− b)
(

1− γ−1 Π(y∗)
Π(x∗)

)
+ bθ (1− γ−1) Π(n)

Π(x∗)

)
+ (1− ω)

(
(1− b) + bθ Π(n)

Π(x∗)
− γ−1 Π(y∗)

Π(x∗)

)+

, (23)

implying that Zcoop is an increasing function of Π (x∗) and Π (n) /Π (x∗) and decreasing

in Π (y∗) /Π (x∗). In the Nash and contractible cases the ratios are replaced by 1 and

Π (x∗) by Π (n) and Π (m) respectively. The comparison between the innovation rates

in the three cases results then from three effects. The worse bad match effect reduces

the expected gain from innovation in the cooperative case as the lower productivity

of a bad match will be further increased by the lack of cooperation (this is reflected in

Π (n) /Π (x∗) < 1 in (23)). The encouragement effect (Π (y∗) /Π (x∗) ≥ 1 in (23)) induces

more cooperation from the existing supplier in the cooperative case which reduces the

gain from switching and therefore the value of the innovator. And the scale effect :

a higher level of investment by frontier good matches increases profitability should the

innovator turn out to be a good match which increases the incentive to innovate (Π (n) <

16ω is the share of firms that know a good match supplier willing to cooperate with them. It does
not depend on the rate of innovation, because when an innovation occurs, producers do not lose the
possibility to cooperate with their old supplier.
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Π (x∗) ≤ Π (m)). Comparing the contractible case to the cooperative one, all effects

go in the same direction and δcoop < δcon unambiguously. Comparing the cooperative

and Nash cases, the worse bad match effect and the encouragement effect push towards

δNash > δcoop, but the scale effect pushes in the other direction, resulting in an ambiguous

result.

To go further, we investigate in turn what happens for different innovation sizes.

First, for sufficiently small innovation sizes, no producer in a good match would try the

innovator (that is γ ≤ γNash = (1− b+ bθ)−1). In this case we use (19) and (20), and

the difference in expected value is given by:

ZNash − Zcoop = ω (1− b)
((

1− γ−1
)

Π (n)−
(
Π (x∗)− γ−1Π (y∗)

))
. (24)

As shown in Appendix B.4, Π (x∗)−γ−1Π (y∗) > (1− γ−1) Π (n) implying that the scale

effect (Π (x∗) > Π (n)) always dominates the encouragement effect (Π (y∗) /Π (x∗) ≥ 1).

The innovator captures more from producers not in good matches in the cooperative

case than in the Nash case (V s,b
I,coop > V s,b

I,Nash) and we must have δNash < δcoop.

For intermediate values of γ ∈ (γcon, γcoop),17 innovation breaks relationships in the

Nash case but not in the cooperative case. Using (19) and (20), we get that

ZNash−Zcoop = (1− ω)
(
1− b+ bθ − γ−1

)
Π (n)+ω (1− b)

((
1− γ−1

)
Π (n)−

(
Π (x∗)− γ−1Π (y∗)

))
.

(25)

In that case the excess rigidity of relationships in the cooperative case creates an addi-

tional extensive margin by which an innovator has a lower market size in the cooperative

case than in the Nash case. If the death rate of producers δD is low, most producers will

have found a good match (ω is small), therefore the market captured by an innovator

in the cooperative case is much smaller than in the Nash case. Cooperation reduces

innovation: δNash > δcoop.18

Finally, if γ is large enough, γ > γcoop, innovation breaks relationships in all cases,

17Although we denote by γcoop the size of innovation necessary for switching in the cooperative case in
both this section and the preceding, they are mathematically different objects. In the preceding section,
γcoop was a function of the exogenous rate of innovation δI . In this section, δI is a choice variable so
γcoop is no longer a function of δI . Not making this explicit in the text should not lead to confusion.
Further since γNash is independent of the innovation rate δI , Proposition 2 still applies.

18Specifically, using the expression for ω, we obtain that δNash > δcoop if and only if

δD
(

Π(x∗)
Π(n) − b+ bθ − γ−1 Π(y∗)

Π(n)

)
< 1− b+ bθ − γ−1.
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so that this extensive margin disappears. Using (19), (20) and (21), we obtain:

ZNash−Zcoop =
(1− b)

1− (1− δD) b

[(
1− b

(
1− δD

)
− γ−1

)
Π (n)−

((
1− b

(
1− δD

))
Π (x∗)− γ−1Π (y∗)

)]
.

(26)

For innovation sizes sufficiently close to γcoop, the innovator still captures little from

producers previously in a good match relationship so that innovation is lower in the

cooperative case δNash > δcoop (γ <
(
1− b

(
1− δD

))−1
is a sufficient condition). On the

other hand, for γ sufficiently large, the outdated supplier is at too large a disadvantage

regardless of her effort level, the scale effect dominates and δcoop > δNash.

In particular we can derive the following proposition (proof in Appendix B.4), which

combines the three cases but uses stricter assumptions in order to provide sufficient

conditions that do not depend on endogenous variables such as x∗, y∗ and γcoop.

Proposition 3. a) The rate of innovation is the highest in the contractible case: δcon >

δNash, δcoop. b) If innovations are small enough (γ ≤ γNash) or if they are large enough,

then the innovation rate in the cooperative case is higher than in the Nash one δNash <

δcoop. c) Assume that the death rate of producers is low enough δD < θ Π(n)
Π(m)

, then for

an intermediate range of innovation sizes, γ ∈
(

1−δD Π(m)
Π(n)

1−δD Π(m)
Π(n)

−b(1−θ)(1−δD)
, 1

1−b(1−δD)

)
the

innovation rate is higher in the Nash case than in the contractible one: δNash > δcoop.

A case of special interest is when the cooperative equilibrium can achieve the first

best level of efforts in good matches (that is the static inefficiencies are fully overcome).

We then obtain the following Remark, which stipulates that the condition of Part c) of

the previous proposition is now both sufficient and necessary.

Remark 1. Assume that the cooperative equilibrium ensures the first best level of in-

vestment in good matches (y∗ = x∗ = m), further assume that δD < θ Π(n)
Π(m)

, then the

innovation rate is higher in the Nash case than in the contractible one, δNash > δcoop, if

and only if γ ∈
(

1−δD Π(m)
Π(n)

1−δD Π(m)
Π(n)

−b(1−θ)(1−δD)
, 1

1−b(1−δD)

)
. The higher is the level of productivity

of bad matches, θ, the smaller is the ratio Π (m) /Π (n) (that is the smaller is the scope

for static inefficiencies) and the smaller is the death rate of producer δD, the more likely

it is that δNash > δcoop.

Intuitively, for low θ, production in bad matches is already low regardless of whether

cooperation occurs or not. The “worse bad match” effect is dominated by the scale effect

and cooperation increases the innovation rate. On the other hand, a small death rate of
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producers δD increases the share of producers already in a good match. Since it is those

producers that an innovator may fail to capture in the cooperative case, it becomes more

likely that cooperation reduces innovation.

Our model predicts that, for intermediate size of innovations, relationships should

last longer in countries with poor contractual enforcement but high level of cooperation

relative to countries with either high level of contractual enforcement or low level of

trust. Indeed, if γ < γcont = γNash, relationships are never broken. If γ ∈ (γcon, γcoop),

relationships never break up in the cooperative case (unless the producer dies) but do

so in the contractible and Nash cases. While if γ > γcoop, relationships break up with

innovation in all cases, but as long as γ < 1/(1 − b(1 − δD)), innovations are the least

frequent in the cooperative case.

3.2 Welfare

As innovation is already too low from a welfare perspective because of “standard”

innovation-externalities of imitation and building-on-the-shoulders-of-giants, a lower rate

of innovation can easily translate into lower welfare. Relative to the Nash equilibrium,

cooperation enhances investment and reduces the static inefficiencies. However, as ar-

gued above, it may also reduce the innovation rate, aggravating the dynamic inefficiency

in the economy. When the discount rate ρ is sufficiently low, dynamic inefficiencies

matter more for welfare than static ones, so that cooperation reduces welfare when it

reduces innovation. We obtain:

Corollary 1. Welfare is always lower with incomplete contractibility than with com-

plete contractibility. Welfare may be higher or lower in the cooperative case than in

the Nash case, but when the discount rate ρ is sufficiently low, the death rate of pro-

ducers satisfies δD < θ Π(n)
Π(m)

, and for an intermediate range of innovation sizes, γ ∈(
1−δD Π(m)

Π(n)

1−δD Π(m)
Π(n)

−b(1−θ)(1−δD)
, 1

1−b(1−δD)

)
, cooperation reduces welfare.

The fact that the rate of innovation is inefficient to start with is essential to get

this result. Relationships make the profitability of a new innovation smaller for the

innovator, but that loss in itself cannot outweigh the benefit of higher investment that

comes from the relationship. It is only because innovation is already too low (such that

a further reduction lowers welfare for society as a whole) that relationships can decrease

overall welfare. Consider alternatively a setup in which an innovation is temporary such

that the innovator returns to the old technology after one period and no imitation is
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possible (such that both imitation and ‘building on the shoulders of giants’ have been

precluded). In such a case, private and social benefits of an innovation are equal.19 All

of our results—except corollary 1—would still hold.

3.3 Cooperation and expanding varieties

The main proposition of this paper is that cooperation can be a poor substitute for

full contractibility as it might reduce new innovations. Countries with higher levels

of cooperation vary widely, from mature developed economies like Japan, to rapidly

growing economies like India. In the following we show that the existence of relational

contracts is more likely to reduce growth for more mature economies.

Extend the model such that the mass of final good producers, Nt, is increasing:

Nt+1 = Nt (1 + gN). This could represent catch-up growth, horizontal innovation, pop-

ulation growth or periods of increasing outsourcing (interpreting the new final good

producers as foreign firms who decide to start acquiring their inputs from the country of

study). Innovation costs scale by the number of products (they are given by ψ
(
δI
)
AN),

so that the innovation problem is independent of the number of products. This ensures

that if the share of firms who know a good match is at the steady-state level, the in-

novation rate is constant and the cooperative equilibrium keeps the same structure as

before with constant x∗ and y∗. We can then show (proof in Appendix B.5):

Proposition 4. Assume that the cooperative equilibrium ensures the first best level of

investment in good matches (y∗ = x∗ = m), then the lower is the growth rate of product

gN , the more likely it is that δNash > δcoop.

Intuitively, growth in the number of products creates a mass of new producers who

are not yet in a good match relationship. Cooperation raises the profits that an innovator

can make from supplying this type of producers (recall that V s,b
I,coop > V s,b

I,Nash), so a higher

growth rate gN makes it more likely that cooperation increases the innovation rate.

3.4 The type of switching costs

We now analyze the generality of Propositions 2 and 3 by discussing alternative setups

under the continued assumption that a technological advantage lasts one period. What

19Technically, to ensure efficient innovation it would still be necessary to implement a subsidy to the
production of the final good in order to get rid of the existing monopoly distortion.
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drives our result is that if a supplier turns out to be a bad match not only is productivity

lower, but so is cooperation. Therefore bad matches become relatively worse which makes

switching riskier. This is consistent with the findings of Johnson et al. (2002) that the

belief in the efficiency of the court matters for the level of trust between firms at the

beginning of a new relationship, but much less later.

More generally, to generate cooperation in an equilibrium where parties can change

partners at will, there must be a cost of switching from one partner to another (here,

the risk of finding a bad match). In many set-ups this cost interacts with incomplete

contractibility to generate a lower level of cooperation at the beginning of a relationship.

For instance, if we assume instead that the type of a match is only revealed after the

first investment has occurred, then cooperation in the first period of a relationship would

lie between the Nash level and the level in a good match. Similarly, in models where

suppliers differ in their discount rate, or in models with relationship-specific human

capital, the (expected) level of cooperation in a new relationship will be lower than

in an established one.20 In all these settings, relationships would be more rigid in the

cooperative equilibrium than in a ”Nash” equilibrium where cooperation does not take

place. This excess rigidity in return can reduce the incentive to innovate, particularly

when it restricts significantly the market of a potential innovator.

Nevertheless, the result that cooperation creates rigidities is not straightforward.

Consider an alternative set-up without good and bad matches but with a fixed cost of

switching suppliers fA. Then, provided that the fixed cost is sufficiently large, the first

best investment level can be achieved in the cooperative equilibrium and the producer

switches to the innovator as soon as (γ − 1) Π (m) ≥ f in both the contractible and

cooperative cases, but he switches if (γ − 1) Π (n) ≥ f in the Nash case, that is for

higher innovation sizes γ. In contrast with our set-up, the relative cost of switching does

not increase with cooperation, and the innovation rate is always higher with cooperation.

Finally, even in the current set-up, could society do better? The answer is yes, but

only with collusion by suppliers. To see this, consider a model without innovation. One

can build an equilibrium where cooperation occurs only when the producer meets a

good match for the first time, and where there is no cooperation should a deviation

occur and the producer finds a new good match. Then, the value of the first good

match relationship over a new relationship is higher—since there is never going to be

20In fact, a low level of cooperation at the beginning of a relationship itself can be the source of
the fixed cost—as in the first model of Kranton (1996), but such equilibrium relies on some collusive
behavior by the suppliers which we ruled out by assuming bilateral rationality.
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cooperation again—and therefore cooperation (on path) is higher. However, this requires

that a new good match supplier punishes a producer for a deviation that occurred with

the first good match supplier. Similarly, if outdated suppliers agree not to cooperate

with potential producers in periods where innovation occurs, they can push producers

to try out the innovator in the first period, and relationships end up being even less

rigid than in the contractible case. Nevertheless, this does not fit the description of a

competitive industry, and is difficult to generalize in a set-up with imperfect information

(for instance if suppliers do not know whether a producer knows a good match or not,

whether an innovation has occurred or not).

4 Cooperation and relationship-specific innovation

We now focus on within-relationship innovation by letting the technology (denoted Ajk)

of a supplier k be specific to the producer j with whom she is working, so that the

frontier technology (denoted Aj) is producer-specific. There are no longer good or bad

matches. As before, every period, a mass δD of producers die and are replaced by new

producers. When a new producer is born, all suppliers obtain a technology level equal

to the average technology in the economy to work with that producer.21 If the producer

survives, suppliers keep the technology they had at the end of the previous period.

As before, suppliers make take-or-leave-it offers to producers and each producer

chooses one supplier. A supplier can innovate with probability δI by spending ψ(δI)Ajt

units of the final good, where ψ is increasing and convex. An innovation increases tech-

nology for line j (and only for that line) by a factor γ such that in the following period

the successful innovator has a productivity advantage over the other suppliers. In such a

case all other suppliers get access to the technology just below: hence suppliers can only

be at most one step below the frontier for each line j. We assume throughout that the

innovation rate δ is contractible—so as to focus on the consequences of incomplete con-

tractibility in input provision over the rate of innovation. We also assume that whether

an innovation occurs or not is revealed before the supplier has to make her investment,

which simplifies the exposition, but does not contain any element of substance. Within

each period we have a timeline as follows.

21More specifically, for a new producer j, at the beginning of a period all suppliers use Ajt =

(
´ 1

0
(A′l(t−1))

1/σdl)σ, where A′l(t−1) denotes the technology at the end of the previous period with pro-
ducer l.
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1.
Final good produ-
cers die with pro-
bability δD and a 
mass δD of new 
final good produ-
cers are born. 

2. 
Each supplier makes a 
take-it-or-leave-it of-
fer of an ex-ante trans-
fer t to each producer.

3.
Within each product 
line j, the producer 
and supplier decide 
on the innovation 
rate δI (which is 
always contractible.)

4.
With probability δI an inno-
vation occurs: the current 
supplier gets a technology γ
times higher, and suppliers 
who were two steps below 
obtain the technology one
step below. With probability
1- δI productivity levels do 
not change

5. 
The supplier decides 
on how much high 
quality input to 
provide in the non-
contractible case

6. 
Revenues are split
through ex-post Nash 
Bargaining

4.1 Contractible and Nash cases.

We can solve for what happens for each product line independently. We first solve for

the equilibrium in the contractible and Nash cases. In both cases, when a producer is

born he starts working with a supplier and remains indifferent across suppliers until one

successfully innovates. We refer to this supplier as an “innovator” supplier, and from

then on, the producer picks this supplier.

Therefore, either all suppliers are identical, or one has access to a technology which

is one step higher than the others. Since innovation may now occur in the middle of a

period, we normalize value functions and profits by the chosen supplier technology at

the beginning of the period. When an innovator firm exists the joint value is:

V T
1 = −ψ

(
δI1
)

+
(
1− δI1 + δI1γ

)(
Π (z) +

1− δD

1 + ρ
V T

1

)
, (27)

where δI1 is the equilibrium innovation rate when the producer has access to a innovator

supplier, z = m in the contractible case and z = n in the Nash one. After the innovation

cost has been paid, innovation fails with probability 1−δI1 , in which case the producer and

the supplier obtain the profit Π (z) and the continuation value 1−δD
1+ρ

V T
1 . Alternatively, if

an innovation occurs, the situation is identical except that the technology used by the

supplier is γ times more productive.

The innovation rate δI1 must therefore solve:

δI1 = arg max
δI
−ψ

(
δI
)

+
(
1− δI + δIγ

)(
Π (z) +

1− δD

1 + ρ
V T

1

)
.

Taking the first order condition and solving for V T
1 (using (27)) one obtains that the
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(unique) equilibrium innovation rate δI1 must obey:

ψ′
(
δI1
)

= (γ − 1)

(
Π (z) +

1− δD

1 + ρ
V T

1

)
= (γ − 1)

Π (z) (1 + ρ)−
(
1− δD

)
ψ
(
δI1
)

1 + ρ− (1− δI1 + δI1γ) (1− δD)
.

(28)

In particular, the scale effect implies that the innovation rate is lower in the Nash case

than in the contractible case: δI,Nash1 < δI,cont1

Alternatively, there is no innovator firm in which case the joint value is:

V T
0 = −ψ

(
δI0
)

+
(
1− δI0

)(
Π (z) +

1− δD

1 + ρ
V T

0

)
+ δI0γ

(
Π (z) +

1− δD

1 + ρ
V T

1

)
, (29)

with z = m,n and δI0 denoting the innovation rate. If no innovation occurs, then

the supplier and the producer share the profits Π (z), and in the following period the

producer will be in the same situation with homogeneous suppliers who are in Bertrand

competition, so that the producer will capture the full value of the relationship. On the

other hand, if an innovation occurs the producer will stay with the innovating supplier.

Using that δI0 must maximize V T
0 in (29), we obtain:

ψ′
(
δI0
)

= (γ − 1) Π (z) +
1− δD

1 + ρ

(
γV T

1 − V T
0

)
. (30)

It is straightforward to check that δI0 = δI1 = δI and V T
0 = V T

1 is a solution to

the problem (see Appendix B.7 for a proof that it is the unique solution), so that the

innovation rate is constant. Intuitively, whether a producer knows an innovator firm

or deals with a set of homogeneous supplier has no impact on the joint value of the

relationship (beyond the technology level and the innovation rate). Yet, since innovation

maximizes the joint value of the relationship, the problem is fully symmetric and the

innovation rates must be the same. Moreover, we have δI,Nash < δI,cont.

4.2 Cooperative equilibrium

We build a cooperative equilibrium along similar lines as in section 2. Hence, suppliers

should be willing to cooperate as much as possible with a producer they have never

worked with before (i.e. the equilibrium must be pairwise deviation proof). Such equi-

libria can only exist if the present supplier is different from other suppliers, since rents in

the following period are required to reward cooperation. Here, the relationship-specific
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innovation takes the role of the good/bad matches from above and ensures some level of

cooperation. In Appendix B.7, we demonstrate that there exists an equilibrium where on

equilibrium path an innovator supplier would cooperate at a constant level x∗ ∈ (n,m],

while a supplier with whom no innovation has occurred would play the Nash level of

investment n. In such an equilibrium, a producer chooses a supplier when he is born.

He is indifferent about switching suppliers until a supplier successfully innovates and

until that happens, the suppliers invest n. Once a supplier has successfully innovated,

the producer sticks with that supplier (the innovator) forever and she invests x∗.

Below, we take this structure of the equilibrium as given and we derive the innovation

rate on the equilibrium path. First, consider a producer who knows an innovator supplier

with whom no deviation has occurred. Then, the joint value obeys (27) but with z = x∗.

As a result, the innovation rate is given by (28). Denoting the solution for the cooperative

case as δI,coop1 , we get that δI,Nash < δI,coop1 ≤ δI,cont, with equality if and only if x∗ = m,

since x∗ ∈ (n,m]. This directly results from the scale effect.

Second, let us focus on a producer who has never matched with a supplier who

successfully innovated. We can write the joint value of their relationship as:

V T
0 = −ψ

(
δI0
)

+
(
1− δI0

)(
Π (n) +

1− δD

1 + ρ
V T

0

)
+ δI0γ

(
Π (x∗) +

1− δD

1 + ρ
V T

1

)
. (31)

If no innovation occurs, the supplier does not cooperate (since she will be identical to

all other suppliers next period) and the continuation value is 1−δD
1+ρ

V T
0 . If an innovation

occurs, the technology improves by a factor γ but the supplier also starts cooperating

(and the continuation value is 1−δD
1+ρ

V T
1 ). The equilibrium innovation rate maximizes V T

0

since it is contractible. Therefore, we have:

ψ′
(
δI0
)

=

(
γ − Π (n)

Π (x∗)

)
Π (x∗) +

1− δD

1 + ρ

(
γ − V T

0

V T
1

)
V T

1 . (32)

Since x∗ > n, Π (n) < Π (x∗) and V T
0 < V T

1 . Comparing this equation with (28),

with z = x∗, we obtain that δI,coop0 > δI,coop1 . Innovation is higher with a supplier

that has not yet innovated, because in addition to pushing the technological frontier,

innovation in that case also allows for starting cooperation. The innovation rate is then

higher than in the Nash case, both because of the scale effect and the cooperation effect

(δI,coop0 > δI,Nash), while it might be higher or lower than in the contractible case as the

scale and cooperation effects push in different directions (δI,coop0 ≶ δI,cont). In particular,

32



if the level of cooperation is low (x∗ is close to n), the scale effect dominates and there is

more innovation in the contractible than in the Nash case. If the level of cooperation is

high, then innovation is higher in the cooperative case than in the contractible one (in

particular if the first best is achieved, x∗ = m, then δI,coop0 > δI,coop1 = δI,cont).

The growth rate of the economy depends on the innovation rates and in the cooper-

ative case on the share of firms who know an innovator and their average productivity.

We obtain (proof in Appendix B.7):

Proposition 5. The growth rate is higher in both the contractible and cooperative cases

than in the Nash one. The growth rate is higher in the contractible case than in the

cooperative one if cooperation is low (x∗ close to n), it is lower if cooperation is high (x∗

close to m).

With relationship-specific innovations, cooperation in a setting of poor contractibility

strengthens innovation, up to a point that the innovation rate may even be larger than

in the contractible case.

5 Relationships, Japan and the United States: A

reversal of role models

The central message of our paper is that although the existence of relational contracts

can overcome contractual incompleteness, it will simultaneously affect the type of in-

novation undertaken. In particular, strong relationships, compared to the Nash case,

will encourage relationship-specific innovations, but might discourage more general in-

novations that would require the break-up of such relationships. The positive effects of

relationships has long since been recognized, and in particular in the 1980s, the keiretsu

system of strong business relationships in Japan was praised for being a feature of a su-

perior economic model. A prominent example is Dore (1983) who discusses the Japanese

economy as a whole and argues that relational contracts overcome opportune behavior

and allow for risk sharing. He suggests that the origins of relational contracts could be

found in cultural differences. Blinder and Krueger (1996) compare US and Japanese

labor markets suggest that lower labor turn-over allows firms in Japan to invest more in

training. Helper (1990) and Helper and Henderson (2014) argue that the Japanese auto-

industry is a lot more productive than the American. They emphasize that the ongoing

tight relationships allow for better sharing of information and fewer hold-up problems.
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We think of this as a higher provision of the non-contractible input, which is consistent

with the ‘cooperative’ equilibrium. In addition, Toyota’s suppliers are encouraged by the

promise of continued cooperation to devote resources to innovation specifically designed

for Toyota, in line with the results of section 4. This contrasts with their description

of the three big automakers in the United States where the lack of trust meant that

relationships had to be arm’s length, contracts were met to the letter and no more, and

relationship-specific investment or innovation were limited (an alternative was for the

automakers to vertically integrate). Consequently, we think of the United States as being

more closely represented by the ‘Nash’ equilibrium.22 Similarly, Bolton, Malmrose and

Ouchi (1994) argue that relational contracts in the Japanese semi-conductor industry

allows for more participation by suppliers in Japan than in the United States.

Naturally, in the heyday of the Japanese economy, there was little focus on the dis-

advantages of the Japanese economic system.23 The sluggish growth of Japan since the

1990s introduced a sharp change in the tone of the literature. One such example is Du-

jarric and Hagiu (2009) who argue that “...[H]ierarchial industry organization can ‘lock

out’ certain types of innovation indefinitely by perpetuating existing business practices”.

They focus on computer software, cell phone technology and Japanese anime, and ar-

gue that although Japanese prowess in efficient manufacturing is beyond question, the

existence of very strong relationships leads suppliers to focus their innovation primarily

on the needs of existing business partners and not new opportunities to increase market

share. In the software industry in Japan individual companies were part of keiretsus

and therefore developed advanced technological solutions for specific hardware produc-

ers. By contrast, in the United States a common platform developed which allowed for a

competitive environment in which individual software developers had strong incentives

to innovate to gain market share. Today the global software industry is dominated by

American companies in line with the cooperative equilibrium delivering less broad in-

22Here our paper bears some similarities with Acemoglu and Pischke (1998) who also develop a model
with multiple equilibria and associate Germany with one and the US with the other. Interestingly, their
model shows that relationships (more specifically the informational advantage that an employer has
over an employee) can encourage the investment in general human capital, whereas we show that
relationships can discourage general innovations and encourage relationship-specific innovations.

23Interestingly, a common quote in the economic sociology literature is from Dore (1983) who looks at
the Japanese textile industries and discusses the case of the entry of a new and more efficient supplier.
The response from the producer to his old supplier is given as : ’Look how X has got his price down. We
hope you can do the same because we really would have to reconsider our position if the price difference
goes on for months. If you need bank finance to get the new type of vat [bucket for dyeing] we can
probably help by guaranteeing the loan.” This is intended entirely as a positive feature of Japanese
business relationships, whereas our paper shows the negative effects on incentives for outside innovators.
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novation than the Nash equilibrium as in Proposition 3. Similarly, in a case study of a

Japanese chemical company and a Japanese steel company, Collinson and Wilson (2006)

argue that the keiretsu system led these companies to develop numerous but barely

profitable incremental innovations tailored to the needs of their customers to the detri-

ment of broad and flexible innovations.24 As a result, while Japan was the role model

for business relationships in the management literature in the 80s and the early 90s,

the subsequent realization that Japan rarely introduces new technologies to the world

market and lags behind in major innovations, has led to a reversal in the management

literature which again focuses on the U.S. system (Pudelko and Mendenhall, 2009). Per-

haps it is no surprise that the limits of the Japanese system became apparent as they

approached the world technological frontier, in line with Proposition 4.

Although, Japan is a canonical example of business relationships, the tension be-

tween the dynamism of new suppliers and the reliability of old suppliers is more general.

Uzzi (1996, 1997) collects quantitative and qualitative data on a set of high-end apparel

producers in NYC. He shows that relying on a set of reliable suppliers is essential to

overcome problems of contractual incompleteness and facilitate the transmission of in-

formation, but that only relying on existing relationships risks stifling innovation and

adaptation to new trends. Both sets of suppliers are hence necessary.

To further support our discussion of Japan and the United States, we use the patent

data from European Patent Office. Details on the data are in Appendix C. We initially

rely solely on the patents originating in the United States and Japan. We have data back

to patents filed in 1978 and include patents filed until 2009. We focus on the measure of

generality from Hall, Jaffe and Trajtenberg (2001) (defined in the introduction) which

is the closest empirical parallel to our notion of the broad appeal of innovation: in

this framework low generality corresponds to relationship-specific innovations and high

generality corresponds to the broader more general innovations of Section 2. This leaves

us with a total of 337,916 patents with information on generality. In column (I) in

table 1 we simply regress the generality of a patent on a dummy for the United States

being the origin. This is an analogue of Figure 1, which shows that US patents are on

average more general than Japanese, albeit not by much. In column (II) we introduce

fixed effects for the two-digit NACE code as well as the year of filing for the patents.

24To be sure, innovation is not the only problem facing Japan. Hoshi and Kashyap (2004) focus on the
financial sector and criticizes the willingness of the Japanese government to keep ‘zombie’ banks alive
and with them insolvent borrowers. In section 6 below we consider an extension in which relationships
also allow unproductive firms to remain in operation, though without a financial sector.
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(I) (II) (III) (IV)
Generality Generality Generality Generality

US. 0.0153∗∗∗ 0.0075∗∗∗ -0.0550∗∗

(13.44) (6.66) (-2.37)
US x Differentiated 0.0610 ∗∗

(2.21)
Dif Trust x Differentiated 0.6037∗

(1.94)
Fixed Effects None NACE, Year NACE, Year NACE, Year, Country

Observations 337916 337916 322156 319581

t statistics in parentheses. Std. errors clustered at NACE x country level for (III) and (IV)
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001

Table 1: Regression results

This isolates the difference for Japanese and US patents within a NACE code.25 Our

theory further predicts that this effect should be more pronounced in sectors that are

more differentiated. To test this we associate each NACE code of the patents with

a corresponding “Rauch” measure of the extent to which the product is differentiated

which reduces the number of observations to 322,156 (details in the appendix). We

include fixed effects for the NACE codes as well as time and year fixed effects in column

(III). The coefficient of interest is the interaction term between the dummy for the United

States and the measure of differentiated products, which is both substantially positive

and significant (standard errors are clustered at NACE x country level).26

We exploit the larger set of countries to perform an analogous analysis. Though,

direct evidence for whether countries are in the ‘cooperative’ or ‘Nash’ equilibrium is

difficult to come by, we use the World Values Survey to assess the level of trust. We proxy

the importance of relationships by taking the difference between the level of trust towards

a person met for the first time and the level of trust towards a person known personally.

Therefore, a high value corresponds to a high relative trust in strangers, which reduces

25Controlling for the NACE controls for the fact that the United States patents more heavily in
industries with a higher average generality. This is the most direct test of our model. However, one
could argue that the size of each industry is endogenous to equilibrium play, in which case the result in
Column (I) would be a better test.

26One might conclude from the coefficient on the dummy for the United States and the interaction
term of the United States and the differentiated variable that for the majority of patents generality is
not higher for the United States than for Japan. This is not true. Patents are in general associated with
highly differentiated products, and in fact the median value of our continuous differentiated variable is
0.88.
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the scope for the establishment of cooperation in existing relationships. Japan gets the

fourth lowest score and France the lowest, whereas the United States is slightly above

the middle with South Africa receiving the highest score. A complete list of countries

can be found in Appendix C. The data are from 2005-2014. Trusting that these values

are relatively constant, we include patents filed ten years before and until 2009. We focus

on countries with more than 100 patents with generality data, though little depends on

this choice. This leaves us with 319,581 patents and a total of 24 countries. Column

(IV) shows this regression to be consistent with our predictions as a high relative trust

in strangers (i.e. a lower scope for cooperation in existing relationships) is associated

with relatively more general patents in more differentiated industries.

We conclude that the predictions of our model are consistent with the literature on

the Japanese and U.S. patterns of innovations and are met by the empirical analysis of

Japanese and U.S. patents. The analysis using a larger set of countries is consistent with

our theory being applicable for a broader set of countries.

6 Extensions

In this section, we first extend our analysis to allow for slow diffusion of innovation.

Second, we abstract from innovation and study a second channel through which rigid

relationships can be welfare reducing.

6.1 Slow diffusion of innovations

Here we generalize our results to slower diffusion of technology, by posing that at the

beginning of every period, an outdated supplier gets access to the frontier technology

with probability ∆ ∈ (0, 1] if there is no innovation and catches up with the previous

frontier technology if a further innovation has occurred. We consider a cooperative

equilibrium with the same structure as in Proposition 1. In particular, an outdated

supplier forgives the producer if the producer tries a frontier supplier who turns out to

be a bad match (similar results would hold without such “forgiveness”, see A.4). For

simplicity, we focus our analysis on the case where after a deviation the producer would

rather try a new supplier than staying with a deviator. Finally, we now assume that a

producer can only keep track of one good match supplier: as soon as he meets another

good match supplier, he forgets the identity of the previous good match he knew. This
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assumption greatly simplifies the exposition in the contractible and Nash cases.27

We now describe the incentive constraints that a good match supplier faces in the

cooperative case, letting the normalized value functions be V s
1 if she has access to the

frontier technology and W s
1 if she has not.28 Consider first the case in which she has

access to the frontier technology at time t. Then, if she cooperates, in the following

period she will enjoy V s
1 At if there is no innovation and W s

1At+1 if an innovation occurs.

If she does not produce the required quantity her continuation value is 0 as the producer

never goes back to a deviator. Therefore the reward from cooperating at time t is given

by 1−δD
1+ρ

((1− δI)V s
1 + δIγW s

1 )At.
29 The problem is the same as in section 2 and there is

a unique level of normalized investment undertaken by a frontier good match supplier,

x∗, which must satisfy the IC constraint (9).

Consider now the case of an outdated good match at time t, with level of investment

y∗. In period t+1, this good match supplier will become a good match supplier with the

frontier technology with probability ∆, otherwise she stays a good match supplier with

an outdated technology. Therefore, in the cooperative equilibrium, the IC constraint for

an outdated good match is given by:

γ−1ϕ (y∗) ≤ 1− δD

1 + ρ

((
1− δI

)
∆V s

1 +
((

1− δI
)

(1−∆) + δIγ
)
W s

1

)
. (33)

As before, the encouragement effect pushes towards a higher level of cooperation in out-

dated relationships than in frontier relationships (the term γ−1 on the LHS of (33) pushes

for y∗ ≥ x∗). Yet, for ∆ < 1, the RHS in (33) is also lower than the RHS in (9) since

V s
1 > W s

1 , which pushes towards a lower level of cooperation in outdated relationships

27Otherwise, one would have to keep track of the number of good match suppliers that a producer
knows. A producer who knows more good matches is more likely to benefit from diffusion in the future,
which affects the producer’s decision to try the innovator or not. Since we focus on the case where the
producer chooses never to work again with a deviator in the cooperative case, this assumption only
matters for the Nash and contractible cases. Moreover, making this assumption in section 2 would not
affect our results, so that the model of this section is a generalization of that of section 2.

28As before W s
1 is positive even if the producer chooses to work with a new frontier supplier instead

of an outdated good match as cooperation can resume if the new supplier turns out to be a bad match
and the outdated good match benefits from imitation.

29Importantly this also applies to the innovator. Consider a period t where an innovation occurs,
then cooperation by the innovator depends on the outside option of the producer at time t+ 1 (as this
determines the value that a cooperating good match can capture). Similarly, the incentive to cooperate
for any good match frontier producer at time t + 1 depends on the producer’s outside option at time
t+2. But, at time t+1, a mass of firms will already have imitated the innovator, so that the producer’s
outside option is the same 1 or 2 periods after an innovation. Hence the problem faced by the innovator
at t is identical to that faced by any cooperating frontier good match supplier.
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(y∗ ≤ x∗). This occurs because starting a new relationship with a frontier supplier is a

more interesting outside option for a producer who is working with an outdated supplier

than for one who is already working with a frontier supplier. We refer to this effect as the

“outside option” effect. Overall the relationship between x∗ and y∗ is ambiguous and the

arrival of an innovation may weaken cooperation in established relationship. Neverthe-

less, in Appendix B.8, we show that ∆ ≥
(
1 + ρ− b

(
1− δD

))
/
(
γ (1 + ρ)− b

(
1− δD

))
is a sufficient condition to ensure that y∗ ≥ x∗.

Furthermore, in Appendix B.8, we show that producers switch to the innovator in

the cooperative case if and only if

1− b+ bθ
Π (n)

Π (x∗)
+ (1−∆)K

(
1− γ−1 Π (y∗)

Π (x∗)

)
> γ−1 Π (y∗)

Π (x∗)
. (34)

with K ≡ (1−b)(1−δD)(1−δI)
1+ρ−(1−δD)(1−δI)(1−∆)

> 0. This expression is the same as (12) except for

the last term on the LHS. That term captures the loss experienced by a producer who

stays with an outdated good match supplier (generating profits γ−1Π (y∗)) relative to

switching to a frontier good match supplier (with profits Π (x∗)) in all periods until either

the technology diffuses (which happens with probability ∆), or another innovation occurs

(which happens with probability δI). Everything else equal, slow diffusion of innovation

(a low ∆) encourages producers to switch to the innovator.

In the contractible and Nash cases, the producer switches suppliers when:

1− b+ bθ + (1−∆)K
(
1− γ−1

)
> γ−1. (35)

Comparing these two expressions reveals that, as before, the ease with which a switch

occurs in the cooperative compared with the contractible and Nash cases depend on the

different investment levels with a frontier good match (x∗), an outdated good match (y∗)

or a bad match (n). As before, the“worse bad match effect”(x∗ > n) makes relationships

more rigid in the cooperative case. In addition, if the encouragement effect dominates the

outside option effect, the investment of outdated suppliers is greater than that of frontier

suppliers in the cooperative equilibrium (y∗ > x∗), which also increases the rigidity of

relationships in that case. On the other hand, it is now possible that relationships could

be less rigid in the cooperative case than in the contractible or cooperative case if the

outside option effect is strong enough (and y∗ < x∗).

Endogenizing the innovation rate in this set-up can be done as in section 3. As
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before, the reward to innovation in the cooperative case depends positively on Π (x∗) and

Π (n) /Π (x∗) and negatively on Π (y∗) /Π (x∗), so that the comparison of the innovation

rate across the three cases depends on three effects. The scale effect pushes towards more

innovation in the contractible than in the cooperative case, and towards more innovation

in the cooperative than in the Nash case. The worse bad match effect pushes towards

more innovation in the contractible and Nash cases than in the cooperative case. And

if the encouragement effect dominates the outside option effect (y∗ > x∗), we obtain an

additional effect pushing towards less innovation in the cooperative case than in the two

other cases (having on the other hand y∗ < x∗ would push in the other direction). The

following Proposition summarizes our results.

Proposition 6. Consider parameters such that ∆ >
1+ρ−b(1−δD)
γ(1+ρ)−b(1−δD)

and assume that ψ

is sufficiently convex so that the equilibrium is unique, we then obtain: i) The level of

investment in outdated good matches is weakly higher than in frontier matches, y∗ ≥ x∗.

ii) For a given innovation rate, the parameter space under which relationships break

in the cooperative case is a subset of the parameter set under which they break in the

contractible or Nash case. iii) The innovation rate in the contractible case is larger than

in the cooperative case δcont > δcoop. iv) The innovation rate in the cooperative case may

be higher or lower than in the Nash case, but if δD is small enough and parameters are

such that relationships break in the Nash but not the cooperative case, then δcoop > δNash.

Therefore our earlier results are generalized to this case but only if innovations diffuse

sufficiently rapidly. How fast innovations diffuse depend on technological and institu-

tional characteristics, for instance weak intellectual property rights may favor rapid

technological diffusion. More generally, a slow diffusion of innovation seems to benefit

the innovation rate more in the cooperative case than in the two other cases because

of the outside option effect. This is illustrated in Figure 2 which shows how the three

innovation rates depend on the speed of diffusion for a low value of the probability of

finding a bad match b = 0.3 and a higher value b = 0.6.30 In both cases, for fast dif-

fusion, the innovation rate in the cooperative case is lower than both in the Nash and

contractible cases. On the other hand, for slow diffusion, the innovation rate in the

cooperative case is even higher than in the contractible case. The innovation rates are

lower when innovation diffuses faster as fast innovation improves the outside option of

producers and therefore limits the reward that an innovator can capture. A lower share

30The other parameters are the same and given by θ = 0.5, γ = 1.5, ρ = 0.05, δD = 0.04, σ = 3,
β = 0.5 and ψ (δ) = δ2/5.
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Figure 2: Innovation rate and speed of diffusion

of bad matches, b, reduces the importance of the worse bad match effect, which allows

for a higher innovation rate in the cooperative case relative to the two other cases. Over-

all, our results suggest that weak contractibility is particularly damaging to an economy

where IPR are poorly enforced.

6.2 Rigidity in relationships and information externalities

Though we have used an endogenous growth model, the point that relationships can

be detrimental to welfare can be made in other contexts. Instead of the externalities

associated with the endogenous growth model (imitation and standing-on-the-shoulders-

of-giants) we consider here an information externality: firms are more likely to choose a

supplier who is already active. Therefore a producer who decides to keep a supplier who

has suffered a negative productivity shock because of their ongoing relationship exerts a

negative externality on other producers. This externality is needed for relationships to

reduce welfare.

As before, a producer needs to pick a supplier to produce and the match can be either

good or bad. For simplicity we set δD = 0 such that all producers are infinitely-lived

and therefore know a good match supplier. Contrary to section 2, we now assume that

there is no growth in productivity. Instead a supplier’s productivity Ak is drawn each

period and takes three values with equal probability: 1, γ and γ2. Productivity draws

are independent. The reason for three values will become apparent below. We formalize

the information externality as follows. Suppliers cannot make take-it or leave-it offers

to all producers. Instead producers must choose between a limited set of suppliers in a

staggered fashion. At the beginning of the period a share λ of producers can costlessly

choose one additional potential supplier. They do not yet have any information on the
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productivity shocks of suppliers and will choose one at random. The potential supplier

and the previous good match then make take-it or leave-it offers to the producer who

decides with whom to work.31 The remaining 1−λ producers observe these choices—but

not any productivity shocks—before choosing their potential supplier. They also receive

take-it or leave-it offers from the potential new supplier and the previous good match

supplier before choosing a supplier. Since the choice of the first λ producers on whether

to continue operation with a supplier contains information on the productivity shock of

this supplier, we label it an “information” externality. More generally, this is meant to

capture that for a variety of reasons—search costs, reputation benefits etc.—firms are

more likely to choose business partners already in operation.

In the cooperative case, we consider an equilibrium which is similar to that described

in section 2. In particular, there is no cooperation in bad matches and there are 3 levels

of cooperation in good matches (x0, x1 and x2 depending on the technology level Ak), but

for simplicity we consider parameters such that x0 = x1 = x2 = m in the text. Further,

cooperation between a good match supplier and a producer ceases if either the supplier

deviated on her investment level, the producer switched to a supplier with a weakly

worse technology or the producer switched to a supplier with a better technology and

that supplier turned out to be a good match. As a result, in all cases (cooperative, Nash

and contractible) a producer chooses to switch supplier if and only if current expected

profits are higher with the new supplier than with the previous good match.

A producer keeps his good match supplier if she has a higher productivity than

the alternative supplier. In the Nash or contractible case, he switches to a supplier

with a technology that is γ times more productive than the existing one if and only if

γ (1− b+ bθ) > 1 (as in (11)). Similarly, he switches to an alternative supplier with

a technology γ2 times more productive if and only if γ2 (1− b+ bθ) > 1. And for

reasons analogous to (12), in the cooperative case, he switches to a supplier with a

technology γ times more productive if γ ((1− b) Π (m) + bθΠ (n)) > Π (m) and to one

with a technology γ2 times more productive if γ2 ((1− b) Π (m) + bθΠ (n)) > Π (m). As

before cooperation creates rigidity for intermediate values of γ: if γ ∈
(
γNash, γcoop

)
, a

producer switches supplier if her previous one does not have the higher technology in

the Nash but not in the cooperative case.

Assume that γ ∈
(
γNash, γcoop

)
but γ2 > γcoop: a producer switches supplier if and

only if that supplier has a technology at least 1 step ahead in the Nash case but 2 steps

31At this stage the productivity of each supplier becomes known by the alternative supplier, the
previous supplier and the producer.
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ahead in the cooperative case. The first round of producers choose their alternative

supplier at random who are therefore equally likely to have productivities 1, γ and γ2.

Now, consider the remaining (1 − λ) producers. If they choose amongst suppliers

randomly they have an equal probability of meeting a supplier with probability 1, γ

and γ2. However, as derived in Appendix B.9 if they choose their potential suppliers

amongst those that are already in production, the distribution of productivity will be

1 with probability 1/9, γ with probability 1/3 and γ2 with probability 5/9 in the Nash

or contractible cases. Since their alternative supplier has already been judged a better

option by another producer, their odds are better than for the first group.

By comparison, in the cooperative case, the alternative supplier’s productivity in the

second round is distributed as follows: 1 with probability 2/9, γ with probability 1/3

and γ2 with probability 4/9. As the first round producers prefer to stick to a supplier

who has a technology one step below that of their alternative supplier, the average

productivity of suppliers who secure a market during the first round in the cooperative

case is worse than in the Nash or contractible cases. This information externality reduces

the appeal of the cooperative equilibrium relative to the Nash case. More specifically,

we demonstrate in Appendix B.9 the following proposition.

Proposition 7. i) If all producers are in the first group (λ = 1), welfare is always

higher in the cooperative than in the Nash case. ii) Otherwise, welfare may be lower in

the cooperative case than in the Nash case; in particular this happens when λ is close to

0, cooperation achieves the first best in good matches, γNash < γ < γcoop < γ2 and the

level of investment in the Nash case is sufficiently high. iii) Welfare is the highest in the

contractible case.

Absent the information externality, cooperation necessarily increases welfare despite

the additional rigidity. This is because producers choose the supplier who maximizes

their expected profits, which maximizes aggregate profits. In addition, producers are

less likely to switch in the cooperative case, which increases the average expected level

of investment from suppliers. Since from a welfare stand-point, investment is too low

because of the standard monopoly distortion, it must be the case that welfare is higher

in the cooperative than in the Nash case.

On the other hand, the interaction between the information externality and the

excess rigidity of relationships in the cooperative case reduces welfare in the cooperative

case. Although, it requires somewhat specific parameter combinations, this effect can be
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sufficiently strong to make cooperation welfare reducing.32 This is a general lesson of the

paper: as long as producers choose their suppliers efficiently from the point of view of

the expected profits in their line, an externality (here the information externality, earlier

the imitation and standing on the shoulders of giants externality) is necessary to make

rigid relationships potentially welfare reducing.

7 Conclusion

In this paper, we show that the development of relational contracts shifts technological

change away from broad to relationship-specific innovations. In a nutshell, our argument

goes as follows: Cooperative long-term relationships, can overcome the classic underin-

vestment associated with the lack of contractibility. However, it is only in relationships

which are a good fit—where parties understand that they are going to keep working to-

gether for a long time—that cooperation is sustainable in the first place. Consequently,

switching to a new supplier becomes a riskier activity because if the new supplier is a

bad fit, cooperation will not take place. More rigid relationships, in turn, slow down

the process of creative destruction. On the other hand, the complementarity between

cooperative behavior and relationship-specific innovations boosts the latter in a cooper-

ative equilibrium. We relate this to the recent economic experiences of Japan and the

United States. While Japan was highly praised in the 1980s and early 1990s for the

level of cooperation that firms demonstrated in the keiretsu system, Japan has been less

successful than the United States in introducing new technologies to the global market

and the keiretsu system is now criticized for the rigidities that it has created.

Furthermore, our analysis highlights the substitutability between intellectual prop-

erty rights and contract enforcement: better IPR mitigate the negative consequences of

relational contracts in environments of poor contract enforcement. Finally, we show that

the possible negative consequences of relational contracts extend beyond the setting of

innovation and growth. Whenever the economy would benefit from a higher turn-over

of relationships, relational contracts can be damaging to the economy.

An interesting extension to our analysis would be to include foreign outsourcing as

issues of incomplete contractibility and long-term relationships may be even more salient

32This does not rest on the monopoly distortion, as cooperation also reduces aggregate profits. More-
over, one can increase the parameter space for which cooperation is welfare reducing, for instance by
adding a share of one-period lived producers who get to pick their supplier after the first round of
long-lived producers do so.
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when a firm is dealing with a supplier in a different country, as the firm may be less

familiar with the local judicial system.
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A Main Appendix

A.1 Proof of Proposition 1

This appendix proves Proposition 1 in the case where a producer prefers working with

a new supplier over a deviator in a period without innovation and with a new outdated

supplier over a deviator in a period with innovation. Since the incentive compatibility

constraints of the supplier are satisfied, since the agents revert to the one shot Nash

strategy after a deviation, and since ex-ante transfers are determined through Bertrand

competition, it is direct that if the levels x∗and y∗ exist then the strategies described in

Proposition 1 lead to a SPNE. Proving the existence of x∗and y∗ requires first showing

that in all possible scenarii, on path or off path, there are only two possible forms for

the IC constraint of the supplier depending on whether she has access to the frontier

technology or not. Second, we need to show that these IC constraints admit a solution

with x∗, y∗ > n.

The proof proceeds in 4 steps: first we derive the condition under which a producer

in a good match tries out the innovator—equation (12) in the text. Second, we derive

the general form of the IC constraint. Third, we derive detailed expressions for the

two possible IC constraints in function of x∗and y∗—in this appendix we do it only

when a producer prefers working with a new supplier over a deviator in a period without

innovation and with a new outdated supplier over a deviator in a period with innovation,

the other cases being included in Appendix B.1. Fourth, we show that there exist

x∗, y∗ > n, satisfying the IC constraint under all possible cases—in the same special case

in this Appendix and in general in Appendix B.1.

A.1.1 Step 1. Condition under which a producer in a good match switches

to the innovator (equation (12))

We consider a producer who knows a good match supplier with whom no deviation has

occurred and we study whether the producer would want to switch to the innovator

or not.33 We use the notations V z
i and W z

i , with i ∈ {0, 1} and z ∈ {s, p, T} defined

in the text. Furthermore, in periods with an innovation and for a relationship with the

innovator, we denote by V z,t
I the value of the producer (z = p), or the supplier/innovator

33This analysis always applies on path. Off path it also applies except when the producer already
knows a deviator and the value of a relationship with the innovator is lower than the value of staying
with this deviator. That case is treated in Appendix B.1.
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(z = s), knowing that previously the producer was in a good match who did not deviate

(t = g), or in a bad match (t = b). When an innovation occurs the value of an outdated

good match supplier does not fall to 0 even if the producer switches as he may come

back to her if the innovator turns out to be a bad match. We denote the expected value

of such an (outdated) supplier by V s
A.

The innovator and the old supplier enter in Bertrand competition, the old supplier

would be willing to offer a transfer that would guarantee herself at least V s
A in order to

keep the producer, hence SPNE requires that:

W s
1 ≥ V s

A. (A.1)

Moreover Bertrand Competition ensures that the supplier with whom the relationship

is the highest captures the entire benefit of the relationship over the second best one,

hence the value of the producer whether he switches supplier or not is the same:

V p,g
I = W p

1 . (A.2)

The producer ends up switching if the highest amount that the innovator can offer is

higher than the highest amount that the old supplier can offer, that is if if the total

value of the producer and the innovator (V T,g
I ) is higher than the surplus value of the

old relationship (W T
1 − V s

A).34

V T,g
I > W T

1 − V s
A. (A.3)

The total value of a relationship with the innovator is given by:

V T,g
I = (1− b) Π (x∗) + (1− b) 1− δD

1 + ρ

((
1− δI

)
V T

1 + δIγW T
1

)
(A.4)

+ bθΠ (n) + b
1− δD

1 + ρ

((
1− δI

)
V p

1 + δIγW p
1

)
.

With probability 1 − b the relationship turns out to be good delivering profits Π (x∗)

in the first period and with continuation value V T
1 if no innovation occurs and W T

1 if

innovation occurs. With probability b, the relationship turns out to be a bad match, the

continuation value for the supplier is then zero, and the producer goes back to his old

34Technically this is derived under the condition that the value a good match old supplier is willing
to offer is (weakly) higher than the value another outdated supplier would be willing to offer, when the
innovator is actually the best choice (otherwise it is obvious since an innovator necessarily offers more
than a new outdated supplier). We show in step 3 that this is necessarily true.
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good match supplier, so that his value is V p
1 if no innovation occurs and W p

1 otherwise.

This leaves us with the expected value to the supplier from the possibility that the

producer returns, V s
A as the only missing element. If the producer switches, the current

profits enjoyed by the old supplier are zero, but with probability b, the innovator will

turn out to be a bad match, in which case the old supplier will get V s
1 if no innovation

occurs and W s
1 otherwise, hence:

V s
A =

1− δD

1 + ρ
b
((

1− δI
)
V s

1 + δIγW s
1

)
. (A.5)

Now combining (5), (A.4) and (A.5) one gets:

V T,g
I −

(
W T

1 − V s
A

)
= (1− b) Π (x∗) + bθΠ (n)− 1

γ
Π (y∗) , (A.6)

which show that a good match producer switches to the innovator provided that equation

(12) holds.

A.1.2 Step 2. The general form of the incentive constraint

As argued in the text, the gain a supplier would get by deviating from the agreed level

of investment is given by ϕ(x)Ak with ϕ defined in (8). Should a deviation occurred,

the continuation value of the supplier may not always be 0 as in the case studied in the

text. Therefore, in general the incentive constraints obey:

ϕ (x∗) ≤ 1− δD

1 + ρ
I and γ−1ϕ (y∗) ≤ 1− δD

1 + ρ
I, (A.7)

where we define the effect of cooperation on the continuation value of the supplier:

I ≡
(
1− δI

)
V s

1 + δIγW s
1 −

((
1− δI

)
V s
N + δIγW s

N

)
. (A.8)

V s
N and W s

N are the value the supplier would get if she becomes a deviator (and invest-

ment would then be given by the Nash level), in periods where, respectively, there is

not and there is innovation. If the supplier cooperates, her value in the following period

is given by V s
1 if there is no innovation and W s

1 otherwise. The factor γ−1 on the LHS

of the second IC constraint comes from the fact that the technology of the outdated

supplier is only γ−1A.
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Combining (A.1), (A.2) and (A.6), we get:35

W s
1 = V s

A +

(
1

γ
Π (y∗)− ((1− b) Π (x∗) + bθΠ (n))

)+

, (A.9)

where X+ ≡ max {X, 0}.
Using equation (A.5) and (A.9) we get:

I =
1 + ρ

1 + ρ− b (1− δD) δIγ

((
1− δI

)
V s

1 + δIγ

(
1

γ
Π (y∗)− ((1− b) Π (x∗) + bθΠ (n))

)+
)
.

(A.10)

Finally note that V T
1 must satisfy (4) which combined with (5) leads to:

V T
1 =

(
1 + ρ−

(
1− δD

)
δIγ
)

Π (x∗) +
(
1− δD

)
δIΠ (y∗)

1 + ρ− (1− δD) (1− δI + δIγ)
. (A.11)

If the producer does not already know a deviator, we necessarily get through Bertrand

competition:

V p
1 = V T,n

0 and V s
1 = V T

1 − V
T,n

0 , (A.12)

where V T,n
0 is the value of starting a new relationship when the producer knows a deviator

(this is the general expression, see footnote 12). Indeed, the outside option for the

producer is to start a new relationship, but should he do so, he would now know a

deviator, namely the good match he was previously working with. If the producer

knows a deviator, then his second best option will either be to resume a relationship

with the deviator or to start a new relationship, now knowing two deviators, so that we

get, through Bertrand Competition:

V s,n
1 = V T,n

1 −max
(
V T
N , V

T,n
0

)
, (A.13)

where V T
N denotes the joint value of a relationship with the deviator.

As mentioned in the text, depending on parameters, there is a number of different

cases to consider. In order to save space we will consider only the case where in case of a

deviation the producer always seeks out a new producer. The other cases are considered

in Appendix B.1. The results of the paper hold in all cases.

35That still requires that switching to the innovator is a better option than switching to a potential
deviator when the producer knows one (see footnote 33).
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A.1.3 Step 3 in a special case: When a deviation always leads the producer

to try out a different supplier

Assume that in periods without innovation, the producer would always rather try out a

new supplier than a deviator, and, in periods with innovation, the producer would prefer

both the innovator or an outdated new supplier to an (outdated) deviator. That is, we

assume:

V T
N < V T

0 and W T
N < W T

0 . (A.14)

and we need not index V T
0 and W T

0 by n as whether a producer knows a deviator or

not is now irrelevant. As the producer will never return to a deviator, the continuation

value of a deviator (with that producer) is 0:
(
1− δI

)
V s
N + δIγW s

N = 0. In (A.8), we

can therefore focus on
(
1− δI

)
V s

1 + δIγW s
1 which is given by equation (A.10). (A.12)

implies that in this case (7) holds.

The analysis is in fact derived in section 2.7. Combining (14) and (17), we find

I =
1 + ρ

1 + ρ− b (1− δD) δIγ

 (
1− δI

) b((1+ρ−b(1−δD)δIγ)(Π(x∗)−θΠ(n))+b(1−δD)δI(Π(y∗)−θΠ(n)))
1+ρ−b(1−δD)(1−δI+δIγ)

+δIγ
(

1
γ
Π (y∗)− ((1− b) Π (x∗) + bθΠ (n))

)+

 .

(A.15)

This establishes the IC constraints together with (9) and (10) in the main text.

Further, we had to check that in a period with innovation, when the producer switches

to the innovator, staying with a previous outdated good match supplier is still a better

outside option than trying a new outdated supplier (this is not obvious since the good

match supplier only offers W T
1 − V s

A to the producer). That is we need to check that

W T
1 − V s

A > W T
0 . We can write the law of motion:

W T
0 =

1

γ
((1− b) Π (y∗) + bθΠ (n))+

1− δD

1 + ρ

((
1− δI

) (
(1− b)V T

1 + bV T
0

)
+ δIγ

(
(1− b)W T

1 + bW T
0

))
.

Combining this equation with (5), (A.5) and using (A.12) we obtain:

W T
1 − V s

A −W T
0 =

b

γ
(Π (y∗)− θΠ (n)) +

1− δD

1 + ρ
bδIγ

(
W T

1 − V s
A −W T

0

)
,

which shows that W T
1 − V s

A −W T
0 > 0.
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A.1.4 Step 4: Existence of a solution for x∗, y∗ in the same special case

Here we show that should the economy be in the case described above, then there is

a solution x∗, y∗ > n to the problem. To do that we simply need to show that the IC

constraints do not bind for (x, y) just above n. Because n minimizes ϕ, we have

ϕ (x) = o (x− n) and γ−1ϕ (y) = o (y − n) .

Therefore, we simply have to check that I is positive at the first order in (x− n) and

(y − n) when x and y are greater than n. Using (A.15), we get:

I =
1 + ρ

1 + ρ− b (1− δD) δIγ

(
1− δI

) b (1 + ρ− b
(
1− δD

)
δI (γ − 1)

)
(1− θ)

1 + ρ− b (1− δD) (1− δI + δIγ)
Π (n) +

+
1 + ρ

1 + ρ− b (1− δD) δIγ
δIγ

(
1

γ
− (1− b+ bθ)

)+

Π (n) ,

which is positive at first order in (x− n), (y − n). This proves existence provided that

the conditions to be in this case are met (see Appendix B.1 for the rest of the proof).

A.2 Cooperative equilibrium characterization

In this appendix we provide a set of conditions on the equilibrium strategies that imply

that the agents must play according to Proposition 1. We denote by Hn
t (j, k) the set

of histories of the game after t repetitions just after phase 5 has occurred (just after

the type has been revealed) when producer j and supplier k are matched for the first

time and supplier k has turned out to be a good match. We define a symmetry and

information condition:

Condition 1. Symmetry and Information (SI) i) For any history belonging to

∪
k
Hn
t (j, k) where the supplier k has access to the frontier technology, the path of normal-

ized investment undertaken in the following histories by the new supplier k are the same,

and the decision of the producer to continue the relationship with the supplier k or not

is the same; similarly for any history belonging to ∪
k
Hn
t (j, k) where the supplier k does

not have access to the frontier technology; ii) the strategies played with one producer are

independent of the history of the game played with other producers; iii) if a supplier has

been chosen by the producer, her normalized investment is independent of the ex-ante

transfer paid by the supplier.
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Part i) is a symmetry condition. Provided that the supplier has access to the frontier

technology, every new good match relationship is identical in terms of the level of nor-

malized investment and of the producer’ decision to retain the supplier or not (both on

and off the equilibrium path). In particular, if a producer starts a relationship with the

innovator and the innovator turns out to be a good match, the outcome is symmetric to

the case where the producer started his first relationship. We cannot however require

that the strategies are identical, because, in general, the ex-ante transfer exchanged de-

pends on whether the producer knows a good match supplier or not. This condition

rules out equilibria where there is never cooperation with the innovator even if she is a

good match—without this condition it would be possible to build equilibria where the

path of investment levels is systematically lower with a new supplier than with the first

supplier. Part ii) allows us to keep the strategies with other producers independent, so,

for instance, producers cannot coordinate on punishing a supplier. Part iii) is necessary

to ensure that the supplier gets the full value of the relationship when the first best

is achieved. Otherwise it is possible to build equilibria where part of the surplus of a

relationship would go to the producer, despite Bertrand competition. It should be clear

that conditions i) and ii) avoid equilibria where players could coordinate their actions

on histories that should have no direct impact on their interactions. Such restrictions

would necessarily operate in an alternative environment where we directly restricted

the information available to the players. Condition iii) does not affect our results but

simplifies the exposition.

As described in the text, we define a forgiveness condition which ensures that a

supplier does not punish a producer who switched to the innovator if the innovator

turns out to be a bad match.

Condition 2. Forgiveness. The strategy played by a good match supplier at time t,

is the same when the producer has worked with the supplier at time t− 1 and when the

producer has worked with an innovator but the innovator turned out to be a bad match.

Denoting respectively by V p,j (σ) and V s,k (σ) the values of producer j and supplier

k, when the profile of strategy is σ, we formally define the bilateral rationality condition

as follows.

Condition 3. Bilateral rationality. At any history ht ∈ Hn
t (j, k) , σ|ht is such

that there is no σ′ =
(
σ′j|ht, σ′k|ht, σ−k|ht

)
(where σ−k denotes the profile of the other

suppliers) where σ′j|h′t = σj|h′j for all histories h′t ∈ Hn
t (j, k′) (k 6= k′), σ′ satisfies
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condition 2, and neither player j nor player k have an incentive to deviate from σ′, such

that V p,j (σ′) + V s,k (σ′) > V p,j (σ) + V s,k (σ) .

Bilateral rationality here means that a new pair chooses strategies that maximize

their joint value under the condition that the strategy of the producer with a new good

match is given (the producer is expected to renegotiate his strategies once he has found a

new good match), strategies are enforceable (neither the producer nor the supplier have

an incentive to deviate), and the forgiveness condition is not violated. This condition

rules out “collusive” behavior by suppliers: in a good match, suppliers are willing to

cooperate as much as possible right away.36 Finally, we impose:

Condition 4. No investment in bad matches. Normalized investment levels in bad

matches are given by the Nash investment level, n.

If the productivity level θ is sufficiently low, this condition is automatically met as a

producer would continue to search for a new supplier regardless of whether cooperation

in bad matches is possible or not. We then obtain the following Proposition:

Proposition 8. In any symmetric SPNE satisfying conditions 1-4, agents’ strategies

are given as in Proposition 1.

Proof. It is direct to check that the strategies of Proposition 1 obey conditions 1-4.

Appendix B.2 shows that conditions 1-4 imply the strategies of Proposition 1.

A.3 Level of cooperation

In this section we study how the levels of investment in the cooperative equilibrium

depend on the model’s parameters. We restrict attention to the case where the innovation

rate is exogenous. We obtain the following proposition and remark, which are proved in

Appendix B.3.

Proposition 9. (i) The investment levels (x∗, y∗) weakly increase with the number of bad

matches, b, and decrease with the relative productivity of bad matches, θ, the discount

rate, ρ, and the probability of death δD; (ii) when the innovator captures the entire

market, the investment levels (x∗, y∗) increase in the size of innovations γ.

36This condition should not be confused with a “renegotiation-proof” condition. If one of the players
deviates from the prescribed strategies a punishment phase is allowed even if it yields lower profits.
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Remark 2. When a producer would always rather try a new supplier than work with a

non-cooperative good match supplier, and the innovator captures the entire market, the

investment levels (x∗, y∗) decrease with the rate of innovation δI provided that innova-

tions are not too large ( γb
(
1− δD

) (
2− δI

)
< 1 + ρ is a sufficient condition).

How much suppliers cooperate depends on how bad the alternative option is. There-

fore if the probability of a bad match, b is higher, or if they are more severe (low θ), a

good relationship will have more value, and the potential for cooperation is higher. A

higher value of the future (lower ρ and δD) have the same effect. This follows directly

from (14) and (17) in the specific case where a producer does not work again with a

good match supplier who has stopped cooperating. Furthermore, we get that when the

innovator captures the entire market (γ > γcoop), large innovations favor cooperation.

The reason is that larger innovations lead to a higher growth rate, which increases the

expected value a supplier can capture by cooperating, favoring more investment in good

matches. If the innovator does not capture the entire market then larger innovations

also reduce the value a good match supplier can capture in periods with innovation.

Finally, the effect of the rate of innovation is in general ambiguous, even when the

innovator captures the entire market. More frequent innovations will have three effects on

investment levels: (i) a positive effect through a higher growth rate, (ii) a negative effect

through a higher probability of ending the relationship, and (iii) a further negative effect

which reflects that the benefit of being in a good match over a random match is higher

in periods without innovation (and this benefit is precisely what drives the incentive

to cooperate). For sufficiently small innovations, effect (ii) dominates effect (i), so that

more frequent innovations lower the level of cooperation. We can compare this result to

Francois and Roberts (2003), who show that an increase in innovation can push firms

towards providing short-term contract arrangements instead of implicit guarantees of

lifetime employment to their workers. In our model, the same idea is captured by the

possible decrease in cooperation following an increase in the innovation rate.

A.4 Alternative equilibrium where suppliers systematically pun-

ish producers who switch to the innovator

In this appendix, we describe an alternative cooperative equilibrium where the supplier

always refuses to reengage in cooperation if the producer switches to the innovator.

That is the strategy of the supplier described in Proposition 1 is modified such that
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a cooperating good match becomes a deviator as soon as a producer switches to the

innovator (regardless of the innovator’s type). For the sake of simplicity, we focus on

parameters value for which a producer would rather switch supplier than stay with a non

cooperative good match. We also assume that when innovators decide on how much to

invest, they are unaware of when the last innovation occurred.37 We prove the following

proposition (where the innovation rate in the alternative cooperative case refers to the

highest equilibrium level) in Appendix B.6.

Proposition 10. (i) The parameter set for which innovators capture the whole mar-

ket in the alternative cooperative case is strictly smaller than the parameter set for

which innovators capture the whole market in the contractible or the Nash cases; in

particular, the minimum technological leap required for an innovator to capture the

whole market in the alternative cooperative case (γcoop2) is higher than that in the con-

tractible or Nash cases (γcon, γNash): γcoop2 > γcon = γNash. (ii) For ρ small enough

(ρ < (γ/δcoop2 − 1)
(
1− b

(
1− δD

))
+ b
(
1− δD

)
δcoop2 (γ − 1) is a sufficient condition),

the innovation rate in the alternative cooperative case is lower than in the contractible

case. (iii) The innovation rate in the alternative cooperative case may be lower or higher

than in the Nash case, it is lower if γ ∈ (γcont, γcoop2) and δDis sufficiently small.

This proposition stipulates that our results carry through in this alternative equilib-

rium. This is not surprising and in some sense the results are reinforced. Indeed, if a

producer switches to the innovator, and the innovator turns out to be a bad match, the

producer would have to suffer additional losses in the periods following innovation as he

would have to keep looking for a good match, since the previous one would have stopped

cooperating. This loss of cooperation effect pushes towards more rigid relationships in

the cooperative case than in the contractible or Nash cases. In Appendix B.6, we show

that producers would switch to the innovator if and only if

(1− b) + bθ
Π (n)

Π (x∗)
− b1− δD

1 + ρ

(
1− δI

) (
V T

1 − V T
0

)
+ δIγ

(
W T

1 −W T
0

)
Π (x∗)

> γ−1 Π (y∗)

Π (x∗)
,

(A.16)

The third term in (A.16) (which is absent in (12)) reflects the loss of cooperation effect.

It is equal to the loss in expected profits which occurs if the innovator turns out to be a

bad match and the producer has to look for a new supplier in the subsequent periods,

37Otherwise there would not be a steady-state because the share of producers who are not in an
ongoing good match relationship depends on when the last innovation occurred if innovations are large
enough.
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scaled by the profits in a good match at the frontier (Π (x∗)). This loss corresponds to

the difference in the joint value of a relationship with a good match compared to a new

relationship, namely V T
1 − V T

0 in periods without innovation and W T
1 −W T

0 in periods

with an innovation. Therefore, Proposition (2) carries through.

The scale effect still pushes towards more innovation in the cooperative case than in

the Nash case, but towards less innovation than in the contractible case. The encourage-

ment effect, the worse bad match effect and now the loss of cooperation effect, by making

relationships more rigid, push towards less innovation in the cooperative case than in

both the Nash and contractible cases. There is however a counteracting general equi-

librium effect : when innovations are sufficiently large to break up existing relationships

(γ > γcoop2), there will be more producers not in an ongoing good match relationship

in the cooperative than in both the contractible and Nash cases.38 As an innovator

captures more value from producers who are not in an ongoing good match relationship,

this force pushes towards more innovation in the cooperative than in the Nash but also

contractible cases. As a lower discount rate strengthens the loss-of-cooperation effect,

the general equilibrium effect is dominated for a sufficiently low discount rate ρ, which

explains Part ii) of Proposition 10.39 As before if γ ∈
(
γNash, γcoop2

)
, the innovator

breaks relationships in the Nash case but not in the cooperative case, this implies that

if the death rate of producers δD is sufficiently small, the innovator gets a much smaller

market so that the innovation rate is lower in the cooperative case than in the Nash

(Part iii) of Proposition 10).40

Loss of good matches in the contractible and Nash cases. Alternatively, it

may be that even in the contractible or Nash cases, a producer cannot resume working

with a supplier after the relationship was halted, either because the two parties suffer

a utility loss, or because the producer forgets the identity of a good match once he

has stopped working with her. Under this scenario, switching to an innovator involves

38In the cooperative case, the share of producers previously not in a good match is given by
δD+bδI(1−δD)

1−b(1−δD)(1−δI)
when γ > γcoop but by δD

1−b(1−δD)
when γ < γcoop or in the Nash or contractible

cases.
39The condition in the proposition 10 will be satisfied for reasonable parameter values since γ >

γcoop2 > (1− b+ bθ)
−1

is necessary for the general equilibrium effect to exist, and δcoop2 is small.
40The proposition focused on the cooperative equilibrium with the highest innovation rate. Yet, in the

cooperative case, the expected share of producers who are not with a good match supplier (ω) increases
with the innovation rate for γ > γcoop2, so that there is significant room for multiple equilibria. For
instance, there could be an equilibrium where innovation is scarce, so that most producers have found
a good match supplier and cooperation is widespread, and another equilibrium, where innovation is
frequent and cooperation is rare.
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losing a good match supplier also for the contractible and Nash cases. Nevertheless,

our results carry through: the parameter space for which a switch occurs is smaller in

the cooperative case than in the contractible or Nash cases; the innovation rate is lower

in the cooperative case than in the contractible case; and it is also lower than in the

Nash case for an intermediate range of innovation sizes provided that the death rate of

producers is low enough.41

41We obtain that γNash = γcont =

[
1− b+ bθ − (1−δD)b2(1−θ)

1+ρ−b(1−δD)(1−δI+δIγ)

]−1

. Hence the worse bad

match and the encouragement effects make the loss of a good match supplier relatively more costly in
the cooperative than in the Nash or contractible cases. In addition, for a given rate of innovation, the
share of producers who do not know a good match at the beginning of a period in steady-state is the
same in all cases, so that the general equilibrium effect described above ceases to play a role.
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B Online Appendix

B.1 Cooperative equilibrium characterization: complements

In this appendix we complete the proof of Proposition 8 by going through steps 3 and 4

in all possible cases and showing that they cover the full range of possibilities.

B.1.1 Step 3: deriving the IC constraint in all cases.

Whether a producer would rather stick to a deviator (a good match playing the Nash

level because a deviation has occurred) or keep looking for a new supplier will affect the

IC constraint. We derive it in all the possible cases:

- case 1, when the producer will choose the deviator in any circumstances,

- case 2, when the producer will choose the innovator over the deviator, but stick to

the deviator otherwise,

- case 3, when the producer will choose the deviator in period without innovation,

but in period with innovation the deviator is worse than even an outdated supplier,

- case 4, when the producer will choose a new match in periods without innovation,

but in period with innovation, the deviator is better than trying an outdated supplier,

- case 5, when the deviator is never one of the two best options (which is the special

case studied in Appendix A.1).

Moreover, in cases 1, 2 and 3, the deviator could be chosen one step away from the

equilibrium path, we then need to check that whether the producer knows only one

deviator or more matters.

Case 1.1 We consider the case where the deviator is always better than starting a

new relationship. We consider a producer who only knows one deviator (and no other

good match), we derive the conditions under which this case applies, and the incentive

constraint of a producer who would be in a good match relationship and would not know

any deviator. We still denote by V T
N the joint value of the producer and the deviator

in periods without innovation and we define W T
N as the corresponding value in periods

with innovation. We then get:

V T
N = Π (n) +

1− δD

1 + ρ

((
1− δI

)
V T
N + δIγW T

N

)
, (B.1)
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W T
N = γ−1Π (n) +

1− δD

1 + ρ

((
1− δI

)
V T
N + δIγW T

N

)
. (B.2)

Now recall that V T,n
0 denotes the joint value when a producer starts a new relationship (n

indicates that the producer knows a deviator) in periods without innovation, we denote

by V T,n
I the same value in periods with innovation, and we get:

V T,n
I = V T,n

0 = (1− b)V T
1 + bθΠ (n) + b

1− δD

1 + ρ

((
1− δI

)
V p
N + δIγW p

N

)
, (B.3)

with probability (1− b) the new supplier is a good match and the joint value becomes

V T
1 , with probability b the new supplier is a bad match, in which case the producer should

revert back to the deviator in the following period. Bertrand competition ensures that:

V p
N = V T,n

0 and V s
N = V T

N − V
T,n

0 , (B.4)

W p
N = V T,n

I and W s
N = W T

N − V
T,n
I . (B.5)

The condition to be in that case is that in periods with innovation the producer would

rather stick to the deviator than choose the innovator, note that if the producer chooses

the innovator, the value of the deviator is not null, instead it is given by:

V s
AN =

1− δD

1 + ρ
b
((

1− δI
)
V s
N + δIγW s

N

)
, (B.6)

as with probability b the innovator will be a bad match and the producer would revert

back to the deviator in the following period. The condition to be in that case can then

be expressed as:

W T
N ≥ V T

0 + V s
AN . (B.7)

Combining (B.1) and (B.2), we get:

W T
N = V T

N −
(
1− γ−1

)
Π (n) , (B.8)

so that:

V T
N =

1 + ρ−
(
1− δD

)
δI (γ − 1)

1 + ρ− (1− δD) (1− δI + δIγ)
Π (n) . (B.9)
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Combining (B.3), (B.6) and (B.8), we can rewrite (B.7) as:

V T
N −

(
1− γ−1

)
Π (n) ≥ (1− b)V T

1 + bθΠ (n) + b
1− δD

1 + ρ

((
1− δI

)
V T
N + δIγW T

N

)
,

which using (B.9) translates into:(
γ−1 (1 + ρ)− b

(
1− δD

)
+
(
1− δD

) (
1− δI

)
(1− γ−1)

)
Π (n)

(1 + ρ) (1 + ρ− (1− δD) (1− δI + δIγ))
(B.10)

≥
(
(1− b)V T

1 + bθΠ (n)
)
.

Now we want to express the IC constraint of a producer in a good match who does

not know any deviator. To do so, we first need to compute the expected value of a

deviator. Combining (B.3), (B.4) and (B.5) we get:

V T,n
I = V T,n

0 = (1− b)V T
1 + bθΠ (n) + b

1− δD

1 + ρ

(
1− δI + δIγ

)
V T,n

0 ,

so that:

V T,n
I = V T,n

0 =
1 + ρ

(1 + ρ− b (1− δD) (1− δI + δIγ))

(
(1− b)V T

1 + bθΠ (n)
)
, (B.11)

which combined with (B.9) gives:

V s
N =

1 + ρ−
(
1− δD

)
δI (γ − 1)

1 + ρ− (1− δD) (1− δI + δIγ)
Π (n)

− 1 + ρ

(1 + ρ− b (1− δD) (1− δI + δIγ))

(
(1− b)V T ′

1 + bθΠ (n)
)
,

W s
N =

γ−1 (1 + ρ) + (1− γ−1)
(
1− δD

) (
1− δI

)
1 + ρ− (1− δD) (1− δI + δIγ)

Π (n)

− 1 + ρ

(1 + ρ− b (1− δD) (1− δI + δIγ))

(
(1− b)V T ′

1 + bθΠ (n)
)
.
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Therefore we can write:

(
1− δI

)
V s
N + δIγW s

N (B.12)

=
1 + ρ

1 + ρ− (1− δD) (1− δI + δIγ)
Π (n)

−
(1 + ρ)

(
1− δI + δIγ

)
(1 + ρ− b (1− δD) (1− δI + δIγ))

(
(1− b)V T

1 + bθΠ (n)
)

Using (A.12) and (B.11) we get:

V s
1 = V T

1 −
1 + ρ

(1 + ρ− b (1− δD) (1− δI + δIγ))

(
(1− b)V T

1 + bθΠ (n)
)
. (B.13)

Combining (A.8), (A.10), (B.12), (B.13) and (A.11), and knowing that if the deviator

is better than the innovator, then a good match supplier is also necessarily better than

the innovator, we get:

I =
(1 + ρ)

((
1− δI

)
Π (x∗) + δIΠ (y∗)− Π (n)

)
1 + ρ− (1− δD) (1 + δI (γ − 1))

.

Case 1.2 We consider now the same situation except that the producer already knows

at least two deviators. Note that Bertrand competition implies that the producer can

then capture the entire value of the relationship so that:

V s
N = W s

N = V s
AN = 0, V p

N = V T
N and W p

N = W T
N (B.14)

(B.1), (B.2) and therefore (B.9) still hold. However (B.3) combined with (B.14) now

gives:

V T,n
0 = V T,n

I = (1− b)V T
1 + bθΠ (n) + b

1− δD

1 + ρ

((
1− δI

)
V T
N + δIγW T

N

)
, (B.15)

and the condition to be in that case is now

W T
N ≥ V T,n

0 ,
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instead of (B.7) (as the value of the deviator is always null). This condition then leads

to: (
γ−1 (1 + ρ)− b

(
1− δD

)
+
(
1− δD

) (
1− δI

)
(1− γ−1)

)
Π (n)

(1 + ρ) (1 + ρ− (1− δD) (1− δI + δIγ))

≥
(
(1− b)V T

1 + bθΠ (n)
)
.

which is the same condition as in case 1.

(A.13) gives:

V s
1 = V T

1 − V T
N .

Now note that we are precisely in the case where the analysis leading to (A.9) may not

apply. If the producer would rather switch to the deviator than the innovator, we get

that:

W p
1 = W T

N and W s
1 = W T

1 −W T
N ,

so that we get:

I =
(1 + ρ)

((
1− δI

)
Π (x∗) + δIΠ (y∗)− Π (n)

)
1 + ρ− (1− δD) (1 + δI (γ − 1))

.

The incentive constraint for a supplier with a producer who knows a deviator is the

same as in case 1, which is a necessary requirement for the existence of the equilibrium

(because condition 1 requires that the profile of investment with a good match supplier

is always the same even if the good match supplier is not the first good match supplier).

We need however to check that switching to the innovator when one is in a good

match remains worse than switching to the deviator (this is conceptually not equivalent

as saying that a producer with a deviator would not switch to the innovator, indeed

for a producer in a good match, switching to the innovator does not necessarily lead

to punishment in the following period, whereas switching to the deviator does so42).

We prove this by contradiction, assume that a producer in a good match would rather

deviate by switching to the innovator than to the deviator. We would then get:

W p
1 = V T,g

I = (1− b)V T
1 + bθΠ (n) +

b
(
1− δD

)
1 + ρ

((
1− δI

)
V T
N + δIγV T,g

I

)
,

with the condition V T,g
I > W T

N , however this condition leads to the reverse of condition

42We will not have to worry about this in the following cases because there the deviator will be worse
than the innovator for a producer not in a good match (by assumption), which therefore implies that
the deviator will be worse than the innovator also for a producer in a good match.
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(B.10).

Case 2.1 We now consider again a producer who knows only a single deviator. We

assume that sticking to the deviator is preferred to trying out a new supplier in periods

without innovation, or an outdated supplier in periods with innovation, but remains

worse than switching to the innovator in periods with innovation. In other words, we

assume:

V T
N ≥ V T,n

0 and W T,n
0 ≤ W T

N − V s
AN ≤ V T,n

I . (B.16)

Bertrand competition leads to (B.4) and to:

W s
N = V s

AN and W p
N = V p,n

I = W T
N − V s

AN , (B.17)

the value of the deviator in periods with innovation is not null because if the innovator

turns out to be a bad match, the producer would come back to the deviator in the

following periods.

(B.1), (B.2) (and therefore (B.8) and (B.9)), (B.3) and (B.6) still hold. (B.6), (B.17)

and (B.4) give:

V s
AN =

b
(
1− δD

) (
1− δI

)
1 + ρ− (1− δD) bδIγ

(
V T
N − V

T,n
0

)
. (B.18)

Moreover, we get (using (B.8), (B.17) and (B.18)):

W p
N = V p,n

I =
1 + ρ− b

(
1− δD

) (
1− δI + δIγ

)
1 + ρ− (1− δD) bδIγ

V T
N−
(
1− γ−1

)
Π (n)+

b
(
1− δD

) (
1− δI

)
1 + ρ− (1− δD) bδIγ

V T,n
0 .

Plugging this into (B.3) leads to:

V T,n
0 =

(
1 + ρ−

(
1− δD

)
bδIγ

)
(1− b)V T

1

1 + ρ− b (1− δD) (1− δI + δIγ)
+ b

1− δD

1 + ρ
δIγV T

N

+
1 + ρ−

(
1− δD

)
bδIγ

1 + ρ− b (1− δD) (1− δI + δIγ)
bθΠ (n)

−
1 + ρ−

(
1− δD

)
bδIγ

1 + ρ− b (1− δD) (1− δI + δIγ)
b
1− δD

1 + ρ
δIγ

(
1− γ−1

)
Π (n) .
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Using (B.9), we further get:

V T,n
0 =

(
1 + ρ−

(
1− δD

)
bδIγ

) (
(1− b)V T

1 + bθΠ (n)
)

1 + ρ− b (1− δD) (1− δI + δIγ)
(B.19)

+ b
1− δD

1 + ρ
δIγ

×

(
1 + ρ−

(
1− δD

)
δIγ (1− γ−1)

1 + ρ− (1− δD) (1− δI + δIγ)
−

1 + ρ−
(
1− δD

)
bδIγ

1 + ρ− b (1− δD) (1− δI + δIγ)

(
1− γ−1

))
Π (n) .

We can then express the conditions of (B.16) as:

γ−1 (1 + ρ)− b
(
1− δD

)
+
(
1− δD

) (
1− δI

)
(1− γ−1)

1 + ρ− (1− δD) (1− δI + δIγ)
Π (n) (B.20)

≤ (1− b)V T
1 + bθΠ (n)

≤
(
1 + ρ− b

(
1− δD

)
−
(
1− δD

)
δI (γ − 1)

)
Π (n)

1 + ρ− (1− δD) (1− δI + δIγ)

−
((

1− γ−1
)

(1− bθ) Π (n)− (1− b)
(
Π (x∗)− γ−1Π (y∗)

))+
.

We now move on to compute the incentive constraint of a producer in a good match.

Using (B.17) and (B.6), we get:

(
1− δI

)
V s
N + δIγW s

N =
(1 + ρ)

(
1− δI

)
V s
N

1 + ρ− (1− δD) bδIγ
. (B.21)

In this case (A.10) and (A.12) apply, combining them with (A.11), (B.4) and (B.21) we

can express the reward from cooperation I as:

I =

(1 + ρ)

((
1− δI

)
V s

1 + δIγ
(

1
γ
Π (y∗)− ((1− b) Π (x∗) + bθΠ (n))

)+
)

1 + ρ− b (1− δD) δIγ
−

(1 + ρ)
(
1− δI

)
V s
N

1 + ρ− (1− δD) bδIγ

(B.22)

=

(1 + ρ)

((
1− δI

) (
V T

1 − V T
N

)
+ δIγ

(
1
γ
Π (y∗)− ((1− b) Π (x∗) + bθΠ (n))

)+
)

1 + ρ− b (1− δD) δIγ

=
1 + ρ

1 + ρ− b (1− δD) δIγ

 (1−δI)((1+ρ−(1−δD)δIγ)Π(x∗)+(1−δD)δIΠ(y∗)−(1+ρ−(1−δD)δIγ(1−γ−1))Π(n))
1+ρ−(1−δD)(1−δI+δIγ)

+δIγ
(

1
γ
Π (y∗)− ((1− b) Π (x∗) + bθΠ (n))

)+

 .
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Recall that we needed to check that when a producer in a good match switches

to the innovator, sticking to the old supplier remains better than trying out a new

outdated supplier, that is we need to check that W p
1 = W T

1 − V s
A > W T,n

0 . Using that

V p
1 = V p

n = V T,n
0 , we get:

W p
1 =

1

γ
Π (y∗) +

1− δD

1 + ρ

(
(1− b)

((
1− δI

)
V T

1 + δIγW T
1

)
+ b
((

1− δI
)
V T,n

0 + δIγW p
1

))
W T,n

0 =
1− b
γ

Π (y∗) +
bθΠ (n)

γ

+
1− δD

1 + ρ

(
(1− b)

((
1− δI

)
V T

1 + δIγW T
1

)
+ b
((

1− δI
)
V T,n

0 + δIγW T,n
0

))
so the inequality is satisfied.

Case 2.2 As for case 1 2, we now consider the same situation as in case 2.1 except

that the producer knows two deviators. To ensure the existence of the equilibrium we

need that the conditions to be in case 2.2 are the same as the conditions to be in case

2.1, and that the IC constraint that we derive here (the IC constraint for a producer in

a good match who knows a deviator) is the same as the incentive constraint derived in

case 2..1. (B.1), (B.2) (and therefore (B.8) and (B.9)) still hold. Bertrand competition

now leads to (B.14), so that (B.3) gives (B.15) as in case 1 2. The conditions to be in

that case now writes as

V T
N ≥ V T,n

0 and W T,n
0 ≤ W T

N ≤ V T,n
I , (B.23)

as V s
AN = 0. Using equations (B.15), (B.8) and (B.9) we get that these conditions are

equivalent to (B.20) as it should.

For the IC constraint, (A.13) gives V s
1 = V T

1 −V T
N , (A.10) still holds, so using (B.14)

we directly get that I is given by (B.22) as it should.

Note that we need to check that when the producer does not switch to the innovator,

sticking to a good match supplier remains a better option than going for the innovator,

that is we need to check that W p
1 = W T

1 − V s
A remains greater than W T

N this is direct
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because:

W p
1 =

1

γ
Π (y∗) +

1− δD

1 + ρ

(
(1− b)

((
1− δI

)
V T

1 + δIγW T
1

)
+ b
((

1− δI
)
V T
N + δIγW p

1

))
W T
N =

1

γ
Π (y∗) +

1− δD

1 + ρ

((
1− δI

)
V T
N + δIγW T

N

)
,

and
(
1− δI

)
V T

1 + δIγW T
1 >

(
1− δI

)
V T
N + δIγW p

1 .

Case 3.1 We now consider the case where the producer would rather stick to the

deviator in periods without innovation, but, in periods with innovations, the deviator is

worse than even a new outdated supplier. We consider a producer who only knows one

deviator. The conditions to be in that case can then be expressed as:

V T
N ≥ V T,n

0 and
(
W T
N − V s

AN

)
≤ W T,n

0 .

As a consequence, the value of a producer in a period without innovation when he knows

a deviator is given by

V p,n
I = W T,n

0 . (B.24)

We get that (B.1) must be replaced by:

V T
N = Π (n) +

1− δD

1 + ρ

((
1− δI

)
V T
N + δIγ

(
W T,n

0 + V s
AN

))
, (B.25)

in a period with innovation, the value of the deviator supplier is indeed not null and

given by V s
AN , where V s

AN is given by

V s
AN =

1− δD

1 + ρ
b
((

1− δI
)
V s
N + δIγV s

AN

)
. (B.26)

Note that (B.8) still holds. (B.3) is replaced by:

V T,n
0 = (1− b)V T

1 + bθΠ (n) + b
1− δD

1 + ρ

((
1− δI

)
V p
N + δIγV p,n

I

)
, (B.27)

while the value of starting a relationship with an outdated supplier is given by:

W T,n
0 = V T,n

0 − (1− b)
(
Π (x∗)− γ−1Π (y)

)
− bθ

(
1− γ−1

)
Π (n) . (B.28)
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Bertrand competition still leads to (B.4), which, together with (B.24), (B.27) and (B.28)

gives:

V T,n
0 =

(1 + ρ)
(
(1− b)V T

1 + bθΠ (n)
)

1 + ρ− b (1− δD) (1− δI + δIγ)
−
δIγb

(
1− δD

)
(1− b) (Π (x∗)− γ−1Π (y∗))

1 + ρ− b (1− δD) (1− δI + δIγ)

(B.29)

−
b
(
1− δD

)
δIγbθ (1− γ−1) Π (n)

1 + ρ− b (1− δD) (1− δI + δIγ)
.

Now (B.4) and (B.26) give:

V s
AN =

b
(
1− δD

) (
1− δI

)
1 + ρ− (1− δD) bδIγ

(
V T
N − V

T,n
0

)
. (B.30)

Combining (B.25), (B.28), (B.29) and (B.30), we get:

V T
N =

1 + ρ−
(
1− δD

)
bδIγ

1 + ρ− (1− δI) (1− δD)− (1− δD) bδIγ
Π (n) +

(
1− δD

)
δIγ

(
(1− b)V T

1 + bθΠ (n)
)

1 + ρ− (1− δI) (1− δD)− (1− δD) bδIγ

(B.31)

−
(
1− δD

)
δIγ (1− b) (Π (x∗)− γ−1Π (y∗))

1 + ρ− (1− δI) (1− δD)− (1− δD) bδIγ
−

(
1− δD

)
δIγbθ (1− γ−1) Π (n)

1 + ρ− (1− δI) (1− δD)− (1− δD) bδIγ
.

The condition V T
N ≥ V T,n

0 and
(
W T
N − V s

AN

)
≤ W T,n

0 then translate into:(
1 + ρ− b

(
1− δD

)
−
(
1− δD

)
δI (γ − 1)

)
Π (n)

1 + ρ− (1− δD) (1− δI + δIγ)
(B.32)

−
(
(1− bθ)

(
1− γ−1

)
Π (n)− (1− b)

(
Π (x∗)− γ−1Π (y∗)

))
≤ (1− b)V T

1 + bθΠ (n)

≤
1 + ρ− b

(
1− δD

)
−
(
1− δD

)
δI (γ − 1)

1 + ρ− (1− δD) (1− δI + δIγ)
Π (n)

+

(
(1− b) δIγ

(
1− δD

)
1 + ρ− (1− δD) (1− δI + δIγ)

)(
(1− bθ)

(
1− γ−1

)
Π (n)− (1− b)

(
Π (x∗)− γ−1Π (y∗)

))
,

this case exists only when (1− bθ) (1− γ−1) Π (n)− (1− b) (Π (x∗)− γ−1Π (y∗)) ≥ 0.

We now move to express the IC constraint. First note that (B.4) and (B.30) lead to

(
1− δI

)
V s
N + δIγV s

AN =
(1 + ρ)

(
1− δI

)
1 + ρ− (1− δD) bδIγ

(
V T
N − V

T,n
0

)
.
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Combining this with (A.10), (A.12), (A.11) and (B.31), we get:

I =
1 + ρ

1 + ρ− b (1− δD) δIγ

 (1−δI)((1+ρ−b(1−δD)δIγ)(Π(x∗)−Π(n))+b(1−δD)δI(Π(y∗)−θΠ(n)))
(1+ρ−(1−δI)(1−δD)−(1−δD)bδIγ)

+δIγ
(

1
γ
Π (y∗)− ((1− b) Π (x∗) + bθΠ (n))

)  .

(B.33)

Checking that trying a new outdated supplier is worse than staying with a good match

supplier for a producer when innovation occurs proceeds as in case 2.

Case 3.2 As before we redo this case assuming that there are several deviators. The

condition now writes as:

V T
N > V T,n

0 and W T
N < W T,n

0 . (B.34)

Bertrand competition leads to

V s
N = W s

N = V s
AN = 0, V p

N = V T
N and V p,n

I = W T,n
0 . (B.35)

(B.25) is replaced by

V T
N = Π (n) +

1− δD

1 + ρ

((
1− δI

)
V T
N + δIγW T,n

0

)
, (B.36)

and (B.27) by:

V T,n
0 = (1− b)V T

1 + bθΠ (n) + b
1− δD

1 + ρ

((
1− δI

)
V T
N + δIγW T,n

0

)
, (B.37)

while (B.8) and (B.28) still hold. Using (B.28) and (B.37) we can now write:

V T,n
0 =

(1 + ρ)
(
(1− b)V T

1 + bθΠ (n)
)

1 + ρ− b (1− δD) δIγ
+

b
(
1− δD

)
1 + ρ− b (1− δD) δIγ

(
1− δI

)
V T
N (B.38)

−
b
(
1− δD

)
δIγ ((1− b) (Π (x∗)− γ−1Π (y∗)) + bθ (1− γ−1) Π (n))

1 + ρ− b (1− δD) δIγ
,
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which combined with (B.8) and (B.36) gives:

V T
N =

1 + ρ− b
(
1− δD

)
δIγ

1 + ρ− (1− δD) (1− δI)− b (1− δD) δIγ
Π (n) (B.39)

+
δIγ

(
1− δD

) (
(1− b)V T

1 + bθΠ (n)
)

1 + ρ− (1− δD) (1− δI)− b (1− δD) δIγ

−
δIγ

(
1− δD

)
((1− b) (Π (x∗)− γ−1Π (y∗)) + bθ (1− γ−1) Π (n))

1 + ρ− (1− δD) (1− δI)− b (1− δD) δIγ
,

which plugged back in (B.38) leads to:

V T,n
0 =

(
1 + ρ−

(
1− δD

) (
1− δI

)) (
(1− b)V T

1 + bθΠ (n)
)

1 + ρ− (1− δD) (1− δI)− b (1− δD) δIγ

+
b
(
1− δD

) (
1− δI

)
1 + ρ− (1− δD) (1− δI)− b (1− δD) δIγ

Π (n)

−
b
(
1− δD

)
δIγ ((1− b) (Π (x∗)− γ−1Π (y∗)) + bθ (1− γ−1) Π (n))

1 + ρ− (1− δD) (1− δI)− b (1− δD) δIγ

Using these last expressions, we can rewrite (B.34) as (B.32) (which is necessary to get

the equilibrium in the first place).

Finally (A.13) gives V s
1 = V T

1 − V T
N , (A.10) still holds, so using (A.11), (B.35) and

(B.39), we can express I exactly as in (B.33).

Case 4. We now consider the case where a producer not in a good match would rather

look for a new supplier than stick to a deviator in periods without innovations, while in

periods with innovation he tries out the innovator but the deviator represents a better

alternative than trying out an outdated supplier. Note that no matter what, the deviator

actually never works with the producer, his value is then always null and it does not

matter whether the producer knows only one deviator or more. The conditions to be in

that case can then be expressed as:

V T
N < V T,n

0 and W T,n
0 < W T

N . (B.40)

Bertrand competition implies that

V p,n
I = W T

N .
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We then get

V T
N = Π (n) +

1− δD

1 + ρ

((
1− δI

)
V T,n

0 + δIγW T
N

)
, (B.41)

and

V T,n
0 = (1− b)V T

1 + bθΠ (n) + b
1− δD

1 + ρ

((
1− δI

)
V T,n

0 + δIγW T
N

)
, (B.42)

while (B.8) and (B.28) still hold.

Using (B.8), (B.41) and (B.42), we can write V T,n
0 as:

V T,n
0 =

(
1 + ρ−

(
1− δD

)
δIγ
) (

(1− b)V T
1 + bθΠ (n)

)
+ bδI

(
1− δD

)
Π (n)

1 + ρ− (1− δD) δIγ − b (1− δD) (1− δI)
, (B.43)

plugging this back in (B.41) and using (B.8), we get:

V T
N

=

(
1 + ρ−

(
1− δD

)
δIγ (1− γ−1)

) (
1 + ρ−

(
1− δD

)
δIγ − b

(
1− δD

) (
1− δI

))
Π (n)

(1 + ρ− (1− δD) δIγ) (1 + ρ− (1− δD) δIγ − b (1− δD) (1− δI))

=
−bδI

(
1− δD

)2 (
1− δI

)
Π (n)

(1 + ρ− (1− δD) δIγ) (1 + ρ− (1− δD) δIγ − b (1− δD) (1− δI))

+

(
1− δD

) (
1− δI

)
1 + ρ− (1− δD) (δIγ)− b (1− δD) (1− δI)

(
(1− b)V T

1 + bθΠ (n)
)
.

Now combining these two last expressions with (B.8) and (B.28) we can rewrite (B.40)

as:(
1 + ρ− b

(
1− δD

)
−
(
1− δD

)
δI (γ − 1)

)
Π (n)

1 + ρ− (1− δD) (1− δI + δIγ)
(B.44)

< (1− b)V T
1 + bθΠ (n)

<

(
1 + ρ−

(
1− δD

)
δI (γ − 1)− b

(
1− δD

))
Π (n)

1 + ρ− (1− δD) (1− δI + δIγ)

+
1 + ρ− b

(
1− δD

) (
1− δI

)
−
(
1− δD

)
δIγ

1 + ρ− (1− δD) (1− δI + δIγ)

(
(1− b)

(
Π (x∗)− γ−1Π (y∗)

)
− (1− bθ)

(
1− γ−1

)
θΠ (n)

)
,

note that this case requires that (1− b) (Π (x∗)− γ−1Π (y∗)) > (1− bθ) (1− γ−1) θΠ (n) .

Finally to express the incentive constraint, first note that (A.12) holds so combining
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(A.11) and (B.43), we get:

V s
1 =

b
((

1 + ρ−
(
1− δD

)
δIγ
)

(Π (x∗)− θΠ (n)) +
(
1− δD

)
δI (Π (y∗)− Π (n))

)
1 + ρ− (1− δD) (δIγ)− b (1− δD) (1− δI)

,

now, as (A.10) holds, we get:

I =
1 + ρ

1 + ρ− b (1− δD) δIγ

 (
1− δI

)
b
(1+ρ−(1−δD)δIγ)(Π(x∗)−θΠ(n))+(1−δD)δI(Π(y∗)−Π(n))

1+ρ−(1−δD)(δIγ)−b(1−δD)(1−δI)

+δIγ
(

1
γ
Π (y∗)− ((1− b) Π (x∗) + bθΠ (n))

)+

 .

Further, note that when a producer in a good match switches to the innovator, we

do get that staying with the good match supplier is indeed the second best option and

not switching to the deviator, that is W p
1 = W T

1 − V s
A > W T

N .

Case 5. We treated that case in Appendix A.1, except that we did not derive the

conditions to be in it. Case 5 occurs when V T
N < V T

0 and W T
N < W T

0 .

In a period without innovation, the joint value of a relationship with the deviator

now obeys

V T
N = Π (n) +

1− δD

1 + ρ

((
1− δI

)
V T

0 + δIγW T
0

)
. (B.45)

Indeed, after one period, the producer will look for a new supplier in a period without

innovation, and in a period with innovation a new outdated supplier will be his second

best option (after the innovator). Similarly in a period with innovation, the joint value

of a relationship with a deviator (necessarily outdated) is given by:

W T
N =

1

γ
Π (n) +

1− δD

1 + ρ

((
1− δI

)
V T

0 + δIγW T
0

)
. (B.46)

Combining (B.45) and (B.46) with (6) and (13), we obtain that:

W T
0 −W T

N = V T
0 − V T

N −
(
(1− b)

(
Π (x∗)− γ−1Π (y∗)

)
− (1− bθ)

(
1− γ−1

)
Π (n)

)
(B.47)

Therefore if (1− b) (Π (x∗)− γ−1Π (y∗)) > (1− bθ) (1− γ−1) Π (n), then W T
N < W T

0 is

the stricter constraint and otherwise V T
N < V T

0 is the stricter one.
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Combining (B.45), (6) and (13), we further get:

V T
0 − V T

N (B.48)

=

(
1 + ρ−

(
1− δD

) (
1− δI + δIγ

)) (
(1− b)V T

1 + bθΠ (n)
)

1 + ρ− b (1− δD) (1− δI + δIγ)

−
(
1 + ρ− b

(
1− δD

)
−
(
1− δD

)
δI (γ − 1)

)
Π (n)

1 + ρ− b (1− δD) (1− δI + δIγ)

−
(1− b)

(
1− δD

)
δIγ

[
(1− bθ) (1− γ−1) Π (n)− (1− b)

(
Π (x∗)− 1

γ
Π (y∗)

)]
1 + ρ− b (1− δD) (1− δI + δIγ)

Therefore V T
0 > V T

N is equivalent to

(1− b)V T
1 + bθΠ (n) (B.49)

>
1 + ρ− b

(
1− δD

)
−
(
1− δD

)
δI (γ − 1)

1 + ρ− (1− δD) (1− δI + δIγ)
Π (n)

+
(1− b)

(
1− δD

)
δIγ

[
(1− bθ) (1− γ−1) Π (n)− (1− b)

(
Π (x∗)− 1

γ
Π (y∗)

)]
1 + ρ− (1− δD) (1− δI + δIγ)

Combining (B.47) with (B.48), we obtain that W T
0 > W T

N is equivalent to:

(1− b)V T
1 + bθΠ (n) (B.50)

>
1 + ρ− b

(
1− δD

)
−
(
1− δD

)
δI (γ − 1)

1 + ρ− (1− δD) (1− δI + δIγ)
Π (n)

+

(
1 + ρ− b

(
1− δD

) (
1− δI

)
−
(
1− δD

)
δIγ
)

1 + ρ− (1− δD) (1− δI + δIγ)

×
(
(1− b)

(
Π (x∗)− γ−1Π (y∗)

)
− (1− bθ)

(
1− γ−1

)
Π (n)

)
.

Recalling thatW T
N < W T

0 is the stricter constraint if and only if (1− b) (Π (x∗)− γ−1Π (y∗)) >

(1− bθ) (1− γ−1) Π (n), we can combine (B.49) and (B.50), to get that the equilibrium
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is in case 5 if and only if:

(1− b)V T
1 + bθΠ (n) (B.51)

>
1 + ρ− b

(
1− δD

)
−
(
1− δD

)
δI (γ − 1)

1 + ρ− (1− δD) (1− δI + δIγ)
Π (n)

+
(1− b)

(
1− δD

)
δIγ

1 + ρ− (1− δD) (1− δI + δIγ)

(
(1− bθ)

(
1− γ−1

)
θΠ (n)− (1− b)

(
Π (x∗)− γ−1Π (y∗)

))+

+
1 + ρ−

(
1− δD

) (
b
(
1− δI

)
+ δIγ

)
1 + ρ− (1− δD) (1− δI + δIγ)

(
(1− b)

(
Π (x∗)− γ−1Π (y∗)

)
− (1− bθ)

(
1− γ−1

)
θΠ (n)

)+
.

Summary Overall conditions (B.10), (B.20), (B.32), (B.44) and (B.51) span all the

possibilities. Moreover, a producer who knows a deviator and one who does not always

face the same incentive constraint, so that the profile of investment levels played by

a new supplier can indeed be the same no matter whether the producer knows other

good matches or not. The IC constraint of a good match supplier only takes two forms

depending on whether the supplier has access to the frontier technology or not.

B.1.2 Part 4

Therefore to prove the existence of the equilibrium, the last step is to show that there

always exists a solution to x∗ and y∗ such that IC constraint binds or the first best is

achieved. As argued in Appendix A.1, we simply need to show the IC constraints do

not bind for (x, y) just above n, and since n minimizes ϕ, it is enough to show that I is

positive at the first order in (x− n) and (y − n) when x and y are greater than n.

Note that as ((1− b) (Π (x)− γ−1Π (y))− (1− bθ) (1− γ−1) Π (n)) = − (1− θ) (1− γ−1) bΠ (n)+

O (x− n) +O (y − n), the only possible cases when x, y are close to n are 1, 2, 3 and 5.

We have already checked that I is positive for x and y just above n in case 5. In case 1,

we get

I = Π′ (n)
(1 + ρ)

((
1− δI

)
(x− n) + δI (y − n)

)
1 + ρ− (1− δD) (1 + δI (γ − 1))

+ o (x− n) + o (y − n) ,

which is positive at first order in (x− n), (y − n) when x and y approach n by superior
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values. In case 2, we get

I =
1 + ρ

1 + ρ− b (1− δD) δIγ

 Π′ (n)
(1−δI)(1+ρ−(1−δD)δIγ)(x−n)+(1−δD)δI(y−n)

1+ρ−(1−δD)(1−δI+δIγ)

+δIγ
(

1
γ
Π (y)− ((1− b) Π (x) + bθΠ (n))

)+

 (B.52)

+ o (x− n) + o (y − n) ,

also positive at first order in (x− n), (y − n) when x and y approach n by superior

values. In case 3, we get

I

=
1 + ρ

1 + ρ− b (1− δD) δIγ

(
1− δI

)
b
(
1− δD

)
δI (1− θ) Π (n)

1 + ρ− (1− δI) (1− δD)− (1− δD) bδIγ

+
1 + ρ

1 + ρ− b (1− δD) δIγ
δIγ

(
1

γ
Π (y)− ((1− b) Π (x) + bθΠ (n))

)+

+O (x− n) +O (y − n) ,

which is positive at first order in (x− n), (y − n). Therefore, there always exist x∗ and

y∗ solutions to the problem above n. This achieves the proof.

B.2 Proof of Proposition 8

Here we prove Proposition 8.

Step 1: Incentive constraint

The incentive constraint must be of the following form. After a history of ht when

a good match supplier makes her investment decision she can invest n instead of the

prescribed z (ht), which would increase ex-post profits this period by ϕ (z (ht))Ak (ht),

where Ak (ht) is the technology of supplier and

ϕ (z) ≡ βR (n)− n− (βR (z)− z)

Denoting by I ∈ {0, 1} either no new innovation (I = 0) or a new innovation (I = 1)

we can express the incentive constraint as:

ϕ (z (ht))Ak (ht) ≤
1− δD

1 + ρ
× (B.53)
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( (
1− δI

)
V s,k (ht ∪ {z (ht)} ∪ {I = 0}) + δIV s,k (ht ∪ {z (ht)} ∪ {I = 1})

−
((

1− δI
)
V s,k (ht ∪ {n} ∪ {I = 0}) + δIV s,k (ht ∪ {n} ∪ {I = 1})

) )
,

where V s,k (h) denotes the value of the supplier after history h (The continuation value

after a deviation other than n could be different, but the producer has no reason not to

punish any deviation in the same way so we focus on the incentive not to play n).

Step 2: Producers in a good match do not switch suppliers in periods without

innovation

Let us consider the first time the producer meets a good match supplier. Then this

good match supplier has an advantage over any other supplier in the future except for

a possible innovator, as a consequence any payoff achievable with another supplier is

achievable with the good match supplier in periods without innovation. In order to

maximize the joint value of the producer and the supplier, the producer should then

stick to the supplier at least as long as no innovation occurs. Moreover if an innovation

occurs, and the equilibrium is such that the producer should not switch to the innovator,

the argument carries through. Note that the argument applies no matter whether the

first good match supplier happens to be outdated or not, moreover, because of condition

1, this must be true for any relationship not only the first time the producer starts a

relationship with a good match supplier.

Step 3 Bertrand competition

Condition 1 imposes that strategies once a producer has chosen a supplier are in-

dependent of the ex-ante transfer that was made, so that the ex-ante transfer does not

affect the joint value of a relationship if the producer and the supplier end up working

together. As a consequence the supplier whom the producer ends up working with,

must offer an ex-ante transfer low enough that the value of the producer is the same as

it would have been if he had chosen another supplier. In return, the supplier with whom

the producer ends up being just indifferent to start working with or not must make an

ex-ante transfer sufficiently high that he is himself just indifferent between working with

the producer or not. A new supplier will then just break-even (as his value is zero if

the producer does not choose him); and, the value of a good match supplier when an

innovation occurs and for parameters such that the producer switches to the innovator,

V s,k (ht ∪ {z (ht)} ∪ {I = 1}) , is not zero because the producer may go back to the old

supplier after having tried the innovator.

Without condition 1 it is possible to build equilibria where the value of the producer
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is strictly higher than the value he gets with his second best option by conditioning

normalized investment levels on the ex-ante transfer offered.

Step 4: The joint value of a producer and a supplier is the value on the path where

they never stop working together

This is obvious in the case where the producer does not switch to the innovator. In

the case where the producer does switch to the innovator, the take-it or leave-it offer

of the innovator implies that the value of the producer should be equal to the value of

the producer had he stayed with his old supplier, as specified by step 3. Now the old

supplier is willing to offer an ex-ante transfer that leaves the producer with the entire

joint value of a relationship with him had they stayed together minus what the supplier

still gets when the producer switches to the innovator. Therefore the joint value of the

producer and the old supplier is the joint value of the producer and the supplier on the

path where the producer and the supplier do not break-up their relationships when there

is an innovation. Note that on this path the argument of step 2 applies and the producer

and the supplier never break up.

Step 5: The value of the supplier is also determined by the value on the path where

the producer and the supplier never stop working together

Combining steps 3 and 4, the value of the supplier in periods without innovation is

simply given by the joint value of the producer and the supplier on the path where they

relationship never breaks down minus the value of the second best relationship that the

producer can get. This reasoning extends to periods with innovations when the producer

does not switch. When the producer switches, the value of the supplier is given by the

rents he can capture in the future if the innovator turns out to be a bad match, so that

the producer comes back to the supplier, and by condition 2, we know that the strategies

must then be identical to the strategies if the producer had not switched. Therefore in

this case too, the value of the supplier is ultimately determined by the joint value of

the producer and the supplier in the future, on the path where they never stop working

together.

Step 6: Higher investment levels in the future increase the RHS of the IC constraint

Higher investment levels on the path where the relationship does not break down

then necessarily increases the joint value of the relationship of the producer and the

supplier (step 4), as a consequence, they also increase the value of the supplier and make

the IC constraint looser (step 5).
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Note that condition 2 stipulates that if the producer switches and the innovator has

turned out to be a bad match, the behavior of the producer and the supplier is identical

to what they would have done had they stick together, so that the investment levels in

that case are in fact the investment levels in the path where the producer and the supplier

never break up. On the contrary, if the innovator turns out to be a good match, we know

from step 2 that the producer would then stay with the innovator. As a consequence,

the previous claim (the higher the investment on the path where the relationships does

not break, the looser the IC constraints in previous periods) implies that the higher the

investment in the relationship on the equilibrium path, the looser the IC constraints in

the previous period.43

Step 7: Investments are at first best or the IC constraint binds

From step 6, it is then direct that investment in a good match relationship should

be as high as possible (on the equilibrium path and on the path where the relationship

never breaks down), therefore either the first best must be achieved or the IC constraint

binds.

Step 8: Punishment strategies

To achieve the highest possible investment level, the RHS of the incentive constraint

must in return be the highest possible. Therefore, the value of the supplier in case a

deviation occurs must be as low as possible, this occurs if the supplier plays the Nash

level of investment n in any future interaction between the producer and the supplier.

The value of the supplier if no deviation occurs must be as high as possible.

Let us first consider the case of periods without innovation. Step 5 already ensures

that the suppliers gets the largest possible value out of the relationship, so that the

producer is just indifferent between staying in the current relationship or starting a new

one (from which he would capture the entire benefit).44 Now, to still ensure the highest

value for the supplier it is then necessary that the value the producer can get with his

second best option must be as low as possible. If the producer switches to a new supplier

who turns out to be a bad match, then the producer may be willing to come back to

the old supplier; as long as the first best is not achieved, the strategy of the old supplier

43Without condition 2 this would not necessarily be the case, lower investment levels if the producer
switches to the innovator and comes back could reduce the incentive for the innovator to switch and
therefore increase the joint value of the relationship.

44One could then dispend with the assumption that normalized investment levels do not depend on
the ex-ante transfers if the first best is not reached: condition 3 would then ensures that the supplier
would capture the entire benefit of the relationship.
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should then be never to cooperate in that case, as cooperation in the future increases

the value that the producer could capture by switching. If the producer switches to a

new supplier and this supplier turns out to be a good match, then condition 1 specifies

what the outcome is (and we come back to that case to discuss what the strategy of the

old supplier must be in step 9). If the producer switches to a good match with whom

a deviation has occurred, then the strategy of the old supplier should be such that -

on that path- the producer does not cooperate again with him (for the same reason).

In periods where innovation occurs, the same reasoning applies: Bertrand competition

ensures that the supplier already gets the largest possible value of the relationship if the

producer does not switch, while, otherwise, the value of the supplier is fixed according to

step 5; if the producer deviates to an old good match supplier with whom a deviation has

occurred, the strategy of the supplier must be such that he does not cooperate with the

producer again in the future (a producer will necessarily prefer to deviate by switching

to the innovator than a new outdated good match, so we don’t have to specify what

happens in that case); however condition 2 stipulates that if the producer switches to

the innovator and the innovator turns out to be a good match, the old supplier must

forgive the producer.

Step 9: Investment by good match suppliers when a deviation has occurred

Step 8 already specified that if a supplier deviates, his investment in the future must

be at the Nash level. It also specified the behavior of the supplier if the producer has

deviated but only found bad matches. Now let us focus on the case where the producer

deviates and finds a new good match, we denote by k the previous supplier and by k′

the new supplier. Condition 1 stipulates that the outcome should be identical to the

outcome in the first interaction between the producer and a good match supplier. As

explained in step 8, the investment level in the relationship with supplier k′ is going to

directly depend on the outside option of the producer. A better outside option for the

producer implies a lower lower value for supplier k′, and therefore (unless the first best

is achieved), lower investment levels. When the producer met a good match supplier

for the first time, however, there was no other good match supplier that the producer

knew, so his outside option was a priori worse. To satisfy condition 1, we must then

ensure that the value of the producer once he has started a relationship with supplier k′

must be as low as possible if he is to switch to a different supplier. If switching to a new

match is better than resuming working with the old good match supplier, then what the

old good match supplier would do does not matter, however, if resuming working with
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supplier k is the best option, the value of a relationship with the supplier k must be as

low as possible, which is achieved if supplier k plays the Nash level of investment in any

possible future interaction.45

Therefore, as soon as the producer switches suppliers46 (except if it is the innovator

and the innovator turns out to be a bad match), or the supplier under-invests, investment

in any future interaction between the producer and the supplier leads to the Nash level

of normalized investment.

Step 10: Excepted strategies of the other players are identical in all periods.

Condition 1 stipulates how new good match suppliers are expected to behave in the

future. Condition 4 stipulates that the investment level of bad matches is n, and we

derived that the investment level of good match suppliers with whom a deviation has

occurred must be at the Nash level n too. Moreover Bertrand competition determines

the form of the ex-ante transfer that these suppliers are willing to offer: in periods

without innovation they should all break even, in periods with innovation the innovator

can capture the surplus from his innovation if the producer switches. Therefore when the

supplier makes his investment decision all periods are identical in term of the strategies

played by the other players, the only difference is that in periods where the supplier has

access only to an outdated technology he knows that he will get access to the frontier

technology in the next period.

Step 11: Investment levels are constant

The only thing that remains to be proved is that investment levels are the same in

good matches in all periods when the supplier has access to the frontier technology and

when the supplier has access only to an outdated technology, step 8 has already proved

that the situation was symmetric in all periods where the supplier has access to the

frontier technology and in all periods where he does not, so if a path of investment is

45Note that without condition 1, the value of the supplier k could be increased if when the producer
switches to the supplier k′, some cooperation were to arise if the producer comes back to the supplier
k in the future. This does not contradict condition 3 though, because condition 3 takes as given the
strategy of the producer once the producer has started working with a new good match supplier. Note
also that even if the old good match supplier keeps playing the Nash level in any future interaction there
is no guarantee that it is possible to satisfy condition 1, part 3 of the proof of Proposition 1 showed
that there is no contradiction though.

46Technically this needs to be true only if working again with a good match supplier with whom a
deviation has occurred is a better second option than starting over a relationship, for a producer who
is in a new good match relationship. Of course, in the other case, the strategy of the old good match
does not matter, so we can assume that he plays the Nash level without affecting the analysis.
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sustainable after one given history, it is also sustainable after any other history (provided

that the access to the frontier technology for the supplier is the same).

Let us then consider a history ht0 , where a producer and a good match supplier starts

working together for the first time. Let us denote by x (ht) and y (ht) the investment

levels in all histories ht belonging to the set of histories Ht0 of histories following ht0 on

the path where the relationship between the producer and the supplier never break-up

their relationship, where x (ht) is used for histories where the supplier has access to the

frontier technology and y (ht).for when he does not. The joint value of the producer and

a supplier at an history h̃t ∈ Ht0 is then simply the discounted sum of the expected

values of profits on the path following h̃t where the producer and the supplier never

break up their relationship, that is it a discounted sum of the Π (x (ht)) and Π (y (ht))

for ht following h̃t in Ht0 Therefore, there is a M1 such that if for all ht following h̃t in

Ht0 , |Π (x (ht))− Π (x̂)| < ν/M1 and [Π (y (ht))− Π (ŷ)] < ν/M1, then the joint value of

the relationship is within ν of what the joint value of the relationship would have been

if the investments levels where x̂ at all histories where the producer has access to the

frontier technology and ŷ in histories where he does not, and by symmetry between the

different periods, we can choose the same M1 for all histories ht ∈ Ht0 .

Now because of step 5, the value of the supplier (in all cases) is determined by the

joint value of the producer and the supplier on the history path where the relationship

does not break down, and, because of step 10 the strategies of the other players are the

same over time, therefore there exists a M2, such that if the joint value of the producer

and the supplier is within v/M2 of the joint value of the producer and the supplier if

investment levels had been x̂ in periods where the supplier has the frontier technology

and ŷ in the other periods, the value of the supplier is within ν of the value of the

producer and the supplier if investment levels had followed the same alternative (and

this M2 can be the same for all histories ht ∈ Ht0). Finally because the RHS of the

IC constraint is just the discounted expectation of the value of the supplier in the next

period, there is therefore a M3 such that if the value of the supplier is (in both the

case with innovation and the case without innovation) within ν/M3 of the value of the

supplier if the investment levels were given by x̂ in periods where the supplier has the

frontier technology and ŷ otherwise, then the RHS of the IC constraint is within ν of

the RHS of the IC constraint under the alternative profile.

Let us define x = sup (x (ht) |ht ∈ Ht0) and y = sup (x (yt) |ht ∈ Ht0). Then, for any

ε > 0, there exists some η > 0 such that if x (ht) ∈ [x− η, x] and y (ht) ∈ [y − η, y],

83



for all histories ht ∈ Ht0 , the RHS of the IC constraint after any history ht ∈ Ht0 when

the profile of normalized investment is given by x
(
h̃t

)
y
(
h̃t

)
where h̃t are the histories

following ht in the set Ht0 , is weakly smaller than ε + the RHS of the IC constraint if

the profile of normalized investment was given by x− η, y− η (we just have to choose η

such that if x ∈ [x− η, x], and y ∈ [y − η, y], then |Π (x)− Π (x)| < ε/ (M1M2M3) and

|Π (y)− Π (y)| < ε/ (M1M2M3)). Let us then define ϕε ≡ ϕ− ε.
Moreover there exists a history h1

t ∈ Ht0 , where x (h1
t ) ∈ [x−min (η, ε) , x], so that

x (h1
t ) must satisfy the IC constraint at history h1

t , therefore it necessarily satisfies the IC

constraint if the normalized investment in the future were given bymax
(
x
(
h̃t

)
, x−min (η, ε)

)
and max

(
y
(
h̃t

)
, y −min (η, ε)

)
instead of the actual path x

(
h̃t

)
y
(
h̃t

)
where h̃t

are the histories following h1
t in the set Ht0 . Note then that, by the definition of η,

x (h1
t ) would satisfy the IC constraint if the incentive to deviate was given by ϕε instead

of ε and the profile of normalized investment levels was given by x − min (η, ε) and

y − min (η, ε) in any future histories. Similarly we can find a history h2
t ∈ Ht0 , where

y (h2
t ) ∈ [y −min (η, ε) , y], and the same property arises.

Now let us consider the profile of normalized investment where for all histories ht ∈
ht0 , we replace x (ht) bymax (x (ht) , x−min (η, ε)) and y (ht) bymax (y (ht) , y −min (η, ε)),

then this alternative profile necessarily leads to a strictly higher investment joint value

(as long as x (ht) is not always equal to x, and y (ht) is not always equal to y) and for

any history where the normalized investment level has not changed, the IC constraint re-

mains satisfied. Let us now consider a history h′t where the investment level has changed

under the alternative profile and the supplier has access to the frontier technology, the

profile of future investment levels is within [x−min (η, ε) , x] and [y −min (η, ε) , y], and

we know that x (h1
t ) (which is weakly larger than x − min (η, ε)) satisfies the IC con-

straint if the profile of future investment is given by x − min (η, ε) and y − min (η, ε)

and ϕ is replaced by ϕε, therefore the investment level x−min (η, ε) also satisfies the IC

constraint at history h′t under the alternative profile provided that ϕ is replaced by ϕε.

The same logic applies to periods where the supplier does not have access to the frontier

technology.

Thus, the alternative profile leads to a higher joint value and is sustainable up to

replacing ϕ by ϕε, letting ε goes to 0, we get that a profile with constant investment x, y

satisfies the IC constraint and yields a higher joint value. As a consequence, normalized

investment must take two values only one for when the supplier has access to the frontier

technology and one for when he has access to the outdated technology.
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Furthermore the situation is symmetric whether during their first interaction the

supplier has access to the frontier technology or not, so if he does not, investment levels

are also determined by the same two constants. Finally, condition 1 stipulates that the

profile of investment levels needs to be the same in any new good match relationship.

Step 12 Summary

So far we have then shown that in a SPNE equilibrium satisfying conditions 1-4:

1. investment levels in all good matches are given by two constant x∗ and y∗, where

the former is undertaken when the supplier has access to the best technology and

the latter when he does not, as long as no deviation has occurred in the relationship

between the producer and the supplier;

2. investment levels are at the first best level if possible and otherwise the IC con-

straint binds;

3. producers stay with the same supplier until an innovation or a deviation occurs, if

an innovation occurs, the producer may or may not switch, but if he switches and

the innovator turned out to be a bad match, he goes back to his old supplier;

4. producers are just indifferent between choosing the supplier they are supposed to

work with on equilibrium path and choosing the“second best”supplier, the“second

best” supplier is just indifferent between being chosen and not being chosen by the

producer;

5. if a supplier deviates once, investment is at the Nash level in any further interaction,

and - without loss of generality-47 if the producer deviates (by switching to another

supplier except if it is the innovator and the innovator turned out to be a bad

match) investment is also at the Nash level in any future interaction.

These conditions correspond to the strategies described in Proposition 1.

B.3 Proof of Proposition 9 and Remark 2

We seek to demonstrate that both x∗ and y∗ are (weakly) increasing in γ and the condi-

tions under which x∗ and y∗ are decreasing in δI . The proof of the rest of Proposition 9

47Stricto sensu, this is not necessary if a good match supplier with whom a deviation has occurred
does not count, in the sense that he represents a worse alternative than trying a new supplier.
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follows along the same lines and is omitted. We prove the proposition in the same special

case as considered in the main text. The proof for the remaining cases is analogous and

is omitted. Trivially, the effect is zero when x and y are equal to the first best m. When

they are not, equations (9) and (10) deliver:48

ϕ(x)− f(x, y, γ) = 0, (B.54)

ϕ(y)− γf(x, y, γ) = 0, (B.55)

where

ϕ(x) = (βR(n)− n)− (βR(x)− x) ,

f(x, y, γ) =

(
1− δD

)
b
(
1− δI

)
1 + ρ− b (1− δD) (1− δI)− b (1− δD) δIγ

×

(
Π(x)− θΠ(n)

+
b(1−δD)δI

1+ρ−b(1−δD)δIγ
(Π(y)− θΠ(n))

)
.

We define g0(x, y, γ) ≡ ϕ(x) − f(x, y, γ) and g1(x, y, γ) ≡ ϕ(y) − γf(x, y, γ) and note

that g0,γ < 0 and g1,γ < 0, where a subscript denotes a partial derivative.49 Then there

are three cases i) both x and y equal to m if g0(m,m) ≤ 0 and g1(m,m) ≤ 0, ii) y = m

and x < m as a solution to g0(x,m) = 0 if g1(x,m) ≤ 0 and iii) x and y are solutions to

g0(x, y) = 0 if g1(x, y) = 0.

As ϕ(y) is convex and f(x, y) is concave in y (as Π(y) is concave in y) on yε [n,m]

it follows that g1(x, y) is convex in y. Let us define y = h(x) such that h(x) = m if

g1(x,m) < 0 and otherwise g1(x, h(x)) = 0 (h(x) is single-valued as g1(x, h(x)) = 0 has

a unique solution from g1(x, n) < 0 and convexity of g1(x, y) in y). Note that h(x) is

trivially increasing in x. Further, define g̃(x) = g0(x, h(x)) such that either i) x = m

and g̃(m) ≤ 0 ii) x is a solution to g̃(x) = 0. Note that g̃(n) < 0 and that g̃(x) is convex

when h(x)(= y) is constant and equal to m.

We first seek to demonstrate that h(x)′′ < 0 (when not equal to m). Note first, that

by concavity of Π(x) it follows that g1,x < 0 and g1,xx > 0 and it has already been argued

that g1 is convex with g1,y > 0 and g1,yy > 0 (for y < m). Differentiate g1(x, h(x)) = 0

twice and get:

g1,xx + 2g1,xyh
′(x) + g1,yy (h′(x))

2
+ g1,yh

′′(x) = 0.

48To be consistent we should use (x∗, y∗) as these are the equilibrium values. This omission will not
lead to confusion.

49In order to avoid cluttering the notation we will suppress the dependence of g0 and g1 on γ
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By inspection g1,xy = 0 and hence h′′(x) < 0 when h(x) 6= m. Along the same lines and

using the properties of h(x) we can show that g̃(x) is increasing and strictly convex in

xε(n,m). Hence, if g̃(m) ≤ 0 then x = m is optimal. As g̃(x) is decreasing in γ this

implies that x is decreasing in γ and so is y.

To study the impact of an increase in the innovation rate, δI , note that we can rewrite

f(x, y, γ) as: (
1− δD

)
b
(
1− δI

)
[1 + ρ− b (1− δD) (1 + δI(γ − 1))] (1 + ρ− b(1− δD)δIγ)

× (B.56)

(
(1 + ρ) (Π(x)− θΠ(n))

−δI(1− δD)b (γ (Π(x)− θΠ(n))− (Π(y)− θΠ(n)))

)
.

Below, we demonstrate thatγ (Π(x)− θΠ(n)) > Π(y) − Π(n). Under this condition, a

sufficient condition for the expression in equation (B.56) to be decreasing in δI (and

thereby for x and y to be decreasing in δI) is that γ < 1+ρ
b(1−δD)(2−δI)

as written in the

proposition. All we need is therefore γ (Π(x)− θΠ(n)) > Π(y) − Π(n) which we now

demonstrate.

First, define a function κ(x) which is κ(x) = ϕ−1(γϕ(x)) if γϕ(x) ≤ ϕ(m) and

κ(x) = m otherwise. We then define the function:

λ(x) ≡ γ (Π(x)− θΠ(n))− (Π(κ(x))− θΠ(n)) . (B.57)

Note that as κ(n) = n (as ϕ(n) = 0), λ(n) > 0, and

λ′(x) = γΠ′(x)− Π′(κ(x))κ′(x). (B.58)

Obviously, on parts where κ is constant λ will be increasing. Where κ is not constant,

κ′(x) = γϕ′(x)/ϕ′(κ′(x)). Using this in equation (B.58) returns:

λ′(x) = γΠ′(x) [1− Π′(κ(x))ϕ′(x)/ (Π′(x)ϕ′(κ′(x)))] .

With κ(x) ≥ x,Π(x) concave and ϕ(x) convex, we get that λ′(x) ≥ 0, hence for any

pair xε[n,m], λ(x) > 0, in particular λ(x) > 0 for the equilibrium investment pair (x, y),

which completes the proof.
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B.4 Proof of Propositions 3 and Remark 1

We derive necessary and sufficient conditions under which δNash > δcoop in each of the

three cases (γ ≤ γNash, γ ∈ (γNash, γcoop] and γ > γcoop). Then we combine them to

prove Propositions 3 and Remark 1.

First case: Assume γ < γNash

As part of Appendix B.3 we demonstrated that the function λ (x) defined in (B.57)

was increasing in x (note that this held regardless of whether after a deviation a pro-

ducer preferred a deviator to a new supplier or not). This directly implies that Π (x)−
γ−1Π (κ (x)), where κ is defined as in Appendix B.3, is also increasing in x. Therefore

we must always have

(
1− γ−1

)
Π (n) < Π (x∗)− γ−1Π (y∗) ≤

(
1− γ−1

)
Π (m) .

This shows directly that ZNash−Zcoop in (24) is strictly negative, and that if γ ≤ γNash

then δNash < δcoop (which proves the first part of Part b)).

Third case: Assume γ > γcoop

Then using (25), we obtain that

ZNash > Zcoop ⇔ γ <
1

1− b (1− δD)

Π (y∗)− Π (n)

Π (x∗)− Π (n)
. (B.59)

Since Π (y∗) ≥ Π (x∗), then γ < 1
1−b(1−δD)

is a sufficient condition to achieve ZNash >

Zcoop. On the other hand, this equality must be violated for γ large enough (since

Π (x∗) > Π (n)), proving the second part of Part b).

Second case: Assume γNash < γ ≤ γcoop

Then using the definition of ω and (25), we can rewrite:

ZNash − Zcoop =

1− b
1− (1− δD) b

[(
1− δD

) (
1− b+ bθ − γ−1

)
Π (n) + δD

((
1− γ−1

)
Π (n)−

(
Π (x∗)− γ−1Π (y∗)

))]
.

Hence we can rewrite that in this case:

ZNash > Zcoop ⇔ δD <
1− b+ bθ − γ−1

Π(x∗)
Π(n)
− b+ bθ − γ−1 Π(y∗)

Π(n)

.

To derive this we used that since γ−1 < 1 − b + bθ, and Π(x∗)
Π(n)

− γ−1 Π(y∗)
Π(n)

> 1 − γ−1,
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then both the numerator and the denominator are positive. We can also rewrite this

equivalence as

ZNash > Zcoop ⇔ γ−1

(
1− δDΠ (y∗)

Π (n)

)
< 1− δDΠ (x∗)

Π (n)
− b (1− θ)

(
1− δD

)
.

Hence we have that if 1 − δD Π(x∗)
Π(n)

− b (1− θ)
(
1− δD

)
> 0, then ZNash > Zcoop is

equivalent to:

γ >
1− δD Π(y∗)

Π(n)

1− δD Π(x∗)
Π(n)
− b (1− θ) (1− δD)

. (B.60)

Proof of Part c).

Therefore we get that δcoop < δNash if γ > γcoop and γ < 1
1−b(1−δD)

or if γNash < γ ≤

γcoop and γ >
1−δD Π(y∗)

Π(n)

1−δD Π(x∗)
Π(n)

−b(1−θ)(1−δD)
with 1 − δD Π(x∗)

Π(n)
− b (1− θ)

(
1− δD

)
> 0. Assume

that δD < θ Π(n)
Π(m)

, this ensures that for any x∗, y∗ we have 1−δD Π(x∗)
Π(n)
−b (1− θ)

(
1− δD

)
>

0 and 1− δD Π(y∗)
Π(n)

> 0. Moreover we get that

1− δD Π(y∗)
Π(n)

1− δD Π(x∗)
Π(n)
− b (1− θ) (1− δD)

<
1− δD Π(m)

Π(n)

1− δD Π(m)
Π(n)
− b (1− θ) (1− δD)

Hence γ >
1−δD Π(m)

Π(n)

1−δD Π(m)
Π(n)

−b(1−θ)(1−δD)
is a stricter condition than γ >

1−δD Π(y∗)
Π(n)

1−δD Π(x∗)
Π(n)

−b(1−θ)(1−δD)
.

In addition we have:

1− δD Π(m)
Π(n)

1− δD Π(m)
Π(n)
− b (1− θ) (1− δD)

=
1

1− b (1− θ) 1−δD
1−δD Π(m)

Π(n)

>
1

1− b (1− θ)
= γNash

since Π (m) > Π (n) .

Hence we have that δcoop < δNash if γ ∈
(

1−δD Π(m)
Π(n)

1−δD Π(m)
Π(n)

−b(1−θ)(1−δD)
,max

(
γcoop, 1

1−b(1−δD)

))
,

which implies that δcoop < δNash if γ ∈
(

1−δD Π(m)
Π(n)

1−δD Π(m)
Π(n)

−b(1−θ)(1−δD)
, 1

1−b(1−δD)

)
. This interval

is non-empty as long as δD < θ Π(n)
Π(m)

.

Proof of Remark 1

We now assume that we are in the first best, so that x∗ = y∗ = m and γcoop =(
1− b+ bθ Π(n)

Π(m)

)−1

, further we still have that δD < θ Π(n)
Π(m)

. Then we get that as long as
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γ ∈
(
γNash, γcoop

)
, then δNash > δcoop if and only if γ > 1

1−b(1−θ) 1−δD

1−δD Π(m)
Π(n)

(using (B.60)).

Furthermore if γ > γcoop, then δNash > δcoop if and only if γ < 1
1−b(1−δD)

(using (B.59)).

Further with δD < θ Π(n)
Π(m)

, we must have that 1

1−b(1−θ) 1−δD

1−δD Π(m)
Π(n)

< γcoop < 1
1−b(1−δD)

, so

that we obtain:

δNash > δcoop ⇐⇒ 1

1− b (1− δD) 1−θ
1−δD Π(m)

Π(n)

< γ <
1

1− b (1− δD)
.

B.5 Proof of Proposition 4

Denote by Bt the number of producers who do not know a good match at the start of

period. We obtain the law of motion

Bt+1 =
(
1− δD

)
bBt + δDNt +Nt+1 −Nt.

Indeed, among the producers that were in the same situation in the last period, only

a fraction 1 − δD survived and of those a fraction b met a bad match. Moreover, the

new producers, namely those that correspond to new products plus those that replace

producers who died, also count as producers who do not know a good match at the

beginning of the period. The share of producers who do not know a good match then

obeys:

ωt+1 = 1−
(
1− δD

)
(1− bωt)

1 + gN
,

so that its steady-state value is given by:

ω =
gN + δD

1 + gN − b (1− δD)
.

Using this expression in (25), we get that for γ ∈
(
γNash, γcoop

)
,

ZNash − Zcoop =
1− b

1 + gN − b (1− δD)

(
1− δD

) (
1− b+ bθ − γ−1

)
Π (n)

+
gN + δD

1 + gN − b (1− δD)
(1− b)

((
1− γ−1

)
Π (n)−

(
Π (x∗)− γ−1Π (y∗)

))
.

90



Therefore if x∗ = y∗ = m, we have:

ZNash > Zcoop ⇐⇒(
1− δD

)
(1− b+ bθ − γ−1) Π (n)− (1− γ−1) δD (Π (m)− (Π (n))) > gN (1− γ−1) (Π (m)− Π (n)) .

This expressions clearly shows tat the higher is gN , the more difficult is it to get δNash >

δcoop.

Similarly, if γ > γcoop, then using (19), (20), 21) and the new expression of ω, we

obtain:

ZNash − Zcoop =

1−b
1+gN−b(1−δD)

( (
γ−1Π (y∗)−

(
1− b

(
1− δD

))
Π (x∗)

)
−
(
γ−1 − 1 + b

(
1− δD

))
Π (n)

− ((Π (x∗)− γ−1Π (y∗))− (1− γ−1) Π (n)) gN

)

In the special case where x∗ = y∗ = m, this translates into

ZNash > Zcoop ⇐⇒ γ−1 − 1 + b
(
1− δD

)
− gN

(
1− γ−1

)
> 0,

so that in that case too, a higher growth rate gN makes it more difficult to get δNash >

δcoop.

B.6 Proof of Proposition 10

In this appendix we consider the case where the strategy of suppliers is to punish the

producer - by playing the Nash strategy - if we he switches to an innovator that turns

out to be a bad match. We derive expression (A.16) in the special case in which the

expected value of a new relationship is higher than remaining with a deviator, such that

if the innovator turns out to be a bad match the producer will seek out a new supplier

rather than stick with the old one.

Compare to the situation in Appendix A.1, if the producer switches the old supplier

loses all its value, hence V s
A = 0. The producer will now switch if and only if:

V T,g
I > W T

1 , (B.61)

that is the total value of a new relationship with the innovator is higher than the total

value of a relationship with the old supplier instead of (A.3). If the innovator turns out

to be a bad match, the producer will try another new supplier in the following period,
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so the total value of the relationship with the innovator does not depend on whether the

producer already knew a good match or not:

V T,g
I = V T,b

I = V0.

Equation (A.4) is replaced by:

V T,g
I = V T

0 = (1− b) Π (x∗) + (1− b) 1− δD

1 + ρ

((
1− δI

)
V T

1 + δIγW T
1

)
(B.62)

+ bθΠ (n) + b
1− δD

1 + ρ

((
1− δI

)
V T

0 + δIγW T
0

)
.

Using that (5) still holds, we get:

V T,g
I −W

T
1 = (1− b) Π (x∗)+bθΠ (n)−γ−1Π (y∗)−b1− δD

1 + ρ

((
1− δI

) (
V T

1 − V T
0

)
+ δIγ

(
W T

1 −W T
0

))
.

We use (5), (B.62) and (13) and (A.11) which both still hold to obtain

(
1− δI

) (
V T

1 − V T
0

)
+δIγ

(
W T

1 −W T
0

)
=
b (1 + ρ)

[(
1− δI

)
(Π (x∗)− θΠ (n)) + δI (Π (y∗)− θΠ (n))

]
1 + ρ− b (1− δD) (1− δI + γδI)

.

(B.63)

Therefore, a producer in a good match will switch to the innovator if and only if (A.16)

holds, which defines a γcoop2. Note, that equation (A.16) differs from equation (12) only

in the last term, it then follows that γcoop2 > γcon = γNash.

To show that the incentive to innovate is lower we need the fraction of the firms

that are in good matches. In all cases, a producer in a bad match switch. If γ < γcoop2

then only producers in bad matches in the cooperate equilibrium will switch, implying

that in steady state (weakly) more producers will be in good matches in the cooperative

equilibrium than in the contractible equilibrium. As the extra benefit for the innovator

from contractibility is higher for good matches than bad matches, it follows that the

incentive to innovate is higher in the contractible case, δcoop2 < δcon.

Now, consider the case where γ > γcoop2, such that good matches remain with the

same producer when innovation takes place. Use the fact that in the contractible case

a fraction ω̃c = δD

1−b(1−δD)
of producers will not be in good relationships, whereas in the

noncontractible case a fraction ω̃nc =
δD+bδI(1−δD)

1−b(1−δD)(1−δI)
will not be in a good relationship.

Inserting into the expressions for expected profits in the contractible and noncontractible
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case, respectively:

(ω̃c (γ − 1) (1− b+ bθ) + (1− ω̃c) ((1− b+ bθ) γ − 1)) Π (m)

Cooperative case:

ω̃nc ((1− b) (γΠ (x∗)− Π (y∗)) + bθ (γ − 1) Π (n))

+ (1− ω̃nc) (γ (1− b) Π (x∗) + γbθΠ (n)− Π (y∗))

− (1− ω̃nc)
γ
(
1− δD

)
b2
((

1− δI
)

(Π (x∗)− θΠ (n)) + δI (Π (y∗)− θΠ (n))
)

1 + ρ− b (1− δD) (1− δI + δIγ)
,

straightforward, but somewhat tedious algebra demonstrates that the condition

δcoop2
(
1 + ρ− b

(
1− δD

)
(1 + δcoop2 (γ − 1))

)
< γ

(
1− b

(
1− δD

))
is sufficient to ensure

that the incentive to innovate is lower: δcoop2 < δcon.

B.7 Appendix: Proofs for section 4

B.7.1 Contractible and Nash cases

Here we show that the solution must satisfy δI0 = δI1 and V T
0 = V T

1 . Taking the difference

between (27) and (29) and using (28) one obtains that:

V T
1 − V T

0 =
(1 + ρ)

(
ψ
(
δI0
)
− ψ

(
δI1
)

+
(
δI1 − δI0

)
ψ′
(
δI1
))

1 + ρ− (1− δI0) (1− δD)
.

Next taking the difference between (30) and (28), one gets:

ψ′
(
δI0
)
− ψ′

(
δI1
)

=

(
1− δD

) (
ψ
(
δI0
)
− ψ

(
δI1
)

+
(
δI1 − δI0

)
ψ′
(
δI1
))

1 + ρ− (1− δI0) (1− δD)

The LHS is increasing in δI0 (since ψ is convex). On the RHS, the denominator is positive

and increasing in δI0 , while the numerator is positive and decreasing in δI0 (once again

thanks to the convexity of ψ), therefore the RHS is decreasing in δI0 . As a result this

equation has a unique solution: δI0 = δI1 . In return, this ensures that V T
0 = V T

1 .

B.7.2 Cooperative case

Here, we describe the cooperative equilibrium in more details. To do so, we first spell

out the strategies followed by the different agents, then we derive the results written in
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the main text, characterize the equilibrium level of cooperation and prove the existence

of the equilibrium.

Strategies The strategies are characterized as follows:

• An innovator supplier refers to a supplier who has access to a technology which is

higher than the fringe (if deviations have occurred there could be more than one

innovator supplier).

• An innovator supplier with whom no deviation ever occurred offers an ex-ante

transfer which allows her to capture the full surplus of the relationship over the

second best option for the producer (namely going with a new supplier or choosing

one with whom a deviation has occurred). If she is chosen by the producer, she

invests x∗.

• Non-innovator suppliers with whom no deviation ever occurred, offers an ex-ante

transfer which make them break even. If they are chosen, they invest x∗ if there

is an innovation and n otherwise.

• An innovator supplier with whom a deviation occurred, offers an ex-ante transfer

that allows her to break even if either there are several suppliers in her situation,

or she cannot offer the highest value for their joint relationship. She offers an

ex-ante transfer that allows her to capture the surplus of a relationship with her

over starting a new relationship if the producer does not know any other innovator

supplier and if that surplus is positive. She invests n.

• A non-innovator supplier with whom a deviation occurred, offers an ex-ante trans-

fer that allows her to break even and invests n.

• A producer chooses the supplier that offers him the highest value. If several suppli-

ers offer the same value, he chooses one with whom the joint value is the highest.

• x∗ is the highest level of cooperation within (n,m] which does not violate the

incentive constraint of the supplier.

• The innovation rate is chosen so as to maximize the joint value of the relationship.
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Proof of Proposition 5 We first need to prove that V T
0 < V T

1 . To show that, we

first use (31) to derive

V T
0 =

(1 + ρ)
[(

1− δI0
)

Π (n) + δI0γΠ (x∗)− ψ
(
δI0
)]

+ δI0γ
(
1− δD

)
V T

1

1 + ρ− (1− δI0) (1− δD)
. (B.64)

Since x∗ > n, we obtain:

V T
0 <

(1 + ρ)
[(

1− δI0 + δI0γ
)

Π (x∗)− ψ
(
δI0
)]

+ δI0γ
(
1− δD

)
V T

1

1 + ρ− (1− δI0) (1− δD)
.

We denote the right hand side as f
(
δI0
)
. We then get that

V T
0 < f

(
δI0
)
≤ max

δ
f (δ) .

To find max
δ
f (δ), we take a first order condition and obtain that the solution δ̃ must

satisfy:

ψ′
(
δ̃
)(

1 + ρ−
(

1− δ̃
) (

1− δD
))
−
(
1− δD

)
ψ
(
δ̃
)

=
(
(γ − 1)

(
ρ+ δD

)
−
(
1− δD

))
Π (x∗) + γ

1− δD

1 + ρ
V T

1

(
ρ+ δD

)
.

Since the LHS is increasing in δ̃ and the RHS is independent of it, this uniquely defines

δ̃. Using (27) and (28) with z = x∗, we can check that δ̃ = δI1 satisfies the previous

equation. Then, using (27), one gets

V T
0 < f

(
δI1
)

= V T
1 .

Comparing (32) and (28) with z = m,n or x∗, it is then direct that δI,coop0 > δI,coop1 and

that δI,coop0 > δI,Nash. Further, we get that if x∗ is close to n, δI,coop0 is close to δI,Nash

(and lower than δI,cont), and if x∗ is close to m, δI,coop0 > δI,cont.

The growth rate of the economy in the cooperative case depends on the share of

producers who know an innovator supplier and their average productivity. Nevertheless,

this growth rate must be larger in the cooperative case than in the Nash case (since the

innovation rate is larger whether the producer knows an innovator or not). Similarly, as

long as δI,coop0 < δI,cont (which is true if x∗ is close to n), growth is lower in the cooperative

than contractible case. If on the other hand δI,coop0 > δI,cont and δI,coop1 = δI,cont (which is
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obtained if x∗ = m), then the innovation rate is weakly higher (and in some line strictly

higher) in the cooperative case than in the contractible one, leading to a higher growth

rate in the former.

Characterizing the equilibrium Here we first characterize the equilibrium and then

prove its existence. There are two possible cases, either after a deviation the producer

sticks to an innovator firm which has deviated, or he ignores that firm and looks for a

new supplier. Depending on whether the producer knows one or more deviating firms,

his behavior may be different, because he can capture a different value from a relation-

ship with such a deviator. However, we demonstrate below that the number of known

deviators in fact does not matter for the producer’s decision.

Case where the producer does not stick with a deviator. In this section,

we consider the case where a producer does not stick with a deviator (regardless of the

number of known deviators). We characterize the level of cooperation x∗, the condition

under which this scenario applies and demonstrate that if a producer does not stick with

a deviator if he only knows one of them, then he will not do so if he knows more than

one of them either.

Characterizing x∗. Consider a producer and supplier on equilibrium path, then the

incentive compatibility constraint for the supplier is given by

ϕ (x) ≤ 1− δD

1 + ρ
(V s

1 − V s
N) , (B.65)

where V s
N is the value the innovator would capture at the beginning of the following

period should a deviation occurs (so that the supplier would play the Nash level). Note

that no γ term appear here because the technology level at the time of investment in

x is the same as the technology level at the beginning of the following period. Since

we have assumed that the producer would not want to work with the supplier after the

deviation, we obtain V s
N = 0, such that the incentive constraint is

ϕ (x) ≤ 1− δD

1 + ρ
V s

1 .

Following the innovator’s strategy, the value she captures from a relationship with

the producer corresponds to the surplus over the producer’s second best option. Namely
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we have

V p
1 = γ−1V T,n

0 and V s
1 = V T

1 − γ−1V T,n
0 . (B.66)

Indeed, at the beginning of a period, the second best option of the producer is to look

for another supplier, whose technology is γ lower (recall that the V ’s are normalized by

the supplier’s technology here, which is why γ−1appears). Importantly, if the producer

where to switch to a new supplier, he would now be off-equilibrium path and knowing

one innovator-deviator. The value from a relationship in that situation V T
0,n may differ

from the value V T
0 on equilibrium path.

In fact, we can write the law of motion:

V T,n
0 = −ψ

(
δI,n0

)
+
(

1− δI,n0

)(
Π (n) +

1− δD

1 + ρ
V T,n

0

)
+ δI,n0 γ

(
Π (x∗n) +

1− δD

1 + ρ
V T,n

1

)
.

(B.67)

V T,n
1 denotes the joint value of a relationship with an innovator (non deviator) when

the producer knows an innovator-deviator and x∗n is the cooperation level in that case.

If the new supplier fails to innovate, then the producer’s situation does not change and

by assumption he would then prefer to stay away from the innovator-deviator (who

plays Nash); so that the continuation value in that case is V T,n
0 . If on the other hand, an

innovation occurs, the producer knows both an innovator-non deviator and an innovator-

deviator and the joint value of the relationship is V T,n
1 . δI,n0 maximizes the joint value

V T,n
0 (when deriving the law of motion for any V T

X below, the notation δIX denotes the

equilibrium innovation rate, which must maximize V T
X ).

To go further, we need to think about the IC constraint of an innovator when the

producer knows an innovator who deviated. This can be written as

ϕ (xn) ≤ 1− δD

1 + ρ
(V s,n

1 − V s
2N) , (B.68)

where the index n in V s,n
1 indicates that the producer knows a deviator and in V s

2N that

he knows at least 2. When the producer knows at least 2 innovator deviators, Bertrand

competition ensures that he captures the whole value, hence, in all cases we will have

that V s
2N = 0. Further with Bertrand competition, V s,n

1 = V T,n
1 − γ−1V T,2n

0 , where

V T,2n
0 indicates the joint value of a new relationship when the producer knows at least

2 deviators (indeed whether a producer knows two or more deviators does not matter

since with Bertrand competition he would receive the same offers of ex-ante transfers by

the deviator—namely, one which allows him to capture the whole value). This ensures

97



that V T,n
1 and x∗n also apply when the producer knows more than 1 deviator.

Then, since we have assumed that regardless of the number of deviators the producer

would rather keep looking for new suppliers, V T,2n
0 must obey the same law of motion as

V T,n
0 given by (B.67). This ensures that V s,n

1 = V s
1 so that x∗n = x∗. In return we then

obtain V T,n
0 = V T

0 and δI,n0 = δI0 .

Using (27) with z = x∗, we get that

V T
1 =

(1 + ρ)
((

1− δI1 + δI1γ
)

Π (x∗)− ψ
(
δI1
))

1 + ρ− (1− δD) (1− δI1 + δI1γ)
, (B.69)

while using (31) we get (B.64). Combining this equation with (B.69), we obtain:

V s
1 = V T

1 − γ−1V T
0

=
1 + ρ

1 + ρ− (1− δD) (1− δI0)

 (ρ+δD)((1−δI1+δI1γ)Π(x∗)−ψ(δI1))
1+ρ−(1−δD)(1−δI1+δI1γ)

−γ−1
((

1− δI0
)

Π (n) + δI0γΠ (x∗)− ψ
(
δI0
))


Therefore we have that the IC constraint can be written as

ϕ (x∗) ≤ 1− δD

1 + ρ− (1− δD) (1− δI0)

 (ρ+δD)((1−δI1+δI1γ)Π(x∗)−ψ(δI1))
1+ρ−(1−δD)(1−δI1+δI1γ)

−γ−1
((

1− δI0
)

Π (n) + δI0γΠ (x∗)− ψ
(
δI0
))
 .

(B.70)

x∗ = m if (B.70) holds in that case, or x∗ is such that (B.70) holds with equality

Condition under which the producer does not stay with the deviator.

We have assumed that the innovator would rather try a new supplier than stay with

an innovator who has deviated. We need to check under which conditions, this is an

equilibrium. To do that, we derive the joint value of a producer who knows a deviator

and decides to stay with her. This joint value obeys:

V T
N = −ψ

(
δIN
)

+
(
1− δIN

)(
Π (n) +

1− δD

1 + ρ
γ−1V T

0

)
+ δIN

(
γΠ (n) +

1− δD

1 + ρ
V T

0

)
.

(B.71)

If there is no innovation then in the following period, by assumption, the producer would

rather try a new supplier (with a lower technology). If innovation occurs, the producer

would rather try a new supplier as well (and the technology of that new supplier is the

same as today). Moreover the strategy of a deviator is to invest the Nash level n. The
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innovation rate must satisfy:

ψ′
(
δIN
)

= (γ − 1)

(
Π (n) +

1− δD

1 + ρ
γ−1V T

0

)
.

Since x∗ > n and γV T
1 − V T

0 > (γ − 1) γ−1V T
0 , then it must be that δI0 > δIN .

Using (B.71) and (B.64), we find that

γ−1V T
0 − V T

N

=

(
1 + ρ−

(
1− δD

) (
1− δIN + δINγ

))
1 + ρ− (1− δD) (1− δI0)

((
1− δI0

)
γ−1Π (n) + δI0Π (x∗)− γ−1ψ

(
δI0
)

+ δI0
1− δD

1 + ρ
V T

1

)
−
((

1− δIN + δINγ
)

Π (n)− ψ
(
δIN
))
.

Therefore the strategies described form an equilibrium if x∗ satisfies the IC constraint

(with equality unless x∗ = m) and the following condition is satisfied(
1− δI0

)
γ−1Π (n) + δI0Π (x∗)− γ−1ψ

(
δI0
)

+ δI0
1−δD
1+ρ

V T
1

1 + ρ− (1− δD) (1− δI0)
≥
(
1− δIN + δINγ

)
Π (n)− ψ

(
δIN
)

1 + ρ− (1− δD) (1− δIN + δINγ)
.

(B.72)

Case where the producer would stay with a deviator if he knows at least

2 of them but not if he only knows one of them. Here, we show that this case is

impossible. Assume otherwise, then we still have γ−1V T,n
0 > V T

N (a producer would rather

try a new supplier than stick with a single deviator) but γ−1V T,2n
0 < V T

2N : a producer

would rather work with an innovator-deviator than a new supplier when he knows at

least two deviators. Then, the value of starting a relationship with a new supplier for

a producer who knows at least 2 innovator-deviators, V T,2n
0 , obeys the following law of

motion:

V T,2n
0 = −ψ

(
δI,2n0

)
+
(

1− δI,2n0

)(
Π (n) +

1− δD

1 + ρ
γV T

2N

)
+δI,2n0 γ

(
Π (x∗2n) +

1− δD

1 + ρ
V T,2n

1

)
.

(B.73)

If there is no innovation, then in the following period, the producer should revert back to

choosing one of the two deviators (by assumption). In that case, he will capture the full

joint value of the relationship (because the two deviators Bertrand compete). If there is

an innovation, then the producer will now be working with an innovator supplier, while

simultaneously knowing two innovator-deviators. The level of cooperation x∗2n could in
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principle be different from x∗n.

The IC constraint that determines x∗n is given by (B.68) with V s,2n
N = 0 and V s,n

1 =

V T,n
1 −V T

2N : indeed, should the producer not stick with an innovator who has not deviated

he could either try a new supplier or go to the deviator he knows, but he would now

know two deviators. The latter is by assumption the second best option here.

The IC constraint that determines x∗2n is:

ϕ (x∗2n) ≤ 1− δD

1 + ρ

(
V s,2n

1 − V s
2N

)
.

We still have V s
2N = 0 and V s,2n

1 = V T,2n
1 −V T

2N as the second best option of the producer

is to go with a deviator now that he knows at least two of them. Hence we must have

that x∗2n = x∗n, δI,2n0 = δI,n0 and V T,2n
1 = V T,n

1 . This allows us to rewrite (B.73) as:

V T,2n
0 = −ψ

(
δI,2n0

)
+
(

1− δI,2n0

)(
Π (n) +

1− δD

1 + ρ
γV T

2N

)
+δI,2n0 γ

(
Π (x∗n) +

1− δD

1 + ρ
V T,n

1

)
.

(B.74)

The joint value of a relationship between a producer and an innovator-deviator when

the producer only knows one such deviator, still obeys (B.71) but with V T,n
0 instead of

V T
0 (as we cannot establish that they are the same here), hence:

V T
N = −ψ

(
δIN
)

+
(
1− δIN

)(
Π (n) +

1− δD

1 + ρ
γ−1V T,n

0

)
+ δIN

(
γΠ (n) +

1− δD

1 + ρ
V T,n

0

)
.

(B.75)

Finally, the joint value of a relationship between a producer and an innovator-deviator,

when the producer knows at least 2 such deviators is given by:

V T
2N = −ψ

(
δI2N
)

+
(
1− δI2N

)(
Π (n) +

1− δD

1 + ρ
V T

2N

)
+ δI2N

(
γΠ (n) +

1− δD

1 + ρ
V T,n

0

)
.

(B.76)

If no innovation occurs then the best option is by assumption to stick with a deviator. If

innovation occurs though, the producer would now know only 1 innovator-deviator (the

one with whom he has just worked), indeed the other deviators will not have access to the

frontier technology. By assumption, in the following period, the producer should then

try a new supplier (whose technology predates the last innovation) instead of staying

with the single innovator-deviator.
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From (B.67) and (B.74) and using that δI,2n0 maximizes V T,2n
0 , we have

V T,2n
0 − V T,n

0 ≥
(

1− δI,n0

) 1− δD

1 + ρ

(
γV T

2N − V
T,n

0

)
> 0, (B.77)

by assumption. Using that γ−1V T,n
0 > V T

N and that V T
2N > γ−1V T,2n

0 , we get V T
2N > V T

N .

Moreover, using that δIN maximizes the RHS in (B.75), we get:

V T
N ≥ −ψ

(
δI2N
)

+
(
1− δI2N

)(
Π (n) +

1− δD

1 + ρ
γ−1V T,n

0

)
+ δI2N

(
γΠ (n) +

1− δD

1 + ρ
V T,n

0

)
.

(B.78)

Further using that γ−1V T,n
0 > V T

N , we obtain:

V T
N > −ψ

(
δI2N
)

+
(
1− δI2N

)(
Π (n) +

1− δD

1 + ρ
V T
N

)
+ δI2N

(
γΠ (n) +

1− δD

1 + ρ
V T,n

0

)
.

(B.79)

Take the difference between (B.76) and (B.79) to get

V T
N − V T

2N > 0. (B.80)

This contradicts the result we obtained above, which shows that this case is impossible:

if a producer would rather look for a new supplier when he knows one innovator-deviator,

he should also do so if he knows more than one innovator-deviator.

Case where the producer sticks with the deviator In this section, we consider

the case where a producer sticks with an innovator-deviator if he does not know a non-

deviator innovator. We assume that the producer does so regardless of the number of

known deviators. As above, we first characterize the level of cooperation x∗ and the

condition under which this scenario applies. Then we show that if a producer prefers

a deviator to trying a new supplier who does not have access to the latest technology

when he knows one deviator, then he must also prefer doing so when he knows several

deviators.

Characterizing the level of cooperation x∗.

Consider a producer who is matched with an innovator with whom no deviation ever

occurred and further assume that the producer does not know any innovator-deviator

(this corresponds to what happens after the first successful innovation on equilibrium

path). The IC constraint faced by the innovator still obeys (B.65). V p
1 and V s

1 are still
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determined by (B.66) since the second best option of the producer is to start a new

relationship with a firm with an inferior technology but now knowing one deviator. The

difference is that V s
N 6= 0: by assumption in case of a deviation the producer would

rather stick with an innovator who has deviated than try a new supplier with an inferior

technology (the only outside option here). Hence we obtain that

V s
N = V T

N − γ−1V T
0,n and V p

N = γ−1V T,n
0 .

Therefore the IC constraint can be written as

ϕ (x∗) ≤ 1− δD

1 + ρ

(
V T

1 − V T
N

)
.

Note that V T
N obeys (27) with z = n, and that the joint value of a relationship

with a deviator when the producer knows at least 2 deviators (V T
2N) also obeys the

same law of motion (since the producer would always prefer to stick with an innovator-

deviator rather than trying a new supplier with an inferior technology). Hence we get

V T
N = V T

2N = V T,Nash
1 with δIN = δI2N = δI,Nash, so that

V T
N =

(1 + ρ)
((

1− δIN + δINγ
)

Π (n)− ψ
(
δIN
))

1 + ρ− (1− δD) (1− δIN + δINγ)
(B.81)

Further V T
1 is still given by (B.69), combined with (B.81), we obtain that the level

of cooperation x∗ is characterized by the IC constraint:

ϕ (x∗) ≤
(
1− δD

)( (1− δI1 + δI1γ
)

Π (x∗)− ψ
(
δI1
)

1 + ρ− (1− δD) (1− δI1 + δI1γ)
−
(
1− δIN + δINγ

)
Π (n)− ψ

(
δIN
)

1 + ρ− (1− δD) (1− δIN + δINγ)

)
.

(B.82)

Therefore x∗ = m if (B.82) holds in that case and otherwise x∗ is such that (B.82) holds

with equality.

Condition under which the producer prefers an innovator-deviator to a

new supplier.

We want to derive the conditions under which it is indeed the case that V T
N >

γ−1V T,n
0 . To do that, we first need to characterize V T,n

0 . The incentive constraint faced

by an innovator supplier who is in a relationship with a producer that already knows a

deviator is given by (B.68). Since the producer knows already one innovator-deviator,

then V s
2N = 0. Furthermore V s,n

1 = V T,n
1 − V T

N , since the producer’s outside option
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next period is to start with one of the deviator (with whom he would capture the entire

surplus), and as explained above V T
2N = V T

N . Therefore, the IC constraint is still given

by (B.82) with x∗n instead of x∗, which implies that V T,n
1 = V T

1 , δI,n1 = δI1 and x∗n = x∗.

The value of a new relationship when a producer already knows exactly one innovator-

deviator obeys the following law of motion:

V T,n
0 = −ψ

(
δI,n0

)
+
(

1− δI,n0

)(
Π (n) +

1− δD

1 + ρ
V T,n

0

)
+ δI,n0 γ

(
Π (x∗) +

1− δD

1 + ρ
V T

1

)
.

(B.83)

Indeed, the continuation value of the producer if there is no innovation is V T,n
0 only since

the deviator would capture the surplus of the relationship; while, following an innovation,

the level of cooperation is given by x∗. We then directly obtain that δI,n0 = δI0 and that

V T,n
0 = V T

0 .

Using (B.64) and (B.81), one gets

γ−1V T
0 − V T

N = (B.84)

(1 + ρ)

(((
1− δI0

)
γ−1Π (n) + δI0Π (x∗)− γ−1ψ

(
δI0
))

+ δI0
1−δD
1+ρ

V T
1

1 + ρ− (1− δI0) (1− δD)
−
(
1− δIN + δINγ

)
Π (n)− ψ

(
δIN
)

1 + ρ− (1− δIN + δINγ) (1− δD)

)
To ensure that producers want to stick with the innovator-deviator, the RHS of this

equation must be weakly negative. In other words, we obtain an equilibrium provided

that the weak opposite of (B.72) holds.

Ruling out the possibility for the producer not to stay with a deviator

if he knows at least 2 of them. Furthermore, the value of starting a relationship

with a new supplier when the producer knows at least two innovator-deviators obeys the

following law of motion:

V T,2n
0 = −ψ

(
δI,2n0

)
+
(

1− δI,2n0

)(
Π (n) +

1− δD

1 + ρ
max

(
γV T

N , V
T,2n

0

))
+δI,2n0 γ

(
Π (x∗) +

1− δD

1 + ρ
V T

1

)
.

Indeed, if no innovation occurs the producer will then decide whether to try a supplier

without the frontier technology or a deviator. Since there are several of each, the pro-

ducer captures the whole value of the relationship. We either have V T
N > γ−1V T,2n

0 , that

is a deviator is preferred to a new supplier with an outdated technology regardless of

the number of deviators—which is what we have assumed; or V T
N < γ−1V T,2n

0 . In that

case though, V T,2n
0 obeys the same law of motion as V T,n

0 , namely (B.83), we then get
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V T,2n
0 = V T,n

0 < γV T
N : which is a contradiction. If the producer prefers a deviator to a

relationship with a supplier with a non-frontier technology, he will do so regardless of

the number of deviators (still we will have V T,2n
0 6= V T,n

0 and δI,2n0 6= δI,n0 ).

Existence We have derived necessary conditions for the existence of an equilibrium

obtained with the strategies we described. It is direct to check that these are also

sufficient conditions. Therefore, the last thing to do is to ensure that there exists a x∗

such that all conditions are satisfied. That is we must show that either i) m satisfies

the IC constraint (B.70) together with (B.72) or m satisfies (B.82) together with the

opposite of (B.72); or ii) the IC constraint (B.70) binds and (B.72) holds or the IC

constraint (B.82) binds and the opposite of (B.72) holds.

To do that we first show that the IC constraint does not bind when x∗ is close to

n. For x∗ close to n, δI1 ≈ δI0 ≈ δI,Nash and we obtain that V T
1 ≈ V T

0 ≈ V T,Nash
1 = V T

N .

Therefore the opposite of (B.72) holds. Further for x∗ close to but above n, (B.82) holds

as (
1− δI1 + δI1γ

)
Π (x∗)− ψ

(
δI1
)

1 + ρ− (1− δD) (1− δI1 + δI1γ)
≥
(
1− δIN + δINγ

)
Π (x∗)− ψ

(
δIN
)

1 + ρ− (1− δD) (1− δIN + δINγ)

>

(
1− δIN + δINγ

)
Π (n)− ψ

(
δIN
)

1 + ρ− (1− δD) (1− δIN + δINγ)
.

The first inequality uses that δI1 maximizes (1−δ+δγ)Π(x∗)−ψ(δ)
1+ρ−(1−δD)(1−δ+δγ)

and the second that Π (x)

is increasing over (n,m).

If there is a x∗ such that (B.82) binds while the opposite of (B.72) holds, then an

equilibrium exists. Otherwise, there must exist a x such that (B.72) holds with equality

at x (and holds strictly above x) with (B.82) not binding over [n, x]. Note that at x,

V T
N = γ−1V T

0 , and as result (B.70) and (B.82) are identical. Therefore, by continuity

(B.70) still does not bind for x just above x. By continuity, an equilibrium exists: either

the IC constraint never binds and the appropriate equilibrium condition at m ((B.72)

or its opposite) is satisfied, or the IC constraint binds and the appropriate equilibrium

condition holds.

B.8 Slow diffusion of innovation

We consider a cooperative equilibrium where at the beginning of any relationship a good

match cooperates as much as possible whether at the frontier or not, while there is no
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cooperation in bad matches. As explained in the text, the equilibrium is characterized

by the levels of cooperation in frontier good matches (x∗) and in outdated good matches

(y∗). It is direct to derive the IC constraints (9) and (33).

On equilibrium path, a producer switches between suppliers (favoring those with the

frontier technology) until he finds a good match. Once he has found one, he optimally

decides between switching to an innovator (when innovation occurs) or staying with

the outdated good match supplier. If it is optimal to switch to the innovator and the

innovator turns out to be a good match, he stays in a relationship with that innovator.

If she turns out to be a bad match, then in the following period, the producer resumes

his relationship with his old supplier if that supplier obtained the frontier technology

and tries another frontier firm otherwise.

In this appendix, we first derive the condition under which a producer who knows

a good match switches to the innovator in the cooperative case. Then, we look at the

corresponding condition in the contractible or Nash cases. Afterward, we describe in

more details the IC constraints and check for the existence of the equilibrium. Finally

we derive the equations determining the innovation rates in the three cases.

B.8.1 Switching in the cooperative equilibrium

We focus on the cooperative equilibrium. As in the baseline model, Bertrand competition

ensures that

V s
1 = V T

1 − V
T,b

0 . (B.85)

V T
1 is the joint value with a (cooperating) good match supplier. V T,b

0 is the joint value

of starting a relationship with a frontier firm without the option to fall back on a co-

operating outdated good match, which we indicated through the superscript b. Making

this distinction is now helpful since a producer working with an outdated good match

supplier may try to start a new relationship with a frontier supplier (even in periods

without innovation), without necessarily being punished for doing so (as the outdated

supplier would forgive if the frontier supplier turns out to be a bad match). In this

case, the outside option of a producer working with a frontier supplier is to try another

frontier supplier, but his previous good match would not forgive him for doing so.

Consider now a cooperating outdated good match. If the producer were to try a

frontier firm, her expected value does not become 0 because she could get the producer

back in the following period if the frontier firm turns out to be a bad match. As before,

we denote by V s
A, the expected value of an outdated good match when the producer
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tries out a frontier firm. Bertrand competition ensures that the value of an outdated

good match W s
1 must satisfy W s

1 ≥ V s
A. Following the same reasoning as in Appendix

A.1.1, we get that (A.2) holds. That is W p
1 = V p,g

I , where V p,g
I is the value that a

producer obtains in a relationship with the innovator when the producer already knows

a cooperating outdated good match, and W p
1 is the value the producer captures with an

outdated good match. This ensures that a producer (who knows a good match) switches

to the innovator if (A.3) holds that is V T,g
I > W T

1 − V s
A, where V T,g

I is the joint value

of a relationship with the innovator (when the producer knows a cooperating outdated

good match). As a result, we get that (as in the baseline model):

W s
1 = V s

A +
(
W T

1 − V s
A − V

T,g
I

)+

. (B.86)

Note that V T,g
I is the same as V T,g

0 , the joint value of starting a relationship with any

frontier firm in a period without innovation when the producer also knows a cooperating

outdated good match. Therefore in periods without innovation, a producer who knows a

good match switches to a frontier firm under the same circumstances (that is whenever

V T,g
I = V T,g

0 > W T
1 −V s

A). However, Bertrand competition ensures that V p,g
0 = V T,g

0 since

in periods without innovation there is more than one firm with the frontier technology,

so that, generally V p,g
0 6= V T,g

I .

We obtain the law of motion

V T,g
I = V T,g

0 = (1− b)V T
1 +b

(
θΠ (n) +

1− δD

1 + ρ

((
1− δI

) (
∆V p

1 + (1−∆) max
(
V T,g

0 ,W p
1

))
+ δIγW p

1

))
.

(B.87)

With probability 1 − b the match is good, and the value is given by V T
1 . With

probability b the match is bad, generating profits θΠ (n) this period; in the following

period, there are three possibilities. i) No innovation occurred but the previous good

match got access to the frontier technology, then the producer resumes his previous

relationship and obtains V p
1 . ii) No innovation occurred and the previous good match

did not inherit the technology, then the producer optimally decides between staying with

his previous good match or trying another frontier supplier; since there are now several

suppliers the producer would get the full value of a relationship with a frontier firm if

that is higher than W T
1 − V s

A; otherwise he stays with the outdated supplier and gets

W p
1 = W T

1 −
(
V s
A +

(
W T

1 − V s
A − V

T,g
I

))
= V T,g

0 in that case. iii) An innovation occurs,

in which case the producer can secure γW p
1 (as the frontier has moved one step). We
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can then rewrite more simply:

V T,g
I = V T,g

0 = (1− b)V T
1 +b

(
θΠ (n) +

1− δD

1 + ρ

((
1− δI

) (
∆V p

1 + (1−∆)V T,g
0

)
+ δIγW p

1

))
.

(B.88)

The expected value of an outdated supplier when the producer tries a good match,

V s
A, obeys the following law of motion:

V s
A = b

1− δD

1 + ρ

((
1− δI

)
∆V s

1 +
((

1− δI
)

(1−∆) + δIγ
)
W s

1

)
. (B.89)

With probability 1 − b, the producer met a good match and therefore the outdated

supplier turns into a deviator and her value becomes 0. Otherwise, she resumes her

relationship with the producer in the following period and obtains V s
1 if she imitates

the frontier technology and no innovation occurred. If she does not get access to the

frontier technology (either because of a new innovation or because the previous one did

not diffuse), the supplier’s normalized value is W s
1 .

Combining the two, we get that

V T,g
0 + V s

A (B.90)

= (1− b)V T
1 + b

(
θΠ (n) +

1− δD

1 + ρ

((
1− δI

)(
∆V T

1 + (1−∆)

(
V T,g

0 + V s
A +

(
W T

1 − V s
A − V

T,g
0

)+
))

+ δIγW T
1

))
.

The joint value of a relationship with the frontier supplier is still given by (4), which

we reproduce here:

V T
1 = Π (x∗) +

1− δD

1 + ρ

((
1− δI

)
V T

1 + δIγW T
1

)
. (B.91)

The joint value of a relationship with an outdated producer obeys the following law of

motion:

W T
1 = γ−1Π (y∗)+

1− δD

1 + ρ

((
1− δI

)(
∆V T

1 + (1−∆)

(
W T

1 +
(
V T,g

0 + V s
A −W T

1

)+
))

+ δIγW T
1

)
.

(B.92)

The current flow of profits is given by γ−1Π (y∗) since the producer does not have access

to the frontier technology. In the following period, the relationship becomes a frontier

one if the supplier gets access to the frontier technology (which occurs with probability(
1− δI

)
∆). If the technology does not diffuse then the producer should try a frontier
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supplier if V T,g
0 > W T

1 −V s
A, in that case he obtains V T,g

0 (since there are several frontier

firms) and the supplier gets the expected value W s
1 = V s

A; on the other hand if V T,g
0 <

W T
1 −V s

A, the producer stays with the outdated good match and they obtainW T
1 together.

If another innovation occurs, then the innovator would be the only one with the frontier

technology and would obtain any surplus of a relationship with her, hence the joint value

of the producer and the (previous) supplier is W T
1 .

Combine (B.90), (B.91) and (B.92) to obtain:

V T,g
0 + V s

A −W T
1 (B.93)

= (1− b) Π (x∗) + bθΠ (n)− γ−1Π (y∗) +
1− δD

1 + ρ

(
1− δI

)
(1−∆)×[

(1− b)V T
1 + b

(
V T,g

0 + V s
A +

(
W T

1 − V s
A − V

T,g
0

)+
)
−
(
W T

1 +
(
V T,g

0 + V s
A −W T

1

)+
)]

.

Next, using (B.91) and (B.92), we get:

V T
1 −W T

1 = Π (x∗)−γ−1Π (y∗)+
1− δD

1 + ρ

(
1− δI

)
(1−∆)

(
V T

1 −W T
1 −

(
V T,g

0 + V s
A −W T

1

)+
)
.

Hence

V T
1 −W T

1 =
(1 + ρ) (Π (x∗)− γ−1Π (y∗))

1 + ρ− (1− δD) (1− δI) (1−∆)
−

(
1− δD

) (
1− δI

)
(1−∆)

1 + ρ− (1− δD) (1− δI) (1−∆)

(
V T,g

0 + V s
A −W T

1

)+

.

(B.94)

Plugging this expression in (B.93), we get

V T,g
0 + V s

A −W T
1

= (1− b) Π (x∗) + bθΠ (n)− γ−1Π (y∗)

+

(
1− δD

) (
1− δI

)
(1−∆) (1− b)

1 + ρ− (1− δD) (1− δI) (1−∆)

[(
Π (x∗)− γ−1Π (y∗)

)
−
(
V T,g

0 + V s
A −W T

1

)+
]

This implies that V T,g
0 + V s

A −W T
1 > 0 if and only if (34) holds. Further(
V T,g

0 + V s
A −W T

1

)+

= (B.95)

(
b
(
1 + ρ−

(
1− δD

) (
1− δI

)
(1−∆)

)
(θΠ (n)− γ−1Π (y∗)) + (1 + ρ) (1− b) (Π (x∗)− γ−1Π (y∗))

)+

1 + ρ− b (1− δD) (1− δI) (1−∆)
.
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B.8.2 Switching in the contractible and Nash cases

In the contractible and Nash cases the same logic applies, since once a producer has found

two good matches he can only remember the last one. Therefore, as in the equilibrium

path described above, a producer would only return to the his last good match after

having tried out the frontier firm (which implies that whether the technology diffuses to

suppliers with whom he worked before does not matter). We can then directly copy the

previous equations but replacing all investment levels by m in the contractible case and

n in the Nash case. Therefore a producer switches if and only if (35) holds.

B.8.3 IC constraints in the cooperative case

To compare x∗ and y∗, we need to compare the right-hand side of (9) and (33). To do

that we first combine (B.86) and (B.89) to get

V s
A =

b
(
1− δD

)((
1− δI

)
∆V s

1 +
((

1− δI
)

(1−∆) + δIγ
) (
W T

1 − V s
A − V

T,g
I

)+
)

1 + ρ− b (1− δD) ((1− δI) (1−∆) + δIγ)
,

and

W s
1 =

b
(
1− δD

) (
1− δI

)
∆V s

1 + (1 + ρ)
(
W T

1 − V s
A − V

T,g
I

)+

1 + ρ− b (1− δD) ((1− δI) (1−∆) + δIγ)
. (B.96)

Define ICy ≡ γ
(
1− δI

)
∆V s

1 + γ
((

1− δI
)

(1−∆) + δIγ
)
W s

1 and ICx ≡
(
1− δI

)
V s

1 +

δIγW s
1 , then we can rewrite (9) and (33) as

ϕ (x∗) ≤ 1− δD

1 + ρ
ICx and ϕ (y∗) ≤ 1− δD

1 + ρ
ICy.

Then, using (B.96), we get:

ICy − ICx

=
1

1 + ρ− b (1− δD) ((1− δI) (1−∆) + δIγ) (
(1 + ρ) (γ∆− 1) + b

(
1− δD

)
(1−∆)

((
1− δI

)
+ δIγ

)) (
1− δI

)
V s

1

+
((

1− δI
)

(1−∆) + δI (γ − 1)
)
γ (1 + ρ)

(
W T

1 − V s
A − V

T,g
I

)+

 .

In equilibrium V s
1 > 0, therefore a sufficient condition to ensure that ICy − ICx ≥ 0

is that (1 + ρ) (γ∆− 1) + b
(
1− δD

)
(1−∆)

((
1− δI

)
+ δIγ

)
≥ 0, which is satisfied for

109



any δI as long as ∆ >
(
1 + ρ− b

(
1− δD

))
/
(
γ (1 + ρ)− b

(
1− δD

))
.

To ensure that an equilibrium exists, we must check that the IC constraints are not

binding at n. This requires finding an expression for V s
1 . To do that, first note that the

value of a relationship with a frontier firm for a supplier who does not know a cooperating

outdated good match, V T,b
0 follows:

V T,b
0 = (1− b)V T

1 + bθΠ (n) +
1− δD

1 + ρ
b
((

1− δI
)
V T,b

0 + δIγW T
0

)
. (B.97)

With probability 1−b, the producer meets a good match. Otherwise, the situation is the

same in the next period if there has been no innovation, while if an innovation occurs,

the producer would try the innovator but would only capture his outside option, namely

starting a relationship with an outdated supplier (as there is only one frontier firm then,

V p,b
I = W T

0 ).

Similarly, the law of motion of W T
0 is:

W T
0 = (1− b)W T

1 + bθγ−1Π (n) + b
1− δD

1 + ρ

((
1− δI

)
V T,b

0 + δIγW T
0

)
. (B.98)

With probability 1−b, the producer meets an outdated good match, generating the joint

value W T
1 . Otherwise, the producer gets current profit θγ−1Π (n) (with an outdated bad

match), and in the following period, he tries one of the frontier suppliers and capture the

full value if no innovation occurs, while he can only capture the value of a relationship

with a new outdated supplier if an innovation occurs.

Combining (B.97) and (B.98), we get

V T,b
0 −W T

0 = (1− b)
(
V T

1 −W T
1

)
+ bθ

(
1− γ−1

)
Π (n) . (B.99)

Further, combining (B.91), (B.98) and using (B.99), we get

V s
1 = V T

1 − V
T,b

0

= b
(

Π (x∗)− θΠ (n) + 1−δD
1+ρ

((
1− δI + δIγ

)
V s

1 − bδIγ
(
V T

1 −W T
1

)
+ δIbθ (γ − 1) Π (n)

))
.

Therefore, using (B.94), we get:

V s
1 =

b (1 + ρ)

(1 + ρ− (1− δD) (1− δI) (1−∆)) (1 + ρ− b (1− δD) (1− δI + δIγ))
L (x∗, y∗) ,
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with

L (x∗, y∗) ≡
(
1 + ρ−

(
1− δD

) (
1− δI

)
(1−∆)− bδIγ

(
1− δD

))
(Π (x∗)− θΠ (n))

+bδI
(
1− δD

)
(Π (y∗)− θΠ (n))

−bδIγ
(
1− δD

)2

1 + ρ

(
1− δI

)
(1−∆)

(
θ
(
1− γ−1

)
Π (n) +

(
V T,g

0 + V s
A −W T

1

)+
)

Using (B.95), we get:

L (x∗, y∗)

≥ Π (x∗)− θΠ (n)−
bδIγ

(
1− δD

)
(Π (x∗)− γ−1Π (y∗))

1 + ρ− (1− δD) (1− δI) (1−∆)
+
bδIγ

(
1− δD

)
1 + ρ

θ
(
1− γ−1

)
Π (n) +

bδIγ

1 + ρ
×(

1− δD
)2 (

1− δI
)

(1−∆)

1 + ρ− b (1− δD) (1− δI) (1−∆)

(
b
(
θΠ (n)− γ−1Π (y∗)

)
+

(1 + ρ) (1− b) (Π (x∗)− γ−1Π (y∗))

1 + ρ− (1− δD) (1− δI) (1−∆)

)
Hence

L (n, n)

Π (n)
≥ (1− θ)

(
1−

bδIγ
(
1− δD

)
1 + ρ

((
1− γ−1

)
+

b
(
1− δD

) (
1− δI

)
(1−∆)

1 + ρ− b (1− δD) (1− δI) (1−∆)

))

≥ (1− θ)

(
1 + ρ− b

(
1− δD

) (
1− δI + δIγ

)
(1−∆)

1 + ρ− b (1− δD) (1− δI) (1−∆)
+
bδI
(
1− δD

)
1 + ρ

)
> 0

The last inequality is obtained because we must have ρ > δI (γ − 1) to ensure that utility

is finite. Therefore the IC constraints do not bind at x∗ = y∗ = n, which ensures that

there exist values such that x∗, y∗ ∈ (n,m] and either the IC constraints bind or the first

best is achieved without violating the constraints.

Our equilibrium assumes that in periods with an innovation, the best offer that a

producer receives comes from either the innovator or an outdated good match if he

knows one. Further, the outdated good match is not willing to offer the full value of

the relationship to the producer because even if the producer chooses the innovator, she

still secures a postie expected value from the relationship. Therefore, in principle, we

should check that the offer from a new outdated supplier cannot be better than that of

the current outdated good match supplier. First assume that the producer would rather

stay with her current supplier than switch to the innovator (W T
1 − V s

A > V T,g
0 ), then

since the innovator dominates a new outdated supplier, it is clear that the good match

supplier’s offer is better than that of a new outdated supplier.
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Let us then assume that W T
1 − V s

A < V T,g
0 , we must then check that we have W T

0 <

W T
1 − V s

A. Combining (B.85), (B.89) with W s
1 = V s

A, (B.92), and (B.98), we get:

(
W T

1 − V s
A −W T

0

)(
1− b1− δD

1 + ρ
δIγ

)
= bγ−1 (Π (y∗)− θΠ (n))+b

1− δD

1 + ρ

((
1− δI

)
(1−∆)

(
V T,g

0 − V T,b
0

))
.

(B.100)

Similarly using (B.87) and (B.97), we get:

(
V T,g

0 − V T,b
0

)(
1− b1− δD

1 + ρ

(
1− δI

)
(1−∆)

)
= b

1− δD

1 + ρ
δIγ

(
W T

1 − V s
A −W T

0

)
.

Therefore both V T,g
0 > V T,b

0 and W T
1 − V s

A −W T
0 > 0, which ensures that the two best

options for a producer in a period with innovation are the innovator and a good match

outdated supplier if he knows one.

B.8.4 Endogenous innovation

Finally, we want to determine the innovation rates, which requires to find the reward

from innovation ZK (for K = cont, coop or Nash). ZK is still defined as ZK = ωV s,b
I,K +

(1− ω)V s,g
I,K , and we still have that the expected mass of producers who do not know a

good match supplier in steady-state is equal to ω = δD/
(
1− b

(
1− δD

))
.

In the cooperative case, we obtain V s,g
I =

(
V T,g
I −

(
W T

1 − V s
A

))+

which is given in

(B.95). For producers who do not know an outdated good match, an innovator captures

V s,b
I = V T,b

0 −W T,b
0 , which using (B.99) and (B.94) is given by

V s,b
I = (1− b)

(1 + ρ) (Π (x∗)− γ−1Π (y∗))−
(
1− δD

) (
1− δI

)
(1−∆)

(
V T,g

0 + V s
A −W T

1

)+

1 + ρ− (1− δD) (1− δI) (1−∆)
+bθ

(
1− γ−1

)
Π (n) .

We then get that

Zcoop

=
Π (x∗)

1− b (1− δD)


δD(1−b)(1+ρ)

1+ρ−(1−δD)(1−δI)(1−∆)

(
1− γ−1 Π(y∗)

Π(x∗)

)
+ δDbθ (1− γ−1) Π(n)

Π(x∗)

+
(1−b)(1−δD)(1+ρ−(1−δI)(1−∆))

1+ρ−b(1−δD)(1−δI)(1−∆)

 b
(
θ Π(n)

Π(x∗)
− γ−1 Π(y∗)

Π(x∗)

)
+ (1+ρ)(1−b)

1+ρ−(1−δD)(1−δI)(1−∆)

(
1− γ−1 Π(y∗)

Π(x∗)

) +

 .

Therefore as in the baseline case Zcoop can be written as a function of Π (x∗), Π(y∗)
Π(x∗)

and
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Π(n)
Π(x∗)

, which is increasing in Π (x∗), decreasing in Π(y∗)
Π(x∗)

and increasing in Π(n)
Π(x∗)

. The same

expression applies in the contractible and Nash cases if one replaces Π (x∗) by Π (m) or

Π (n) respectively and the profit ratios by 1. For ψ sufficiently convex, we can compare

the innovation rates across the three cases by comparing the three ZK .

Therefore, if ∆ >
1+ρ−b(1−δD)
γ(1+ρ)−b(1−δD)

, so that y∗ ≥ x∗, we must have δcont > δcoop. More-

over, if relationships break in the Nash but not the cooperative case (so V T,g
0 −V s

A > W T
1

holds in the Nash but not the cooperative cases), then δcoop < δNash for δD small enough

(as then Zcoop is proportional to δD but ZNash is not).

B.9 Proof of Proposition 7

As in the baseline model, the reward from cooperation for a good match supplier is

independent of his current productivity, as her next period productivity is independent

of the current one. Denoting IC, this reward from cooperation, we get that the incentive

constraints for a good match suppliers are

γ2ϕ (x2) ≤ IC, γϕ (x1) ≤ IC and ϕ (x0) ≤ IC.

The higher is current productivity, the larger is the incentive to deviate, so that we must

have x0 ≥ x1 ≥ x2.

Using (1), we can write welfare as

U =
1 + ρ

ρ

(
1 +

ˆ 1

0

θjkAkW (x)

)
,

with W (x) ≡ σ
σ−1

xσ−1−x the normalized social surplus when the supplier’s normalized

investment is x. Note that on (n,m), W is increasing in x.

First part: We prove that when λ = 1, welfare is necessarily higher in the coopera-

tive case relative to the Nash case. In this case, producers face the same distribution of

productivities for the alternative supplier in the cooperative and Nash cases.

First, consider a producer who draws suppliers whose productivities are such that he

switches neither in the Nash nor in the cooperative case. Then, the social welfare from

that line is γiW (xi) with i ∈ {0, 1, 2} in the cooperative case and γiW (n) in the Nash

case, and we have γiW (xi) > γiW (n) since xi > n.

Then suppose draws such that the producer switches in both cases. Then the social

welfare in the cooperative case is γi ((1− b)W (xi) + bθW (n)) versus γi (1− b+ bθ)W (n)
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in the Nash case. Here as well, we have: γi ((1− b)W (xi) + bθW (n)) > γi (1− b+ bθ)W (n).

Finally, let us consider a situation where the producer switches in the cooperative

case but not in the Nash case (the reverse being impossible). For instance, assume that

the producer does not switch in the cooperative case when the previous good match’s

productivity is 1 and the alternative supplier’s productivity is γ. This requires that

γ ((1− b) Π (x1) + bθΠ (n)) < Π (x0). At the same time, the switch occurs in the Nash

case (γ > γNash). Note that:

((1− b) Π (x1) + bθΠ (n))W (x0)− ((1− b)W (x1) + bθW (n)) Π (x0)

=
(

(1− b)
[
x

−1
σ

1 − x
−1
σ

0

]
x1 + bθn

[
n

−1
σ − x

−1
σ

0

]) x0

σ − 1
> 0,

since n < x0 and x1 ≤ x0. As a result we must have ((1− b) Π (x1) + bθΠ (n)) /Π (x0) >

((1− b)W (x1) + bθW (n)) /W (x0). Hence we have that

W (x0) > γ ((1− b)W (x1) + bθW (n)) > γ (1− b+ bθ)W (n) .

Therefore in that case too, the social surplus is larger in the cooperative case than in the

Nash case. The same logic applies to the other cases with a switch in the cooperative

but not the Nash case.

We can then conclude that welfare is strictly higher in the cooperative than in the

Nash case.

Second part. For simplicity, we consider parameters such that x0 = x1 = x2 = m

(this occurs if b is high and ρ is low) and we focus on γ such that γNash = (1− b+ bθ)−1 <

γ < γcoop =
(

1− b+ bθ Π(n)
Π(m)

)−1

< γ2.

First let us look at the first round of producers in the Nash case. Since γ > γNash,

we get that the producer will pick the supplier with the highest productivity. Hence the

chosen supplier’s productivity is 1 only if both the original and the alternative suppliers’

productivities are 1, which only happens with probability 1/9. It is given by γ2 if either

supplier got a productivity γ2, which occurs with probability 1
3

+ 2
3

1
3

= 5
9

(either the

first supplier got γ2 or he did not but the second one did). Finally the chosen supplier’s

productivity is γ with probability 1− 1/9− 5/9 = 1/3.

Let us then consider the second round of producers:

• With probability 1
3
, the previous supplier’s productivity is γ2. Therefore that

supplier is chosen and the social surplus is given by γ2W (n).
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• With probability 1
3
, the previous supplier’s productivity is γ.

– Further, with probability 5
9
, the alternative supplier’s productivity is γ2. In

that case, the producer chooses the alternative supplier and the (expected)

social surplus is given by (1− b+ bθ) γ2W (n).

– Otherwise, the alternative supplier’s productivity is weakly lower. In that

case, the producer chooses the previous supplier and the social surplus is

given by γW (n).

• With probability 1
3
, the previous supplier’s productivity is 1.

– Then, with probability 5
9
, the alternative supplier’s productivity is γ2, so that

the social surplus is (1− b+ bθ) γ2W (n).

– With probability 1
3
, the alternative supplier’s productivity is γ, so that the

social surplus is (1− b+ bθ) γW (n).

– Finally with probability 1
9
, the alternative supplier’s productivity is 1, so that

the producer keeps his previous supplier, leading to a social surplus W (n).

Denote by L the set of lines for which the producer belongs to the second round. Then

the expected social surplus for these lines in the Nash case is given by:

E
(
WNash
j |j ∈ L

)
=
W (n)

3

(
γ2

(
1 +

10

9
(1− b+ bθ)

)
+

(
4

9
+

1

3
(1− b+ bθ)

)
γ +

1

9

)
.

(B.101)

Let us similarly consider the cooperative case. Since γ < γcoop < γ2, switching occurs

only when the previous producer’s technology is 1 while the alternative supplier’s one

is γ2. This event occurs with probability 1/9. The chosen supplier’s productivity is 1

if the original supplier’s productivity is 1 and the alternative supplier did not draw γ2:

this happens with probability 1
3

(
1− 1

3

)
= 2

9
. The chosen supplier’s productivity is γ if

the original supplier’s productivity is γ (as then she is always picked), which happens

with probability 1
3
. Finally the chosen supplier’s productivity is γ2 with probability

1− 1
3
− 2

9
= 4

9
. Let us then consider the second round of producers:

• With probability 1
3
, the previous supplier’s productivity is γ2. Therefore that

supplier is chosen and the social surplus is given by γ2W (m).
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• With probability 1
3
, the previous supplier’s productivity is γ. Therefore that sup-

plier is chosen and the social surplus is given by γW (m).

• With probability 1
3
, the previous supplier’s productivity is 1.

– Then, with probability 4
9
, the alternative supplier’s productivity is γ2, so that

the social surplus is ((1− b)W (m) + bθW (n)) γ2.

– Otherwise, with probability 5
9
, the previous supplier is chosen and the social

surplus is W (m).

The expected social surplus for these lines in the cooperative case is given by:

E
(
W coop
j |j ∈ L

)
=

1

3

(
γ2

(
W (m) +

4

9
(1− b)W (m) + bθW (n)

)
+ γW (m) +

5

9
W (m)

)
.

(B.102)

Take the difference between (B.102) and (B.101):

E
(
W coop
j |j ∈ L

)
− E

(
WNash
j |j ∈ L

)
=

W (m)

3

 ((1 + 4
9

(1− b)
)
γ2 + γ + 5

9

) (
1− W (n)

W (m)

)
− 1

9
(γ − 1) W (n)

W (m)

−
(

2
3
γ + 1

3

)
[(1− b+ bθ) γ − 1] W (n)

W (m)

 .
Since (1− b+ bθ) γ − 1 > 0, this expression shows that for n sufficiently close to m

(which is obtained by increasing β), then E
(
W coop
j |j ∈ L

)
< E

(
WNash
j |j ∈ L

)
. When

λ is close to 0, then nearly all lines belong to L therefore we also have UNash > U coop.

C Data Appendix

We use the patent data set of the OECD (OECD, 2015) which is built on data from

the European Patent Office (EPO). The data set records all patent applications to the

EPO. The year of a patent corresponds to the earliest year of application. Each patent

is associated to a country depending on the address of its inventors (if a patent is associ-

ated with inventors from several countries, we weight each patent x country combination

according to the share of inventors from each country). We restrict attention to patents

granted by 2009 (from 2010, more than 10% of patent applications have been neither

granted nor rejected yet, in addition, few patents have had the time to receive citations,

which is problematic for the accuracy of our measure of generality). Furthermore we

116



consider only the patents that have never been withdrawn. The generality measure is

computed by the OECD and we use it directly (it is computing using citations made

by other EPO patents). We drop patents for which the measure is not computed (ei-

ther because the patents have not received any citations—indicating their low value—or

because of missing information).

To compute our “Rauch index,” we first look at the IPC technological codes of each

patent (in PATSTAT) and we use the concordance table provided by PATSAT to at-

tribute 4 digit NACE Rev 2 codes to each patent. Some patents might have multiple

weighted associated NACE codes. Then, we use the liberal classification from Rauch

(1999) which labels each 4 digit SITC 2 code as either “goods traded on organized ex-

change”, “reference priced” or “differentiated”. We attribute a ”Rauch index” 1 to goods

which are labeled as differentiated, and give an index of 0 to the other goods. We convert

this into SITC 3 codes using the conversion table from http://econweb.ucsd.edu/˜jrauch/rauch classification.html.

This is close to a one-to-one conversion. We use a conversion table from SITC 3 to NACE

Rev 1 from World Integrated Trade Systems (http://wits.worldbank.org/product concordance.html)

to convert the SITC 3 to NACE Rev 1. If a NACE Rev 1 is associated with multi-

ple SITC 3 codes we take the average value of the SITC 3 codes. Finally, we con-

vert the NACE Rev 1 into NACE Rev 2 using a concordance table from Eurostat

(http://ec.europa.eu/eurostat/web/nace-rev2/correspondence tables). Again, if a NACE

Rev 2 code corresponds to multiple NACE Rev 1 we use an unweighted average. We use

the two digit NACE Revision 2 in our analysis, which leaves 27 distinct NACE categories

with a Rauch index varying between 0.16 and 1. The Rauch index of each sector is given

in Table C.1a below.

Data on trust come from the World Value Survey longitudinal data file 1981-2014.

We focus on questions G007 33 which ask to respondents whether they trust people they

know personally and G007 34 which ask them whether they trust people they meet for

the first time. There are 4 levels of trust and we linearly transform each variable so

that they are in [0, 1] with a high value corresponding to a high level of trust. These

two questions where only asked from 2005 onwards. For each country and wave, we

average the answer giving by individuals using the weights provided in the dataset (as

recommended we censor weights below 0.33 and above 3).50 For countries which are

present in multiple waves, we further average across waves. Then, we take the difference

between the trust level towards people met for the first time and trust towards people

50For the United Kingdom we use the value corresponding to Great Britain (which excludes Northern
Ireland) and for Serbia we use results conducted for Serbia and Montenegro.
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already known to define our ”Dif Trust” variable: a low level indicates a relatively higher

trust towards known people which favors the establishment of cooperation in long-term

relationships. Since our trust measures are all from 2005, we restrict attention to patents

filed after 1995. Furthermore, we focus on countries with more than 100 patents with

generality data, though little depends on this choice. Table C.1b reports the full list of

countries with their differential trust measure.
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NACE, 

rev. 2 Label

Degree of 

Differentiation

11 Beverages 0.1607943

12 Tobacco products 0.1666667

24 Basic metals 0.2272541

19 Coke and refined petroleum products 0.2535558

10 Food products 0.2811397

20 Chemicals and chemical products 0.5040584

17 Paper 0.5478362

21 Basic pharmaceutical products 0.6130701

22 Rubber and plastic products 0.7753227

23 Other non-metallic mineral products 0.7799922

27 Electrical equipment 0.7802058

16 Woods and similar 0.7918854

13 Textiles 0.837245

29 Motor vehicles, trailers and semi-trailers 0.849965

26 Computer, electronic and optical products 0.8801216

25 Fabricated metal products 0.9127854

32 Other manufacturing 0.93133

18 Print and repro of recorded media 0.9426146

43 Specialized construction activities 0.9480593

15 Leater and related products 0.952381

30 Other transport equipment 0.9699346

31 Furniture 0.9781746

28 Machinery and Equipment n.e.c. 0.9850084

14 Wearing apparel 1

62 Computer Programming, consultancy 1

(a) Extend of differentiation for
NACE Rev.2 product cate-
gories (details in text)

Trust person 

you know

Trust person 

you just met Difference

France 0.872743 0.4382132 -0.4345298

Russia 0.6726688 0.2739654 -0.3987034

Turkey 0.6694921 0.2863797 -0.3831124

Japan 0.6505767 0.2779451 -0.3726316

Great Britain 0.8307576 0.4585311 -0.3722265

Spain 0.7522566 0.3900858 -0.3621708

South Korea 0.6519571 0.297628 -0.3543291

Singapore 0.7326121 0.3789723 -0.3536398

Netherlands 0.7091118 0.3562399 -0.3528719

China 0.6541517 0.3020768 -0.3520749

Germany 0.7092285 0.3648514 -0.3443771

Canada 0.8094969 0.4677572 -0.3417397

Australia 0.7936203 0.4520257 -0.3415946

USA 0.7401084 0.4117659 -0.3283425

Brazil 0.5377488 0.2103051 -0.3274437

Hungary 0.7044524 0.3940696 -0.3103828

Finland 0.7953178 0.4865044 -0.3088133

Norway 0.8631303 0.5574202 -0.3057101

Poland 0.6511807 0.3549145 -0.2962663

Switzerland 0.7697054 0.4808317 -0.2888737

Sweden 0.8132945 0.5362006 -0.2770939

Italy 0.5732932 0.3114035 -0.2618897

India 0.6322304 0.376162 -0.2560684

South Africa 0.6242019 0.3880202 -0.2361816

(b) Trust measures for countries used in regres-
sion (details in text)

Table C.1: Country and Product category information used in the regressions
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