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The Rise of the Machines: Automation, 
Horizontal Innovation, and Income Inequality†

By David Hémous and Morten Olsen*

We build an endogenous growth model with automation (the replace-
ment of low-skill workers with machines) and horizontal innovation 
(the creation of new products). Over time, the share of automation 
innovations endogenously increases through an increase in low-skill 
wages, leading to an increase in the skill premium and a decline in 
the labor share. We calibrate the model to the US economy and show 
that it quantitatively replicates the paths of the skill premium, the 
labor share, and labor productivity. Our model offers a new perspec-
tive on recent trends in the income distribution by showing that they 
can be explained endogenously. (JEL D31, E25, J24, J31, O33, O41)

In the past 50 years, the United States has seen dramatic changes in the income 
distribution. The skill premium increased by 33 percent between 1963 and 2012, 

and the labor share has declined by 7 percentage points ( p.p.) since the 1970s (pan-
els A and B of Figure 1). Meanwhile, several automation technologies (numerically 
controlled machine tools, automatic conveyor systems, industrial robots…) have 
been introduced, thereby increasing the range of tasks for which machines can sub-
stitute for labor. This is supported by patent data, which suggest that the share of 
automation innovation has increased over time (panel C of Figure 1 plots the ratio 
of automation to nonautomation patents in machinery in the United States according 
to Dechezleprêtre et al. 2019).

Our goal is to assess whether these trends can be explained endogenously as 
reflecting the transitional dynamics of an economy. To do so, we build a model with 
high- and  low-skill workers that combines horizontal innovation (the creation of 
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new products or tasks) and automation. Automation takes place in existing product 
lines and enables the replacement of  low-skill workers with machines. Therefore, 
our model embodies a task framework where machines can substitute for work-
ers as Autor, Levy, and Murnane (2003), directed technical change as Acemoglu 
(1998) since innovation endogenously occurs in two different technologies, and 
 capital-skill complementarity as Krusell et al. (2002)—henceforth, KORV. While 
these papers rely on exogenous shocks (the advent of computers, an increase in the 
skill supply prompting a change in the direction of innovation, and a drop in the 
equipment price, respectively) to explain trends in the income distribution, we argue 
instead that this can be the result of an endogenous increase in the share of automa-
tion innovations. Moreover, the interplay between automation and horizontal inno-
vation allows us to account for two puzzles in the literature: the stagnation of labor 
productivity growth despite the rise in automation innovations and the deceleration 
of the skill premium since the mid-1990s without an apparent decline in  skill-biased 
technical change (SBTC).

We develop our analysis in three steps. First, we present a version of the model in 
which technical change is exogenous. Horizontal innovation increases both  low-skill 
and  high-skill wages. Within a firm, automation increases the demand for  high-skill 
workers but reduces the demand for  low-skill workers. At the aggregate level, auto-
mation has an ambiguous effect on  low-skill wages, and, in line with recent trends, 
it increases the skill premium and reduces the labor share.

Second, we endogenize innovation, which allows us to rationalize the observed 
increase in the share of automation innovations. We show that in an economy 
where  low-skill wages are low, there is little automation. As  low-skill wages 
increase with horizontal innovation, the incentive to automate increases and with 
it the share of automation innovation. As a result, the skill premium rises, the 
labor share declines, and  low-skill wages may temporarily decline. Finally, the 
economy moves toward an asymptotic  steady state where the share of automation 
innovations stabilizes and  low-skill wages grow, though slower than  high-skill 
wages and GDP.

Figure 1. The US Skill premium, Labor Share, and Automation Innovations

Notes: Panel A is taken from Autor (2014). Panel B is from the BLS. Panel C reports the increase in the log ratio 
of automation to  nonautomation innovations in machinery in the United States according to Dechezleprêtre et al. 
(2019). See further details in Section III.

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2

S
ki

ll 
pr

em
iu

m
 (r

at
io

)
Panel A. Composition-adjusted college/
non-college weekly wage ratio

55

60

65

70

P
er

ce
nt

Panel B. Labor share of GDP

19
65
19

70
19

75
19

80
19

85
19

90
19

95
20

00
20

05
20

10

Years
19

65
19

70
19

75
19

80
19

85
19

90
19

95
20

00
20

05
20

10

Years
19

65
19

70
19

75
19

80
19

85
19

90
19

95
20

00
20

05
20

10

Years

lo
g 

un
it

Panel C. Change in the log ratio of
automation/nonautomation patents

−0.5

0

0.5

1

1.5

2



VOL. 14 NO. 1 181HÉMOUS AND OLSEN: RISE OF THE MACHINES

In a third step, to assess how far our “ endogenous-transition” approach can go 
quantitatively, we calibrate an extended version of our model to match the evolution 
of the skill premium, the labor share, productivity, and the  equipment-to-GDP ratio 
from 1963 to 2012. Our model captures the trends in the data fairly well. In partic-
ular, labor productivity growth stagnates as horizontal innovation declines and the 
skill premium decelerates in the 1990s and 2000s even though innovation is more 
directed toward automation.1 Moreover, conditional on our aggregate production 
function, a model with exogenous technology would not capture trends better.

We model automation as  high-skill-biased following a large literature showing 
that computerization (Autor, Katz, and Krueger 1998; Autor, Levy, and Murnane 
2003; and Bartel, Ichniowski, and Shaw 2007) or industrial robots (Acemoglu and 
Restrepo 2017b and Graetz and Michaels 2018) decrease the relative demand for 
 low-skill labor.2

A large macro literature has argued that SBTC can explain the increase in the 
skill premium since the 1970s. This literature can be divided into three strands. The 
first emphasizes Nelson and Phelps’s (1966) hypothesis that skilled workers adapt 
better to technological change ( Lloyd-Ellis 1999; Caselli 1999; Galor and Moav 
2000; Aghion, Howitt, and Violante 2002; Beaudry, Green, and Sand 2016). While 
such theories explain transitory increases in inequality, our model features widening 
inequality. Yet we borrow the idea of a shift in production technology spreading 
through the economy.

A second strand emphasizes the role of  capital-skill complementarity: KORV 
find that the observed increase in the stock of capital equipment can account for 
most of the variation in the skill premium. Our model also features  capital-skill 
complementarity but differs in several dimensions: it includes  low-skill  laborsaving 
innovations; our quantitative exercise is more demanding because we endogenize 
technology; and we match a decline in the labor share, whereas they have a small 
increase.

A third branch assumes that technical change is either low- or high-skill labor 
augmenting and measures the bias of technology (Katz and Murphy 1992, Goldin 
and Katz 2008, and Katz and Margo 2014). The directed technical change literature 
(Acemoglu 1998, 2002, 2007) then endogenizes this bias with the skill supply. Such 
models have no role for  labor-replacing technology and cannot generate changes in 
the labor share (see Acemoglu and Autor 2011). None of these approaches try to 
explain features of the income distribution through the transitional dynamics of an 
economy.

1 Intuitively, this comes from looking at automation as a stock: with a higher share of automated products, there 
must be more automation innovation to compensate for its depreciation through horizontal innovation. As a result, 
our model addresses the Card and DiNardo (2002) critique that the  slowdown in the skill premium is inconsistent 
with the SBTC hypothesis.

2 Autor, Katz, and Kearney (2006, 2008) and Autor and Dorn (2013) relate wage and job polarization to the 
 computer-driven automation of routine tasks often performed by  middle-skill workers. We do not distinguish 
between low- and  middle-skill workers, as both have often performed tasks that have later on been automated (a 
previous version of this paper, Hémous and Olsen 2016, did so). See also Feng and Graetz (2016).
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The idea that high wages might incentivize  laborsaving technical change dates 
back to Habakkuk (1962).3 In Zeira (1998), exogenous increases in TFP raise 
wages and encourage the adoption of a  capital-intensive technology, which further 
raises wages (while automation can reduce wages in our model). Acemoglu (2010) 
shows that labor scarcity induces  laborsaving innovation. Neither paper analyzes 
 laborsaving innovation in a fully dynamic model nor focuses on income inequal-
ity. Peretto and Seater (2013) build a dynamic model of automation where wages 
are constant. To get a more realistic path for wages, we introduce a second type of 
innovation, namely the creation of new products or tasks. In work subsequent to 
our paper, Acemoglu and Restrepo (2017a) also develop a growth model where 
technical change involves automation and the creation of new tasks. While in our 
model all tasks are symmetric (except for whether they are automated), in theirs, 
new tasks are exogenously born with a higher labor productivity. As a result, their 
model features a balanced growth path, and they focus on the  self-correcting ele-
ments of the economy after a technological shock, while we focus on accounting for 
secular trends. Subsequent papers combining automation and horizontal innovations 
include Rahman (2017), Martinez (2018), and Zeira and Nakamura (2018).4

Section  I describes the baseline model with exogenous technology. Section  II 
endogenizes the path of technology and rationalizes the increase in the share of auto-
mation innovations. Section III calibrates an extended version of the model. Section IV 
concludes. The main Appendix presents the proofs of the propositions and additional 
exercises on the quantitative model. The online Appendix presents the proofs of addi-
tional results, various extensions, and details of the calibration exercise.

I. A Baseline Model with Exogenous Innovation

This section presents a model with exogenous technology to study the conse-
quences of automation and horizontal innovation on factor prices. Section IC derives 
comparative statics results and relates them to the evolution of the US income dis-
tribution. Section ID analyzes the asymptotic behavior of wages for general paths 
of technology.

A. Preferences and Production

We consider a continuous time  infinite-horizon economy populated by  H  
 high-skill and  L   low-skill workers. Both types of workers supply labor inelastically 
and have identical preferences over a single final good of

   U k,t   =  ∫ 
t
  
∞

   e   − ρ (τ − t)     
 C  k,τ  

1−θ 
 _ 

1 − θ   dτ ,

3 A few recent papers provide empirical evidence for the role of wages on technology adoption: Lewis (2011); 
Hornbeck and Naidu (2014); Manuelli and Seshadri (2014); Clemens, Acemoglu, and Restrepo (2018b); Lewis and 
Postel (2018); and Dechezleprêtre et al. (2019).

4 Benzell et al. (2019), following Sachs and Kotlikoff (2012), build a model where a  code-capital stock can 
substitute for labor and show that a technological shock that favors the accumulation of  code-capital can lead to 
lower  long-run GDP.
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where  ρ  is the discount rate,  θ ≥ 1  is the inverse elasticity of intertemporal substi-
tution, and   C k,t    is consumption of the final good at time  t  by group  k ∈ {H, L} . The 
final good is produced by a competitive industry combining a set of intermediate 
products,  i ∈ [0,  N t  ] , using a CES aggregator:

   Y t   =   ( ∫ 
0
  
 N t  

    y t     (i)      
σ−1 _ σ    di)    

  σ _ σ−1  

  ,

where   y t  (i)  is the use of intermediate product  i  at time  t  and  σ > 1  is the elasticity 
of substitution between these products. As in Romer (1990), an increase in   N t    rep-
resents a source of technological progress.

We normalize the price of   Y t    to one at all points in time and drop time subscripts 
when there is no ambiguity. The demand for each product  i  is

(1)  y (i)  = p   (i)    −σ  Y ,

where  p(i)  is the price of product  i  and the normalization implies that the ideal price 
index,  [ ∫ 0  

N   p (i )   1−σ  di ]   1/(1−σ)  , equals one.
Each product is produced by a monopolist who owns the perpetual rights of pro-

duction. Production occurs by combining  low-skill labor,  l(i) ,  high-skill labor,  h(i) , 
and, possibly, type- i  machines,  x(i) , according to

(2)  y (i)  =   [l  (i)      
ϵ−1 _ ϵ    + α (i)   ( φ ̃  x (i) )     

  ϵ−1 _ ϵ  
 ]    

  
ϵβ _ ϵ−1  

  h  (i)    1−β  ,

where  α(i) ∈ {0, 1}  is an indicator function for whether or not the monopolist has 
access to an automation technology, which allows for the use of machines.5 If the 
product is not automated ( α(i) = 0 ), production takes place using a  Cobb-Douglas 
production function with only  low-skill and  high-skill labor and a  low-skill factor 
share of  β . If it is automated ( α(i) = 1 ), machines can be used in the production 
process as a substitute for  low-skill labor with an elasticity  ϵ > 1 . The parameter   
φ ̃    is the relative productivity advantage of machines over  low-skill workers, and  G  
denotes the share of automated products. Therefore, automation takes the form of a 
secondary innovation in existing product lines.6

Since each product is produced by a single firm, we identify each product with 
its firm and refer to a firm that uses an automated production process as an auto-
mated firm. We refer to the specific labor inputs provided by  high-skill and  low-skill 
workers in the production of different products as “different tasks” performed by 
these workers so that each product comes with its own tasks. It is because  α(i)  is not 
fixed, but can change over time, that our model captures the notion that machines 
can replace workers in new tasks. A model with a fixed  α(i)  for each product would 

5 We allow for perfect substitutability ( ϵ = ∞ ) in which case  y(i) =  [l(i) + α(i) φ ̃  x(i)]   β  h  (i)   1−β  .
6 Secondary innovations in a growth model were introduced by Aghion and Howitt (1996), who study the inter-

play between applied and fundamental research.
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only allow for machines to be used more intensively in production but always for 
the same tasks.

Although we will refer to  x  as “machines,” our interpretation also includes 
any form of computer inputs, algorithms, the services of  cloud-providers, etc. In 
Section  III, we will identify machines with equipment (excluding transport) and 
software. In turn, automation innovations refer to innovations that allow machines 
to accomplish tasks with less need for a human operator. This includes robotics 
but also computer numerical control machine tools, automatic conveyor belts, 
 computer-aided design, etc.7

For now, machines are an intermediate input—this assumption is innocuous, and 
in Section III machines are a capital input without changing our results qualitatively. 
Once invented, machines of type  i  are produced competitively one-for-one with the 
final good, such that the price of an existing machine is always equal to one and 
technological progress in machine production follows that in the rest of the econ-
omy. Yet our model can capture the notion of a decline in the real cost of equipment, 
as automation for firm  i  can equivalently be interpreted as a decline of the price of 
machine  i  from infinity to one.

B. Equilibrium Wages

In this section,  we derive how wages are determined in equilibrium, taking 
as given the number of products  N , the share of automated products  G , and the 
employment of  high-skill workers in production   H   P  ≡  ∫ 0  

N   h(i) di  (we let   H   P  ≤ H  
to accommodate later sections where  high-skill labor is used to innovate).

From equation (2), the unit cost of product  i  is given by

(3)  c ( w L  ,  w H  , α (i) )  =  β   −β    (1 − β)    − (1−β)     ( w  L  1−ϵ  + φα (i) )    
  
β _ 1−ϵ     w  H  1−β  ,

where  φ ≡   φ ̃     ϵ  ,   w L    denotes  low-skill wages, and   w H     high-skill wages. For all   w L  ,  w H   
> 0 , automation reduces costs ( c( w L  ,  w H  , 1) < c( w L  ,  w H  , 0) ). Price is set as a 
markup over costs:  p(i) = σ/(σ − 1) ⋅ c( w L  ,  w H  , α(i)) . Using Shepard’s lemma and 
equations (1) and (3) delivers the demand for  low-skill labor of a single firm:

(4)  l ( w L  ,  w H  , α (i) )  = β   
 w  L  −ϵ 
 ____________  

 w  L  1−ϵ  + φα (i) 
     (  σ − 1 _ σ  )    

σ
  c   ( w L  ,  w H  , α (i) )    

1−σ
  Y .

The effect of automation on demand for  low-skill labor in a firm is generally 
ambiguous. This is due to the combination of a negative substitution effect (auto-
mation allows for substitution between machines and  low-skill workers) and a 
positive scale effect (automation decreases costs, lowers prices, and increases 
production). As we focus on  laborsaving innovation, we impose the condition  
 ϵ > 1 + β(σ − 1)  throughout the paper, which is necessary and sufficient for 

7 We include IT innovations in our interpretation because our model does not distinguish between  low-skill and 
 middle-skill workers.
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the substitution effect to dominate at the firm level and ensures  l( w L  ,  w H  , 1) 
< l( w L  ,  w H  , 0)  for all   w L  ,  w H   > 0 .

At the aggregate level, since both automated firms and  nonautomated firms are 
symmetric, output can written as

(5)  Y =  N     
1 _ σ−1    ×   

⎛

 ⎜ 

⎝
  (1 − G)      

1 _ σ      
(

    ( L   NA )    
β
    ( H   P,NA )    

1−β
   


   

 T 1  

  
 

  
)

    
  σ−1 _ σ  

  

 +  G     
1 _ σ      
⎛
 ⎜ 

⎝
    [  ( L   A )    

  ϵ−1 _ ϵ  
  +   ( φ ̃  X)       

ϵ−1 _ ϵ   ]    
  
ϵβ _ ϵ−1  

    ( H   P,A )    
1−β

    


    

 T 2  

  

 

  
⎞
 ⎟ 

⎠
    

  σ−1 _ σ  

 

⎞

 ⎟ 

⎠
    

  σ _ σ−1  

  ,

where   L   A   (respectively   L   NA  ) is the total mass of  low-skill workers in automated 
(respectively  nonautomated) firms,   H   P,A   (respectively   H   P,NA  ) is the total mass of 
 high-skill workers hired in production in automated (respectively  nonautomated) 
firms, and  X =  ∫ 0  

N  x(i) di  is total use of machines. The first term   T 1    captures the clas-
sic case where production takes place with constant shares between factors ( low-skill 
and  high-skill labor). The second term   T 2    represents the factors used within auto-
mated products and features substitutability between  low-skill labor and machines. 
Note,  G  is the share parameter of the “automated” products nest, and therefore an 
increase in  G  is   T 2   -biased (as  σ > 1 ). Finally,   N   1/(σ−1)   is a TFP parameter.8

With CRS and perfect competition in final good production, the price of the final 
good is equal to its cost. Using that all intermediate producers charge the same 
 markup  σ/(σ − 1)  and that final good output obeys equation (5), the price normal-
ization gives

(6)    σ _ σ − 1
      N     

1 _ 1−σ    ____________  
 β   β    (1 − β)    1−β 

     (G   (φ +  w  L  1−ϵ )    
μ
  +  (1 − G)   w  L  

β (1−σ) 
 )    

  1 _ 1−σ  
   w  H  1−β  = 1 ,

where we define  μ ≡ β(σ − 1)/(ϵ − 1) < 1  (by our assumption on  ϵ ). This rela-
tionship defines the unit isocost curve in the  ( w L  ,  w H  )  space in Figure 2. It shows the 
positive relationship between real wages and the level of technology given by  N , the 
number of products, and  G , the share of automated firms.

Applying Shepard’s lemma to the cost function defined by the  left-hand side of 
(6), we get the relative labor shares in production: 9

(7)    
 w H    H   P 

 _  w L   L   =   
1 − β _ β     

G +  (1 − G)    (1 + φ  w  L  ϵ−1 )    
−μ

 
   _____________________________________    

G   (1 + φ  w  L  ϵ−1 )    
−1

  +  (1 − G)   (1 + φ  w  L  ϵ−1 )    
−μ

 
    .

8 For automated firms, this model features an elasticity of substitution between  high-skill labor and machines 
equal to that between  high-skill and  low-skill labor. This, however, does not hold at the aggregate level, consistent 
with KORV, who argue that the aggregate elasticity of substitution between  high-skill and  low-skill labor is greater 
than that between  high-skill labor and machines.

9 When  ϵ = ∞ , the skill premium is given by    
 w H  

 _  w L     =   
1 − β _ β     L _ 

 H   P 
    if   w L   <   φ ̃     −1   such that no firm uses machines, 

and    
 w H  

 _  w L     =   
1 − β _ β     L _ 

 H   P 
     
G + (1 − G) ( φ ̃    w L   )   −β(σ−1)   __________________  

(1 − G)( φ ̃    w L   )   −β(σ−1) 
    if   w L   >   φ ̃     −1  .
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This expression gives the relative demand curve for  high-skill and  low-skill labor 
drawn in Figure 2. Together (6) and (7) determine real wages uniquely as a function 
of  N, G , and   H   P  . For  G = 0 , the relative demand curve is a straight line, with slope  
(1 − β)L / (β  H   P  ) , reflecting the constant factor shares in a  Cobb-Douglas economy. 
For  G > 0 , the  right-hand side of (7) increases in   w L   , so that the relative demand 
curve is  nonhomothetic and bends  counterclockwise as   w L    grows. Therefore, as long 
as  G  tends toward a positive constant,  low-skill and  high-skill wages cannot grow at 
the same rate in the  long run.

Intuitively, higher  low-skill wages increase the ratio of  high-skill to  low-skill 
labor share in production for two reasons. First, they induce more substi-
tution toward machines in automated firms as their use relative to  low-skill 
labor obeys  x / l = φ  w  L  ϵ   , reflected by the term  (1 + φ  w  L  ϵ−1   )   −1   in (7)—recall 
that  ϵ > 1 . Second, higher  low-skill wages improve the  cost advantage of auto-
mated firms and their market share. Using (1) and (3), the relative revenues (and 
profits) of  nonautomated and automated firms are

(8)  R ( w L  ,  w H  , 0)  / R ( w L  ,  w H  , 1)  = π ( w L  ,  w H  , 0)  / π ( w L  ,  w H  , 1)  =   (1 + φ  w  L  ϵ−1 )    
−μ

  ,

which decreases in   w L    (reflected by the term  (1 + φ  w  L  ϵ−1   )   −μ   in (7)).
The static equilibrium is closed by the final good market clearing condi-

tion  Y = C + X , where  C =  C L   +  C H    is total consumption. Note,  GDP  includes 
the payment to labor and aggregate profits, which are a share  1 / σ  of output. 
Therefore, GDP and the total labor share  LS  are given by

(9)  GDP ≡   1 _ σ  Y +  w L   L +  w H   H, LS = 1 −   1  ____________________________   
1 +  (σ − 1)  (1 − β)  (  

 w L   L
 _ 

 w H    H   P 
   +   H _ 

 H   P 
  ) 

   ,

Figure 2. Relative Demand Curve and Isocost Curve for Different Values of  N  and  G 
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where the second equality uses that payment to  high-skill labor in production is a 
constant share  (1 − β)(σ − 1) / σ  of output.

C. Technical Change and Wages

We analyze the consequences of technical change on the level of wages using 
Figure 2. An increase in the number of products,  N , pushes out the isocost curve 
and increases both  low-skill and  high-skill wages. When  G = 0 , both wages grow 
at the same rate since the relative demand curve is a straight line, but for  G > 0 , 
the demand curve is  nonhomothetic and the skill premium grows. Therefore, an 
increase in  N  at constant  G (> 0)  is  high-skill biased.

An increase in the share of automated products  G  has a positive effect on  high-skill 
wages and the skill premium but an ambiguous effect on  low-skill wages: Higher 
automation increases the productive capability of the economy and pushes out the 
isocost curve (an aggregate scale effect), which increases  low-skill wages. Yet it 
also allows for easier substitution away from  low-skill labor, which pivots the rela-
tive demand curve  counterclockwise (an aggregate substitution effect), decreasing 
 low-skill wages. Therefore, automation is always  high-skill labor biased (  w H   /  w L    
increases), but it is  low-skill laborsaving (  w L    decreases) if and only if the aggregate 
substitution effect dominates the aggregate scale effect. Formally, one can show the 
following result holds (proof in Appendix A1).10

PROPOSITION 1: Consider the equilibrium  ( w L  ,  w H  )  determined by equations (6) 
and (7). Assume that  ϵ < ∞ . It holds that

 (A) An increase in the number of products  N  (keeping  G  and   H   P   constant) leads 
to an increase in both  high-skill (  w H   ) and  low-skill wages (  w L   ). Provided 
that  G > 0 , an increase in  N  also increases the skill premium   w H   /  w L    and 
decreases the labor share.

 (B) An increase in the share of automated products  G  (keeping  N  and   H   P   con-
stant) increases the  high-skill wages   w H   , the skill premium   w H   /  w L   , and 
decreases the labor share. Its impact on  low-skill wages is generally ambigu-
ous, but  low-skill wages are decreasing in  G  if (i)  1 ≤ (σ − 1)(1 − β)  or if 
(ii)  N  and  G  are high enough.

 (C) An increase in the number of  nonautomated products (an increase in  N  keep-
ing  GN  constant) increases both  high-skill (  w H   ) and  low-skill wages (  w L   ). If  
N  is large enough or  ϵ < σ , it decreases the  skill premium.

10 In the perfect substitute case,  ϵ = ∞ ,   w H    increases in  N  and weakly increases in  G ,   w H   /  w L    weakly increases 
in  N  and  G , and   w L    weakly increases in  N  and weakly decreases in  G  provided that  1 / (1 − β) ≤ σ − 1  or  G  is 
large enough. When  ϵ = ∞  and  G = 1 , the isocost curve has a horizontal arm and the relative demand curve a 
vertical one.
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Part B gives sufficient conditions under which automation is  low-skill laborsav-
ing. The aggregate substitution effect is larger than the scale effect in two cases:  
(i) The elasticity of substitution  σ  is large, as newly automated products gain a larger 
market share; or the cost share of the  low-skill  labor-machines aggregate  β  is small 
as the  cost-saving effect of automation is small. (ii)  G  and  N  are large: in that case, 
additional automation hurts  low-skill workers more, as there are few  nonautomated 
firms, while most of the aggregate productivity gains are already realized. It is worth 
comparing the effect of automation with that of an increase in machines’ productiv-
ity  φ  (equivalent to a decline in the price of machine). The latter also has an ambigu-
ous effect on  low-skill wages resulting from the combination of a substitution effect 
and a scale effect, but it is less likely to be  low-skill laborsaving than automation.11

Part C considers an increase in the number of  nonautomated products, which cor-
responds to the “horizontal innovation” to be introduced in Section II. Such techno-
logical change pushes out the  isocost curve ( N  increases) but also makes the relative 
demand curve rotate clockwise ( GN  stays constant). This increases demand for both 
types of workers and therefore both wages. Horizontal innovation is  low-skill labor 
biased (it reduces the skill premium) if  N  is large, in which case   w L    is large so that 
the isocost curve does not move much with horizontal innovation, or if machines 
and  low-skill workers are not too substitute ( ϵ ≤ σ  is a sufficient condition).12

Proposition 1 offers important insights into the types of technological change that 
can simultaneously account for a rising skill premium (panel A of Figure 1) and a 
decreasing labor share (panel B of Figure 1). Specifically, these trends are consistent 
with an economy with a growing number of products and a constant or rising share 
of automated products.13 Moreover, it suggests that an increase in automation may 
also give rise to a decrease in wages for  low-skill workers. Section II will model 
innovation and explain why we should expect a rising number of products and a 
rising share of automated products until it approaches an asymptotic  steady-state 
value.

D. Asymptotics for General Technological Processes

We study the asymptotic behavior of the model for given paths of technol-
ogies and mass of  high-skill workers in production. For any variable   a t    (such 
as   N t   ), we let   g  t  

a  ≡   a ˙   t   /  a t    denote its growth rate and   g  ∞  a   =  lim t→∞    g  t  
a   if it exists. 

We focus here on the case where the share of automated products admits an interior 
limit   G ∞   ∈ (0, 1)  for which we obtain the following result (proof in Appendix A2; 
online Appendix B2.1 studies the cases where   G ∞   = 0  or  1 ).

11 Formally, we show that  ∂ w / ∂ φ < 0  implies that  ∂ w/∂ G < 0  but the reverse is not true—see Appendix A1. 
Intuitively, this is the case because an increase in automation not only acts as “factor augmenting technical change” 
for the inputs within automated firms but also as “ factor-depleting technical change” for the inputs in  nonautomated 
firms. This point can be seen from equation (5) and is made by Aghion, Jones, and Jones (2019).

12 In the perfect substitute case, an increase in the number of  nonautomated products increases   w H    and weakly 
increases   w L   . If  G < 1  and  N  is large enough, it decreases the skill premium.

13 The decreasing relationship between the labor share and the skill premium obtained when machines are an 
intermediate input generalizes to the case where machines are part of a capital stock with a perfectly elastic supply 
(see Section III and online Appendix B10).
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PROPOSITION 2: Consider three processes   [ N t  ]  t=0  
∞   ,   [ G t  ]  t=0  

∞   , and  [ H  t  
P   ]  t=0  

∞   , where  
( N t  ,  G t  ,  H  t  

P  ) ∈ (0, ∞) × [0, 1] × (0, H]  for all  t . Assume that   G t  ,    g  t  
N  , and   H  t  

P   all 
admit limits   G ∞   ,   g  ∞  N   , and   H  ∞  P    with   G ∞   ∈ (0, 1) ,   g  ∞  N   > 0 , and   H  ∞  P   > 0 . Then, the 
asymptotic growth of  high-skill wages   w Ht    and output   Y t    are

(10)   g  ∞   w H    =  g  ∞  Y   =  g  ∞  N   /  ( (1 − β)  (σ − 1) )  ,

and the asymptotic growth rate of   w Lt    is given by

(11)   g  ∞   w L    =  g  ∞  Y   /  (1 + β (σ − 1) )  .

This proposition first relates the growth rates of out-
put and  high-skill wages to the growth rate of the number of prod-
ucts. Note:   Y t    is proportional to   N  t  

1/((1−β)(σ−1))   in the long run. 
This reflects the standard  expanding-variety model gains and, in the presence of 
automation (  G ∞   > 0 ), a multiplier effect, which increases in the asymptotic share 
of machines  β , as machines are a reproducible input.

Second, when there is a positive share of  nonautomated products asymptoti-
cally,   G ∞   < 1 ,  low-skill workers and machines are imperfect substitutes in the 
aggregate (even if there are perfect substitutes at the firm level  ϵ = ∞ ).14 As a 
result,  low-skill wages must grow at a positive rate asymptotically when the number 
of products grows. Intuitively, a growing stock of machines and a fixed supply of 
 low-skill labor imply that the relative price of a worker (  w Lt   ) to a machine (   p  t  

x   ) must 
grow at a positive rate. Since machines are produced with the same technology as 
the consumption good,   p  t  

x   equals one   and the real wage   w Lt    must grow at a positive 
rate.

Third, the proposition shows that if   G ∞   > 0 ,  low-skill wages cannot grow at the 
same rate as output. This result follows from Uzawa’s theorem: equation (5) shows 
that an increase in the number of product   N t    is not  labor augmenting unless   G ∞   = 0 . 
We get   G ∞   > 0  as long as the automation intensity is bounded away from zero (see 
online Appendix  B2.2). Further, when   G ∞   < 1 , the demand for  low-skill labor 
increasingly comes from the  nonautomated firms (as automation is  laborsaving at 
the firm level), while most of the demand for  high-skill labor comes from auto-
mated firms. With growing wages, the relative market share of  nonautomated firms 
decreases in proportion to  (1 + φ  w  Lt  

ϵ−1   )   −μ  ∼  φ   −μ   w  Lt  
−β(σ−1)  . Then, the growth rate 

of  low-skill wages is a fraction of the growth rate of  high-skill wages given by 
(11). The ratio between the growth rates of high- and  low-skill wages increases 
with a higher importance of  low-skill workers (a higher  β ) or a higher substitutabil-
ity between automated and  nonautomated products (a higher  σ ) since both imply 
a faster loss of competitiveness of the  nonautomated firms. Yet it is independent 
of the elasticity of substitution between machines and  low-skill workers,  ϵ , or of 

14 As long as new  nonautomated products are continuously introduced, and the intensity at which  nonautomated 
firms are automated is bounded, the share of  nonautomated products is always positive; i.e.,   G ∞   < 1  (see proof in 
online Appendix B2.2). This ensures that there is no  economy-wide perfect substitution between  low-skill workers 
and machines.
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the exact asymptotic share of automated products   G ∞   . In this case,  nonautomated 
products provide employment opportunities for  low-skill workers, which limits the 
relative losses of  low-skill workers compared to  high-skill workers (their wages 
grow according to (11) instead of (B5) and  ϵ > 1 + β(σ − 1) ). In the model of 
Section II, the economy endogenously ends up in this case.

Proposition 2 establishes general conditions under which  low-skill wages grow 
asymptotically but slower than  high-skill wages. We briefly discuss the robustness 
of this result. First, one might be concerned that the slower growth in  low-skill 
wages is an artifact of having exogenous supplies of low- and  high-skill labor. 
Online Appendix  B3 extends our model to allow for endogenous skill choice. 
Specifically, we consider a Roy model in which workers have heterogeneous com-
parative advantage between being low- and  high-skill.  Low-skill wages still grow 
slower than  high-skill wages asymptotically, and now the share of  low-skill workers 
tends toward zero. Second, the result that imperfect aggregate substitution between 
machines and  low-skill workers leads to positive growth in  low-skill wages asymp-
totically relies on machines and the consumption good sharing the same production 
technology. Online Appendix B4 relaxes this assumption and allows for negative 
growth in   p  t  

x  . In that case,  low-skill wages may but need not decline asymptotically.

II. Endogenous Innovation

We now model automation and horizontal innovation as the result of investment. 
In Sections  IIA–IIC, we analyze the effect of wages on innovation (the reverse of 
Proposition 1), study the transitional dynamics of the system, and explain why the 
economy should experience an increase in the share of automated products as it 
develops. Section  IID explores the interactions between the two innovation pro-
cesses. Online Appendix  B6 provides numerical examples to illustrate this sec-
tion and shows comparative statics results.

A. Modeling Innovation

If a  nonautomated firm hires   h  t  
A (i)   high-skill workers to perform automation 

research, it becomes automated at a Poisson rate  η  G  t  
 κ ̃    ( N t    h  t  

A (i) )   κ  . Once a firm is 
automated, it remains so forever. The parameter  η > 0  denotes the productivity of 
the automation technology;  κ ∈ (0, 1)  measures its concavity;   G  t  

 κ ̃    ,   κ ̃   ∈ [0, κ] , rep-
resents possible knowledge spillovers from the share of automated products; and   N t    
represents knowledge spillovers from the total number of products. The spillovers 
in   N t    ensure that both automation and horizontal innovation may take place in the  long 
run; they exactly compensate for the mechanical reduction in the amount of resources 
for automation available for each product (namely  high-skill workers) when the 
number of product increases.15 The presence of spillovers in automation technology 

15 These spillovers can be  micro-founded as follows: let there be a fixed mass one of firms indexed by  j  each 
producing a continuum   N t    of products indexed by  i  so that production is given by   Y t   = ( ∫ 0  

1    ∫ 0  
 N t  ( j)    y t   (i, j  )     

σ−1 _ σ    didj  )     
σ _ σ−1    . 

When a firm hires    H ̃    t  A ( j )   high-skill workers in automation, each of its  nonautomated products gets independently 
automated with a Poisson rate of  η  G  t  

 κ ̃   [  H ̃    t  A ( j ) / (1 −  G t  ( j ))  ]   κ  . The aggregate economy would be identical to ours and 
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(  κ ̃   > 0 ) implies a delayed and faster rise in the share of automated products.16 We 
assume that   κ ̃   < 1 − κ(1 − β) , which ensures that automation always takes off 
(see Proposition 3).

New products are developed by  high-skill workers in a standard manner accord-
ing to a linear technology with productivity  γ  N t   . With   H  t  

D    high-skill workers pursu-
ing horizontal innovation, the mass of products evolves according to

    N ˙   t   = γ  N t    H  t  
D  .

We assume that firms do not exist before their product is created and therefore can-
not invest in automation. As a result, new products are born  nonautomated, which 
means that “horizontal innovation” corresponds to an increase in   N t    keeping   G t    N t    
constant and is  low-skill biased under certain conditions (see Proposition 1). This 
is motivated by the idea that when a task is new and unfamiliar, solving unforeseen 
problems requires the flexibility and outside experience of human workers. Only as 
the task becomes routine and potentially codefiable, a machine (or an algorithm) can 
perform it (Autor 2013).

As  nonautomated firms get automated at Poisson rate  η  G  t  
 κ ̃    ( N t    h  t  

A   )   κ  , and new 
firms are born  nonautomated, the share of automated firms obeys

(12)    G ˙   t   = η  G  t  
 κ ̃      ( N t    h  t  

A )    
κ
  (1 −  G t  )  −  G t    g  t  

N  .

Therefore, the level of automation in the economy,   G t   , can be understood as a 
“stock” that depreciates through the introduction of new products. As a result, for a 
given growth rate in the number of products (  g  t  

N  ), a higher automation intensity per 
product ( η  G  t  

 κ ̃    ( N t    h  t  
A   )   κ (1 −  G t  ) ) is required to increase the share of automated prod-

ucts when this share   G t    is already high. This feature plays a role in explaining why 
the growth rate of the skill premium need not grow the fastest when innovation is the 
most directed toward automation. It is also one of the main differences between our 
modeling of automation and a simple reduction in the price of equipment.

Overall, the rate and direction of innovation depends on the equilibrium alloca-
tion of  high-skill workers between production, automation, and horizontal inno-
vation.17 We define the total mass of  high-skill workers working in automation 
as   H  t  

A  ≡  ∫ 0  
 N t      h  t  

A (i) di .18  High-skill labor market clearing then leads to

(13)   H  t  
A  +  H  t  

D  +  H  t  
P  = H .

have the same social planner allocation (the decentralized equilibrium would behave similarly, but the externality 
in the automation technology from the number of products would be internalized).

16 Whenever   κ ̃   > 0 , we assume that   G 0   > 0 . Growth models with more than one type of technology often 
feature similar knowledge spillovers (e.g., Acemoglu 2002). Bloom, Schankerman, and Van Reenen (2013) show 
empirically that technologies that are closer to each other in the technology space have larger knowledge spillovers.

17 We focus here on the decentralized equilibrium, but online Appendix B8 studies the social planner’s problem. 
The optimal allocation is qualitatively similar so that our results are not driven by the market structure we impose.

18 Using that by symmetry the total amount of  high-skill workers hired in automation research is 
  H  t  

A  = (1 −  G t  )  N t    h  t  
A  , we can rewrite (12) as    G ˙   t   = η  G  t  

 κ ̃    ( H  t  
A   )   κ  (1 −  G t   )   1−κ  −  G t    g  t  

N  .
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B. Innovation Allocation

We denote by   V  t  
A   the value of an automated firm, by   r t    the  economy-wide interest 

rate, and by   π  t  
A  ≡ π( w Lt  ,  w Ht  , 1)  the profits at time  t  of an automated firm. The asset 

pricing equation for an automated firm is given by

(14)   r t    V  t  
A  =  π  t  

A  +   V ̇    t  
A  .

This equation states that the required return on holding an automated firm,   V  t  
A  , must 

equal the instantaneous profits plus appreciation. An automated firm only maxi-
mizes instantaneous profits and has no intertemporal investment decisions to make.

A  nonautomated firm invests in automation. Denoting by   V  t  
N   the value of a 

 nonautomated firm and letting   π  t  
N  ≡ π( w Lt  ,  w Ht  , 0) , we get the asset pricing equation

(15)   r t    V  t  
N  =  π  t  

N  + η  G  t  
 κ ̃      ( N t    h  t  

A )    
κ
  ( V  t  

A  −  V  t  
N )  −  w Ht    h  t  

A  +   V ̇    t  
N  ,

where   h  t  
A   is the mass of  high-skill workers in automation research hired by a single 

 nonautomated firm. This equation is similar to equation (14), but profits are aug-
mented by the instantaneous expected gain from innovation  η  G  t  

 κ ̃    ( N t    h  t  
A   )   κ ( V  t  

A  −  V  t  
N  )  

net of expenditure on automation research,   w Ht    h  t  
A  . This gives the first-order condition

(16)  κη  G  t  
 κ ̃     N  t  

κ    ( h  t  
A )    

κ−1
  ( V  t  

A  −  V  t  
N )  =  w Ht    .

Note,   h  t  
A   increases with the difference in value between automated and  nonautomated 

firms and thereby current and future  low-skill wages—all else equal.19

 Free entry in horizontal innovation ensures that the value of creating a new firm 
equals its opportunity cost when there is strictly positive horizontal innovation 
(   N ˙   t   > 0 ):

(17)  γ  N t    V  t  
N  =  w Ht    .

The  low-skill and  high-skill representative households’ problems are standard 
and lead to Euler equations that in combination give20

(18)    C ˙   t   /  C t   =  ( r t   − ρ)  / θ ,

19 The model predicts that the ratio of  high-skill to  low-skill labor in production is higher for automated than 
 nonautomated firms, though not overall since  nonautomated firms also hire  high-skill workers for the purpose of 
automating. In particular, new firms do not always have a higher ratio of low- to  high-skill workers (and at the time 
of its birth, a new firm only relies on  high-skill workers).

20 Consumption growth is the same for both households even though  low-skill wages grow at a lower rate than 
 high-skill wages in the  long run. This is possible because  low-skill workers save initially, anticipating a drop in 
labor income.
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with a transversality condition requiring that the present value of all time- t  assets in 
the economy (the aggregate value of all firms) is asymptotically zero:

   lim t→∞   (exp (−  ∫ 
0
  
t
    r s   ds)   N t   ( (1 −  G t  )  V  t  

N  +  G t    V  t  
A ) )  = 0 .

C. Description of the Dynamic Equilibrium

Appendix A3 shows that the equilibrium can be characterized by a system of four 
differential equations with two state variables (determining   N t    and   G t   ), two control 
variables (which give the allocation of  high-skill workers in innovation and produc-
tion), and an auxiliary equation defining  low-skill wages. It further establishes the 
following result.

PROPOSITION 3: Assume that   κ   −κ  (γ(1 − κ) / ρ )   κ−1  ρ / η + ρ / γ < ψH.  Then:

 (A) The system of differential equations admits an asymptotic  steady state with 
a constant share of automated products   G ∞   ∈ (0, 1)  and positive growth in 
the number of products   g  ∞  N   > 0 . The growth rates of output and wages are 
given by Proposition 2 as (10) and (11).

 (B) For any  a > 0 , and any   t ̂   < ∞ , there exists an   N 0    sufficiently low such that 
during the interval  (0,  t ̂   ) , the automation rate  η  G  t  

 κ ̃    (   h ˆ    t  
A   )   κ  < a , and the econ-

omy behaves arbitrarily close to that of a Romer model where automation is 
impossible.

 (C) If   g  t  
N   admits a positive limit and   G t    admits a limit, then the economy con-

verges to an asymptotic  steady state with   G ∞   ∈ (0, 1)  as described in (A).

Proposition 3 establishes three results. First, under the appropriate parameter 
conditions, there exists an asymptotic  steady state where the share of automated 
products   G ∞    is between zero   and one  .21, 22 Second, for   N 0    sufficiently low, the econ-
omy behaves close to a Romer model with no automation. Third, if   G t    admits a limit 
and   g  t  

N   a positive limit, the economy must converge toward the asymptotic  steady 
state regardless of the initial values  ( N 0  ,  G 0  ) . Therefore, the economy must feature 
a period where the rate of automation innovation increases: it is low for low   N 0    but 
must be positive later on to ensure a positive share of automated  products in the 

21 To understand the condition   κ   −κ  (γ(1 − κ) / ρ )   κ−1  ρ / η + ρ / γ < ψH,  let the efficiency of the automation 
technology  η  be arbitrarily large such that the model approaches a Romer model with only automated firms. Then 
this inequality becomes  ρ / γ < ψH , which is the condition for positive growth in a Romer model with linear 
innovation technology. With a smaller  η , the present value of a new product is reduced, and the condition is more 
stringent.

22 “Asymptotic” because the system of differential equations only admits a fixed point for   N t   = ∞.  Technically, 
there is a steady state for the transformed system in Appendix A3, where the number of product   N t    is replaced by 
an inversely related variable   n t   , which is zero   in steady state. Further, multiple  steady states with   G ∞   > 0  are 
technically possible but unlikely for reasonable parameter values (see online Appendix B5.2). In all our numerical 
simulations, the  steady state was unique and  saddle-path stable.
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 long run. In other words, the path of technological change itself will be unbalanced 
through the transitional dynamics. To understand this result, we now explain the 
evolution of the automation incentives, which, we show, are crucially linked to the 
level of  low-skill wages.23

Following (16), the mass of  high-skill workers in automation (  H  t  
A  

= (1 −  G t  )  N t    h  t  
A  ) and therefore the automation intensity rate, given by 

 η  G  t  
 κ ̃    ( H  t  

A  / (1 −  G t  ) )   κ  , depends on the ratio between the gain in firm value from auto-
mation   V  t  

A  −  V  t  
N   and its effective cost, namely the  high-skill wage divided by the 

number of products   w Ht   /  N t    :

(19)   H  t  
A  =  (1 −  G t  )   (κη  G  t  

 κ ̃       V  t  
A  −  V  t  

N 
 _ 

 w Ht   /  N t  
  )    

1/ (1−κ) 

  .

Crucially, as the number of products in the economy increases, the ratio  
( V  t  

A  −  V  t  
N  ) / ( w Ht   /  N t  )  evolves. Combining (14), (15), and (16) gives the difference 

in value between an automated and a  nonautomated firm:

(20)   V  t  
A  −  V  t  

N  =  ∫ 
t
  
∞

   exp (−  ∫ 
t
  
τ
    r u   du)  ( π  τ  

A  −  π  τ  
N  −   1 − κ _ κ    w Hτ    h  τ  

A )  dτ ,

which is the discounted difference of profit flows adjusted for the cost and proba-
bility of automation. Recall that  Cobb-Douglas production and isoelastic demand 
imply that both  high-skill wages (for given   H  t  

P   ) and aggregate profits are pro-
portional to aggregate output. Therefore,   w Ht   /  N t    is proportional to average prof-
its:   w Ht   /  N t   = [ G t    π  t  

A  + (1 −  G t  )  π  t  
N  ] / [ψ  H  t  

P  ] . As a result, the mass of  high-skill 
workers in automation moves with the discounted flow of profits of automated ver-
sus  nonautomated firms divided by average firm profits. Intuitively, with a positive 
discount rate,   V  t  

A  −  V  t  
N   moves like   π  t  

A  −  π  t  
N   as a first approximation (from equa-

tion (20)), so that we get

(21)    
 V  t  

A  −  V  t  
N 
 _ 

 w Ht   /  N t  
    ∝ ̃     

 π  t  
A  −  π  t  

N 
  _________________  

 G t    π  t  
A  +  (1 −  G t  )   π  t  

N 
   =   

1 −   (1 + φ  w  Lt  
ϵ−1 )    

−μ
 
  _________________________   

 G t   +  (1 −  G t  )    (1 + φ  w  Lt  
ϵ−1 )    

−μ
 
    ,

where   ∝ ̃    denotes “approximately proportional” and we used equation  (8). This 
highlights  low-skill wages (relative to the inverse productivity of machines    φ ̃     −1  ) 
as the key determinant of automation innovations. When   w Lt   ≈ 0 , the incentive for 
automation innovation is very low, whereas when   w Lt   → ∞ , it approaches a posi-
tive constant. This price effect bears similarity to Zeira (1998), where the adoption 
of a  laborsaving technology also depends on the price of labor.24

23 These results extend to the case where the skill supply is endogenous. See online Appendix B9.
24 Beyond a focus on different empirical phenomena (an increase in inequality versus  cross-country productiv-

ity differences), there are three important differences between our model and Zeira (1998). He assumes exogenous 
technical progress and focuses on adoption, while we model two types of endogenous innovation. The innovation 
cost changes over time in our model, while the cost of adoption is zero in Zeira (1998). As a result, automation is 
not  laborsaving for the aggregate economy in his model.
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Low Automation: When the number of products,   N t   , is low enough that   w Lt    is 
small relative to    φ ̃     −1  , the difference in profits between automated and  nonautomated 
firms is small relative to average profits. Following (19) and (21), the allocation 
of  high-skill labor to automation,   H  t  

A  , is low, and automation intensity is low.
Consequently, as stipulated in Proposition 3B, growth is driven by horizontal inno-
vation, and the behavior of the economy is close to that of a Romer model with 
a  Cobb-Douglas production function with low- and  high-skill labor. Both wages 
approximately grow at a rate   g  t  

N  / (σ − 1) , and the labor share is approximately con-
stant. Note,   G t    depreciates following equation (12).

Rising Automation: As   w Lt    grows relative to    φ ̃     −1  , the term  ( V  t  
A  −  V  t  

N  )/( w Ht   /  N t  )  
increases, which raises the incentive to innovate in automation. Without the exter-
nality in the automation technology (  κ ̃   = 0 ), (19) directly implies that   H  t  

A   must rise 
significantly above zero, and with it the Poisson rate of automation,  η ( H  t  

A  / (1 −  G t  ) )   κ   
and thereby the share of automated products,   G t   . For   κ ̃   > 0 , the initial deprecia-
tion in the share of automated products gradually makes the automation technology 
less effective, which delays the  takeoff of automation. Our initial assumption that 
knowledge spillovers are not too large (  κ ̃   < 1 − κ(1 − β) ) is a sufficient (but not 
necessary) condition for the  takeoff to always happen.25

Following Proposition 1, the increases in   G t    and   N t    lead to an increase in the skill 
premium and a decline in the labor share.26 For some parameters,  low-skill wages 
temporarily decline (see numerical examples in online Appendix B6.2).27 Arguably, 
this is where our model differs the most from the rest of the literature, notably 
because a model with fixed  G , a  capital-skill complementarity model like KORV, 
or a  factor-augmenting technical change model with directed technical change as 
Acemoglu (1998) does not feature  laborsaving innovation and therefore cannot lead 
to a decline in  low-skill wages.

High but Stable Automation: With the share of automated products,   G t   , no longer 
near zero, the gain from automation   V  t  

A  −  V  t  
N   and its effective cost   w Ht   /  N t    grow at 

the same rate (the  right-hand side in (21) is close to  1 /  G t   ). As a result, the normal-
ized mass of  high-skill workers in automation research (  N t    h  t  

A  ) stays bounded (see 
(19)), and so does the Poisson rate of automation, such that   G t    converges to a positive 
constant below one. The economy then converges toward an asymptotic  steady state 

25 Alternatively, if we assume that the automation technology obeys  max{η  G  t  
 κ ̃   ,  η _  } ( N t    h  t  

A   )   κ   with   η _  > 0 , then 
automation always takes off.

26 Changes in the mass of  high-skill workers in production,   H  t  
P  , also affect the skill premium and the labor share. 

Increasing   G t    requires hiring more  high-skill workers in automation innovation (in the same vein as the General 
Purpose Technology literature, notably Beaudry, Green, and Sand 2016), but at the same time horizontal innovation 
declines on average during this time period, which increases   H  t  

P  .
27 Generating a decline in  low-skill wages is harder with endogenous than exogenous technical change because 

a decline in  low-skill wages reduces further automation, which is why the decline is temporary. Whether  low-skill 
wages have declined in the data depends on how one accounts for compositional changes in the  low-skill popula-
tion, work benefits, and the deflator (see Section IIIC).
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where Proposition 2 applies.  High-skill wages grow at the same rate as output, and 
 low-skill wages grow at a positive but lower rate, while the labor share stabilizes again.

With positive growth in  low-skill wages, the profits of  nonautomated 
firms become negligible relative to those of automated firms with   g  ∞   π   N   
=  g  ∞   π   A   − β(σ − 1)  g  ∞   w L    . As total profits are proportional to output, the profits and 
value of automated firms grow at the rate of output minus the growth rate of the 
number of products:   g  ∞   V   A   =  g  ∞   π   A   =  g  ∞  Y   −  g  ∞  N   . Asymptotically, the value of a 
 nonautomated firm entirely lies in the possibility of future automation. Therefore, 
it grows at the same rate as the value of an automated firm:   g  ∞   V   N   =  g  ∞   V   A  .  In other 
words, the prospect of future automation eventually guarantees the entry of new 
products.28 The model continues then to differ from a generic capital deepening 
model since the share of automated firms   G t    is only constant thanks to the inter-
play between horizontal innovation and automation while the  long-run growth rate 
depends on automation. Online Appendix B5.6 derives comparative statics in the 
 steady state and shows that the asymptotic growth rates of GDP and  low-skill wages 
increase in the productivity of automation  η  and horizontal innovation  γ .

Overall, our model predicts that we should see an increase in automation as an 
economy develops, consistent with the increase in automation innovations observed 
since the 1970s (as documented in panel C of Figure 1). In line with the results 
of Section I, this increase in automation is associated with an increase in the skill 
premium and a decline in the labor share, which have also been observed in the 
United States (panels A and B of Figure 1). This contrasts our paper with most of 
the growth literature, which relies on exogenous shocks to explain these trends. 
Section III shows that an extended version of our model can reproduce those trends 
not only qualitatively but also quantitatively.

D. Interactions between Automation and Horizontal Innovation

Before moving to the quantitative exercise, we show how the interactions between 
automation and horizontal innovation can help account for two puzzles in the liter-
ature on inequality and technical change.

Increasing Automation and Decelerating Skill Premium: In recent years, the 
growth rate of the skill premium has declined (see panel A of Figure 1), while at 
the same time, innovation has been more directed toward automation (panel C of 
Figure 1). At first glance, this seems to contradict an explanation of the increase 
in the skill premium by automation. Yet in our model, there is no  one-to-one link 
between the growth rate of the skill premium and the direction of innovation. 
First, the share of automated products   G t    can be understood as a stock variable 
that increases with the automation of  not-yet automated products but depreciates 

28 The economy would not admit such an asymptotic  steady state if automation was entirely undertaken by 
entrants replacing the incumbents. In that case, the value of creating a new product would only correspond to 
the discounted flow of profits of a  nonautomated firm, which grows slower than the cost of horizontal innovation 
( high-skill wages normalized by   N t   ), and horizontal innovation could not be sustained. In contrast, the  steady state 
would still exist if the incumbent also automated with positive probability or captured a share of the surplus created 
by an automation innovation.
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through  horizontal innovation. As a result, maintaining a high level for   G t    requires 
a high level of automation innovations. Typically, the skill premium rises the fastest 
when   G t    increases sharply and decelerates when   G t    approaches its  steady-state value, 
which may, however, be when innovation is the most intensely directed toward auto-
mation (this happens both in Section III below and in the numerical simulation of 
online Appendix B6.1). Second, since our model does not feature a CES production 
with  factor-augmenting technologies (as Katz and Murphy 1992, Acemoglu 1998, 
or Goldin and Katz 2008), the elasticities of the skill premium with respect to the 
two technology variables (  G t    and   N t   ) are not constant.

Automation with No Increase in Growth: A second puzzle is that as the  skill pre-
mium has increased,  GDP  growth has not accelerated, which casts doubt on whether 
a technological revolution is happening (see Acemoglu and Autor 2011). Our model 
offers a potential explanation: horizontal innovation may decline when automation 
takes off, with an ambiguous net effect on growth. Formally, we find that the rate 
of horizontal innovation is lower in the  steady state than for low   N t    (proof in online 
Appendix B5.5).

COROLLARY 1: For any   G 0   , there exists an   N 0    sufficiently low that the horizontal 
innovation rate,   g   N,   is initially higher than in the asymptotic  steady state.

Intuitively, three effects explain this result: First, once automation sets in, some 
 high-skill workers are hired in automation research, which reduces the amount 
of  high-skill workers in production and therefore reduces horizontal innovation 
through a classic scale effect. Second, the elasticity of GDP growth with respect to 
horizontal innovation is larger in the asymptotic  steady state, which, from the Euler 
equation, increases the elasticity of the interest rate with respect to horizontal inno-
vation and reduces horizontal innovation. Third, asymptotically, a new firm makes 
negligible profits relative to the cost of innovation until it gets automated, which 
further reduces horizontal innovation.

III. Quantitative Exercise

We conduct a quantitative exercise to compare empirical trends for the United 
States with the predictions of our model. We proceed in three steps. First, we cali-
brate our model, then we show that the data call for an increase in the share of auto-
mated products  G  and assess how well our model can do relative to a more flexible 
 setup with exogenous technology. Finally, we analyze the future evolution of the 
economy.

A. Extended Model and Calibration

To match the data quantitatively, we modify the baseline model. First, since the 
share of  high-skill workers has dramatically increased, we let  H  and  L  vary over time 
and use the paths from the data. Second, we assume that producers rent machines 
from a capital stock. Capital can also be used as structures in both automated and 
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 nonautomated firms. Third, we allow for the possibility that  low-skill workers are 
replaced by a composite of machines and  high-skill workers. The production func-
tion (2) becomes

(22)  y (i)  =   [l   (i)      
ϵ−1 _ ϵ    + α (i)   ( φ ̃    h e     (i)     β 4     k e     (i)    1− β 4   )     

  ϵ−1 _ ϵ  
 ]    

  
ϵ β 1   _ ϵ−1  

  h s    (i)     β 2     k s    (i)     β 3    ,

where   β 1   +  β 2   +  β 3   = 1  and   β 4   ∈ [0, 1) . The central difference between equa-
tions (2) and (22) is the introduction of   h e  (i)  as  high-skill labor, which—along with 
machines—performs the newly automated tasks (“  e ” for equipment). This feature is 
necessary to capture a relatively low drop in the labor share. Here,   k s  (i)  is structures 
and   k e  (i)  and   k s  (i)  are both rented from the same capital stock   K t   . The value of   K t    
increases with investment in final goods and depreciates at a fixed rate  Δ , so that

(23)    K ˙   t   =  Y t   −  C t   − Δ  K t    .

The cost advantage of automated firms now depends on the ratio between  low-skill 
wage and the price of the  high-skill labor capital aggregate,   w Lt   / ( w  Ht  

 β 4       r ̃    t  
1− β 4    ) , 

where    r ̃   t   =  r t   + Δ  is the gross rental rate of capital. The logic of the base-
line model directly extends to this case. Proposition  1 still holds, and 
Proposition  2 holds with   g  ∞   w H    =  g  ∞  Y   =  g  ∞  N   / (( β 2   +  β 1    β 4  )(σ − 1))  and 
  g  ∞   w L    =  g  ∞  Y  (1 + (σ − 1)  β 1    β 4  ) / (1 +  β 1  (σ − 1)).  An equivalent to Proposition  3 
holds, but the system of differential equations includes three control variables and 
three state variables. The transitional dynamics are similar to that of the baseline 
model, but automation innovation now depends on   w Lt   / ( w  Ht  

 β 4       r ̃    t  
1− β 4    ) : automation 

innovation is low when   N t    is low, increases later on before stabilizing as the econ-
omy approaches its asymptotic  steady state. The capital share and the capital output 
ratio increase when automation increases as equipment replaces  low-skill labor in 
production. Details and proofs are provided in online Appendix B10.

We match our extended model to the data (see online Appendix B11 for details). 
We identify  low-skill workers with  non-college-educated workers and  high-skill 
workers with college-educated workers and focus on the years  1963–2012 (workers 
with “some college” are assigned 50/50 to each category following the methodol-
ogy of Acemoglu and Autor 2011). We match the  skill premium and take the empir-
ical  skill ratio as given (and normalize total population to one). We also match the 
growth rate of real GDP/employment and the labor share. We associate the use of 
machines with private equipment (excluding transport) and software. As pointed out 
by Gordon (1990), the NIPA price indices for real equipment are likely to understate 
quality improvements in equipment and therefore growth in the real stock of equip-
ment. Hence, we use the adjusted price index from Cummins and Violante (2002) 
for equipment and build (private) equipment and software to GDP ratios from 1963 
to 2000.

Our model is not stochastic and cannot be directly estimated. Instead, we take a 
parsimonious approach and choose parameters to minimize the weighted squared 
 log-difference between observed and predicted paths. We start the simulation 
40 years before 1963 to force   N 1963    and   G 1963    to be consistent with the  long-run 
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 behavior of our model.29 Since the model requires the  skill ratio before and after the 
time period we estimate, we fit a generalized logistical function to the path of the 
log of the  skill ratio and use the predicted values outside  1963–2012 (over that time 
period, the fit is excellent).

The model features a total of  13  parameters with 2 initial conditions   N 1923    
and   G 1923   . We allow all parameters to adjust freely (other than the economically 
motivated boundaries imposed by the model itself) and then assess whether these 
parameter estimates fit with other similar estimates. Table  1 gives the resulting 
parameters and the values of the state variables   N t    and   G t    in the first matched year, 
1963. The elasticity of substitution across products  σ  is estimated at  5.86 , in line with 
Christiano, Eichenbaum, and Evans (2005), who find that observed markups are 
consistent with a value of around  6 . The elasticity of substitution between machines 
and workers is estimated at  4.28 . The value of   κ ̃    is estimated at  0.55 , implying a sub-
stantial automation externality, a force that accelerates the increase in the share of 
automated products. Finally, we find a   β 1   —the factor share of machines/ low-skill 
workers—of  0.58 , which implies sizable room for automation, though a   β 4    of  0.73  
means that the share of  high-skill workers in the composite that replaces  low-skill 
workers is of substantial importance. The preference parameters are within standard 
estimates with a  ρ  of  3.3  percent and the implied  θ  resulting in  log-preferences. The 
only parameter that is estimated outside a common range is the depreciation rate  Δ  
(though it is not precisely identified). Online Appendix B11.3 discusses in detail 
how the parameters are identified.

Figure 3 further shows the predicted path of the matched data series (“endogenous 
technology” series—the “exogenous” series will be explained in Section IIIB) along 
with their empirical counterparts. Panel  A demonstrates that the model matches 
the rise in the skill premium from the early 1980s and the flat skill premium in the 
period before reasonably well. Though a bit less pronounced than in the data, our 
model also includes the more recent decline in the growth rate of the skill premium, 
which, computed over a 5 years moving window, peaks in 1984 at 1.31  percent 
and drops to 0.52 percent in 2005. The total predicted decline in the labor share 
(8.7 p.p.) is slightly higher than the actual one (6.6 p.p.).30 The average growth rate 
of the economy is matched completely, as shown in panel C. Although the model 
largely captures the average growth rate of capital equipment over GDP during the 

29 Initial values for   G t    and   K t    have little impact on the state of the economy several years later. By simulating the 
economy 40 years prior, we ensure that the simulated moments are nearly independent of the initial values for   G t    
and   K t   . We fix   K 1923    at its  steady-state value in a model with no automation.

30 Our model sees the decline in the labor share as being a gradual phenomenon (instead of a sharp trend break 
from 2000), in line with the interpretation of Karabarbounis and Neiman (2013) and data on the global labor share.

Table 1—Parameters from Quantitative Exercise

Parameter σ ϵ   β 1   γ   κ ̃   θ η  κ 
Value 5.86 4.28 0.58 0.44 0.55 1 0.40 0.68

Parameter ρ   β 2   Δ   β 4     φ ̃     N 1963     G 1963   
Value 0.033 0.18 0.011 0.73 1.57 10.3 0.02
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period, the predicted path differs somewhat from its empirical counterpart, as shown 
in panel  D on  log-scale. Whereas the empirical path is close to exponential, the 
predicted path tapers off somewhat toward the end of the period.31 Naturally, our 
model has a harder time capturing  higher-frequency movements, such as a tempo-
rary increase in the labor share at the end of the 1990s. Further, to assess the predic-
tive power of our model, we reproduce the same exercise but only matching the first 
30 years. Appendix A4 reports the results: the parameters are nearly identical, and 
the calibrated model performs well  out of sample.

As shown in Table 1, the share of automated products   G t    is low in 1963 at 2.5 per-
cent, far from its  steady-state value of 92 percent. Figure 5 below shows that   G t    
increases sharply through the  1963–2012 time period and reaches 20 percent by 
1986 and 64 percent by 2012. Therefore, our calibration strongly suggests that auto-
mation has risen in recent decades.

B. Alternative Technological Processes

Section  IC argued that a rise in the skill premium and a decrease in the labor 
share are consistent with an increase in the number of products together with either 
a rising or constant (but positive) share of automated products. It is therefore worth 

31 Recall that the ratio of equipment to GDP in the data is only a proxy for the ratio of machines to GDP in the 
model since not all equipment is used to replace  low-skill workers. Interestingly, more recent data show a slowdown 
in software investment (see Beaudry, Green, and Sand 2016; Eden and Gaggl 2018).

Figure 3. Empirical Paths and Predicted Paths for the Endogenous and Exogenous Technology Models
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asking which features of the data require an increase in the share of automated 
products   G t   . To answer this question, we consider an alternative model where  G  is a 
constant. We use the same procedure as above to calibrate this alternative economy 
but let  G  and the initial capital stock   K 1963    be free parameters. Figure 4 compares the 
empirical paths of the skill premium and the labor share with the ones predicted by 
a constant  G  model and shows that this alternative model does not match the data. 
Intuitively, a model with constant  G  has a hard time reconciling a roughly constant 
 skill premium followed by a fast rise without a sharp increase in economic growth. 
Online Appendix B11.4 shows the two other moments and reports the parameters.

Our paper argues that the evolution of the income distribution in the United States 
can largely be accounted for with endogenous technical change. This is in contrast 
with an alternative view that stresses the importance of structural breaks in the data. 
To evaluate how well our endogenous innovation model performs, we compare it 
to a model with exogenous technology. We keep the ( non-innovation) parameters 
from Table 1 but let   N t    and   G t    be free parameters between 1963 and 2012 chosen to 
match the empirical moments as close as possible.32 Figure 3 shows the predicted 
paths for our moments in that case (“exogenous technology” series). This model 
performs slightly better than the endogenous one, notably when it comes to labor 
productivity fluctuations, but it does not capture trends better. Figure 5 compares 
the evolution of   N t    and   G t    in our endogenous growth model with this exogenous 
alternative. Panel B shows that the exogenous path for   G t    also features a smooth 
but sharp increase from 1980 but the path of our endogenous growth model is very 
similar. Panel  A shows that the exogenous path for   N t    is more volatile than the 
endogenous path since the exogenous model tries to better capture the  short-run 
fluctuations. The trends, however, are similar. This pattern is robust to including 
exogenous  labor-augmenting technical change (see online Appendix B11.5).

32 Since   K t    still evolves endogenously, this corresponds to a Ramsey model with fully anticipated shocks to   N t    
and   G t   . We let the initial capital stock   K 1963    be a free parameter as well. For the technology paths after 2012, we 
let   N t    grow at a constant rate, which is another free parameter, and assume that   G t    stays constant at its 2012 value. 
To facilitate comparison, we also assume that   H  t  

P   in the exogenous growth model is fixed to be the same as in the 
endogenous growth model.

Figure 4. Empirical and Predicted Paths for a Model with Constant  G 
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Panel B of Figure 5 shows that the increase in   G t    must be sharp to match the 
data, which is why our estimation procedure found a high value for the automation 
externality parameter   κ ̃   = 0.55 . Appendix A4 discusses this further by calibrating 
the model with   κ ̃   = 0  and showing that in this case, the endogenous and exogenous 
growth models deliver very different paths for   G t   .

C. Evolution of the Calibrated Economy

Figure 6 further analyzes the behavior of the calibrated economy by plotting the 
transitional dynamics from 1963 to 2063. Panel A shows that GDP growth slows 
down past 2012 in line with recent economic trends—as argued in Section  IID, 
our model can account for a slowdown in growth despite a high level of automa-
tion innovation thanks to a decline in horizontal innovation. Panels A and B show 
that the skill premium keeps growing albeit at a slower rate: over the 1980s, the 
skill premium grew at an average of 1  percent per year according to the model 
and 0.7 percent in the 2000s, with a predicted growth rate of the skill premium of 
0.2 percent in the 2050s as the share of automated products stabilizes. In the context 
of Proposition 1, for our parameters automation is always  low-skill laborsaving and 
horizontal innovation  low-skill biased. In the meantime, the labor share smoothly 
declines toward its  steady-state value of 52.8 percent, and the  high-skill labor share 
increases.33 Panel  C plots the share of automated products   G t   , which keeps ris-
ing very slowly past 2012 toward its asymptotic value at 92 percent. The share of 
automation innovations is already above 40 percent in the mid-1970s and increases 
steadily until the 2000s (panel C). It peaks in 2005, even though the skill premium is 
decelerating. As argued in Section IID, this occurs in part because the level of auto-
mation can be thought of as a stock that depreciates with the entry of new products. 
This constitutes a response to the critique of the literature on SBTC put forward by 

33 With the decline in horizontal innovation, fewer  high-skill workers are allocated to innovation activities over-
all, which also contributes to the decline in the labor share notably from the  mid-1980s.

Figure 5. Paths for   N t    and   G t    in the Endogenous and Exogenous Growth Models
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Card and DiNardo (2002), who argue that inequality rising the most in the early to 
mid-1980s and technological change continuing in the 1990s squares poorly with 
the predictions of a framework based on SBTC. The model predicts that the share 
of automation innovation will remain high in the future but at a slightly lower level 
than in the 2000s.

Acemoglu and Autor (2011) highlight that  low-skill wages have declined since 
the 1980s, and we reproduce their series from 1963 to 2012 in panel D. Our model 
does not distinguish between wages and other labor costs, so that any mention of 
wages so far should be understood as labor costs. At the same time, there has been 
a significant decline in the ratio of wages to total labor costs (from close to 1 to 
around 2/3 in our data).34 Panel D plots our predicted  low-skill labor costs (  w L   ) 
and the  take-home  low-skill wages (net of work benefits, social contributions, etc.). 
Our model predicts a very slow growth for  low-skill labor costs (70 percent over 
50 years), which is consistent with stagnating  take-home  low-skill wages. Online 
Appendix B11.6 analyzes the effect of taxes on machines and automation innova-
tions on  low-skill wages and output.

Our exercise bears similarities to KORV, who also seek to explain the increase 
in the skill premium using  capital-skill complementarity while matching the labor 
share. There are four major differences. First, our exercise is more demanding since 
instead of directly feeding in the empirical path of equipment, we calibrate a general 

34 Obtaining these figures requires combining several indices, which are not perfectly consistent; nevertheless, 
the trend is clear—see online Appendix B11.2 for details.

Figure 6. Transitional Dynamics with Calibrated Parameters

Note: The growth rates are computed over a five-year moving average.
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equilibrium model that endogenizes both capital and technology.35 Second, KORV 
do not attempt to match the evolution of labor productivity: given the large increase 
in the stock of equipment capital, their model would have to feature a large simul-
taneous unexplained decrease in the growth rate of TFP. Third, their model does not 
match a decline in the labor share, but instead shows a slight increase toward the 
end of their sample period. This is not an artifact of their calibration but a feature of 
their model. Their production function is a nested CES where  low-skill labor is sub-
stitute with a CES aggregate of  high-skill and equipment, which are complement. 
Therefore, should the equipment stock keep rising (through  investment-specific 
technological change), the income share of equipment would decline in the  long 
run.36 Fourth, their model does not feature  laborsaving innovation, as an increase in 
investment-specific technical change increases all wages for perfectly elastic capital 
(online Appendix B12 elaborates on the last two points).

To summarize, our model makes the case that recent trends in the skill premium, 
the labor share, labor productivity, and the ratio of equipment to GDP can be quan-
titatively explained as resulting from an endogenous increase in the share of auto-
mation innovations. This provides a different view of these trends as arising from 
the natural development of an economy instead of exogenous shocks. Furthermore, 
this viewpoint also explains why the rise in the skill premium was not accompanied 
by an increase in productivity growth and why the skill premium has decelerated 
despite a high share of automation innovations. Of course, our model cannot match 
the data perfectly. In particular, we do not capture  high-frequency movements, and 
we overestimate the decline of the labor share. Our exogenous  N, G  exercise shows 
that to better account for the data, one would have to modify the aggregate produc-
tion function.

D. Data on Automation Innovations

We now provide some evidence based on patent data that suggests that the share 
of automation innovations has increased since the 1970s in line with our model. 
Classifying patents as automation versus  nonautomation is not straightforward, and 
there are no technological codes in patent data aimed at doing so. Nevertheless, 
in a recent working paper, Mann and Püttmann (2018) classify US patents as 
automation versus  nonautomation using machine learning techniques (see online 
Appendix  B11.2 for details). Panel  A of Figure  7 reports the shares of automa-
tion patents according to their analysis and according to our calibrated model. In 
line with our model, the share of automation patents according to their definition 
has markedly increased. Relative to their series, our model suggests a higher share 
of automation innovations (particularly at the beginning of the sample), but the 
increase is of a similar magnitude.

35 Others have tried to match similar trends, such as Eden and Gaggl (2018) using a model similar to KORV or 
Goldin and Katz (2008) using the traditional model of SBTC with  factor-augmenting technologies.

36 If  low-skill labor were substitute with a  Cobb-Douglas aggregate of  high-skill and equipment (as in our auto-
mated firms), the capital share would increase in the long run. Yet the growth rate of the skill premium would then 
increase when investment-specific technological change accelerates, so such a model could not feature a decelera-
tion in the skill premium when innovation seems to be the most biased against  low-skill workers, as in our model.
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Dechezleprêtre et al. (2019) offer an alternative classification of automation ver-
sus  nonautomation patents in machinery, which relies on the technological codes 
of patents and the presence of certain keywords in the text of patents (see online 
Appendix  B11.2 for details). They show that the share of automation patents in 
machinery is correlated with a decline in routine tasks across US industries and, 
using international  firm-level data, that higher  low-skill wages lead to more automa-
tion innovations but not more  nonautomation innovations. Their classification only 
allows for the identification of a subset of automation and  nonautomation patents. 
Yet provided that these subsets are constant shares of both types of innovations, 
we can use the increase in the log ratio of their automation versus  nonautomation 
patents as a proxy for the increase of automation versus horizontal innovation in our 
model. We plot the model and data series (indexing the log ratios at zero in 1963) in 
panel B of Figure 7. Here as well, we find similar trends—except for a small decline 
between 1984 and 1994 in the data. Any series based on patenting will be a noisy 
proxy for true underlying automation innovation. Despite this, both of these mea-
sures suggest that automation increased since the 1970s and is still very high today, 
in line with the predictions of our model.

IV. Conclusion

This paper introduces automation in a horizontal innovation growth model. We 
show that an increase in automation leads to an increase in the skill premium, a 
decline in the labor share, and possibly a decline in  low-skill wages. Moreover, such 
an increase in the share of automation innovations is the natural outcome of a grow-
ing economy since higher  low-skill wages incentivize more automation innovations. 
Quantitatively, our model can replicate the evolution of the US economy since the 
1960s: a continuous increase in the skill premium with a more recent slowdown, a 

Figure 7. Trends in Automation Innovations
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decline in the labor share, stagnating labor productivity growth, and an increase in 
the share of automation innovations. We predict that the skill premium keeps rising 
in the future albeit at a lower rate and that the labor share stabilizes at a rate below 
today’s.

The increase in the share of automation innovations, which prompts changes in 
the income distribution, occurs endogenously in our paper. This stands in contrast 
with most of the literature, which seeks to explain changes in the distribution of 
income inequality through exogenous changes: an exogenous increase in the stock 
of equipment as per KORV, a change in the relative supply of skills as per Acemoglu 
(1998), or the arrival of a general purpose technology as in the related literature. 
This feature is shared by Buera and Kaboski (2012), who argue that the increase 
in income inequality is linked to the increase in the demand for  high-skill intensive 
services, which results from  nonhomotheticity in consumption.37

The present paper is only a step toward a better understanding of the links between 
automation, growth, and income inequality. Given that automation has targeted 
either low- or  middle-skill workers and that artificial intelligence may now lead to 
the automation of some  high-skill tasks, a natural extension of our framework would 
include more skill heterogeneity. Another natural next step would be to add firm 
heterogeneity and embed our framework into a quantitative firm dynamics model. 
Our framework could also be used to study the recent phenomenon of “reshoring,” 
where US companies that had offshored their  low-skill intensive activities to China 
now start repatriating their production to the US after having further automated their 
production process.

Appendix A. Main Appendix

A1. Proof of Proposition 1

We focus on the imperfect substitute case, and online Appendix B1.1 deals with 
the perfect substitute case. Rewrite (7) as

(A1)    
 w H  

 _  w L     =   
1 − β _ β     L _ 

 H   P 
     

G   (1 + φ  w  L  ϵ−1 )    
μ
  + 1 − G

   _______________________   
G   (1 + φ  w  L  ϵ−1 )    

μ−1
  + 1 − G

   .

Since  0 < μ < 1 , (A1) establishes   w H    as a function of  G,  H   P  , and   w L    such that   w H    
is increasing in   w L    and  G  and decreasing in   H   P  , with   w H   /  w L   > (1 − β) / β × L /  H   P   
for  G > 0 . Equation (6) similarly establishes   w H    as a function of  N, G , and   w L   , which 
is decreasing in   w L    and increasing in  N  and  G . Then,   w H  ,  w L    are jointly uniquely 
determined by (A1) and (6) for given  N, G , and   H   P  . Both increase in  N , and   w H    
increases in  G . In addition, (6) traces a convex  isocost curve in the input prices plan.

In addition, (A1) shows that   w H   /  w L    increases with   w L   . Since   w L    increases in  N , 
then   w H   /  w L    increases in  N  as well. If   w L    decreases in  G , then since   w H    increases 
in  G ,   w H   /  w L    increases in  G . If instead   w L    increases in  G , then the  right-hand side 

37 This feature is also shared by Galor and Weil (2000) and Hansen and Prescott (2002), who endogenize the 
industrial revolution  takeoff.
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of (A1) increases with  G  both directly, and because   w L    increases, this ensures 
that   w H   /  w L    still increases in  G . Therefore, both an increase in  N  and an increase 
in  G  are  skill-biased and following (9) decrease the labor share. This establishes 
Parts A and B except for the relationship between   w L    and  G .

Comparative Statics of   w L    with Respect to  G  : Combine (A1) and (6) to get

(A2)   w L   =   σ − 1 _ σ   β   (   H   P  _ 
L

  )    
 (1−β) 

  N     
1 _ σ−1      (G   (1 + φ  w  L  ϵ−1 )    

μ−1
  +  (1 − G) )    

1−β
 

 ×   (G   (1 + φ  w  L  ϵ−1 )    
μ
  +  (1 − G) )    

  1 _ σ−1   − (1−β) 

  .

Log differentiating with respect to  G , one obtains

(A3)    w ˆ   L   =  

⎡
 ⎢ 

⎣

    1 _ σ − 1
     

  (1 + φ  w  L  ϵ−1 )    
μ
  − 1
  _______________________   

G   (1 + φ  w  L  ϵ−1 )    
μ
  +  (1 − G) 

     



    

scale effect

  

 

  

   −  (1 − β)  

⎛
 ⎜ 

⎝
  

1 −   (1 + φ  w  L  ϵ−1 )    
μ−1

 
  _________________________   

G   (1 + φ w  L  ϵ−1 )    
μ−1

  +  (1 − G) 
   +   

  (1 + φ  w  L  ϵ−1 )    
μ
  − 1
  _______________________   

G   (1 + φ w  L  ϵ−1 )    
μ
  +  (1 − G) 

  

⎞
 ⎟ 

⎠
       



      

substitution effect

  

 

  

⎤
 ⎥ 

⎦

    G G ˆ   ____ 
Den

   ,

where

  Den ≡ 1 −   
βφ  w  L  ϵ−1 

 ___________  
 (1 + φ  w  L  ϵ−1 ) 

     
G   (1 + φ  w  L  ϵ−1 )    

μ
 
  _______________________   

G   (1 + φ  w  L  ϵ−1 )    
μ
  +  (1 − G) 

  

 +   
φ  w  L  ϵ−1  (ϵ − 1)  (1 − β) 

  ___________________  
 (1 + φ  w  L  ϵ−1 ) 

  

 ×  
⎛
 ⎜ 

⎝
  

μG   (1 + φ  w  L  ϵ−1 )    
μ
 
  _____________________   

G   (1 + φ  w  L  ϵ−1 )    
μ
  + 1 − G

   +   
 (1 − μ) G   (1 + φ  w  L  ϵ−1 )    

μ−1
 
   _______________________   

G   (1 + φ  w  L  ϵ−1 )    
μ−1

  + 1 − G
  

⎞
 ⎟ 

⎠
   .

Note,  Den > 0  as  ϵ > 1 ,  μ ∈ (0, 1) , and    
βφ  w  L  ϵ−1 

 _ 
1 + φ  w  L  ϵ−1 

     
G   (1 + φ  w  L  ϵ−1 )    

μ
 
  ___________________  

G   (1 + φ  w  L  ϵ−1 )    
μ
  +  (1 − G) 

   < 1 . 

In (A3), the scale effect term is positive as  (1 + φ  w  L  ϵ−1   )   μ  − 1 > 0 . This term comes 
from the differentiation of (6) with respect to  G  at constant   w H    (hence, it rep-
resents the shift right of the isocost curve). The substitution effect term is negative 
because  1 − (1 + φ  w  L  ϵ−1   )   μ−1  > 0  since  μ < 1 , it comes from the differentiation 
of (7) with respect to  G .
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First note that if  1/(σ − 1) ≤ 1 − β , the scale effect is always dominated by the 
substitution effect. Hence,   w L    is decreasing in  G .

If instead  1 / (σ − 1) > 1 − β , the scale effect is dominated by the substitution 

effect provided that   R W   ≡   
1 −  (1 + φ  w  L  ϵ−1  )   

μ−1
 
  ___________________  

G  (1 + φ  w  L  ϵ−1  )   
μ−1

  + 1 − G
   /   

 (1 + φ  w  L  ϵ−1  )   
μ
  − 1
  _________________  

G  (1 + φ  w  L  ϵ−1  )   
μ
  + 1 − G

    is large 

enough. From (A2), we get

   w L   =   σ − 1 _ σ   β  N     
1 _ σ−1      

⎛
 ⎜ 

⎝
   H   P  _ 
L

     
1 − G (1 −   (1 + φ  w  L  ϵ−1 )    

μ−1
 ) 
   _________________________   

G (  (1 + φ  w  L  ϵ−1 )    
μ
  − 1)  + 1

  

⎞
 ⎟ 

⎠
    

1−β

 

 ×   (G (  (1 + φ  w  L  ϵ−1 )    
μ
  − 1)  + 1)    

  1 _ σ−1  

  .

Using that  G ∈ [0, 1] , we obtain that

   w L     (1 + φ  w  L  ϵ−1 )    
1−β

  >   σ − 1 _ σ   β   ( H   P  / L)    
1−β

   N     
1 _ σ−1    ,

which ensures that   lim N→∞    w L   = ∞  uniformly with respect to  G  (i.e., for 
any    w –   L   > 0 , there exist   N 

–
    such that for any  N >  N 

–
    and any  G ,  w >   w –   L   ). 

Since   lim  w L  →∞,G→1    R W   = ∞ , we get that   lim N→∞,G→1    R W   = ∞ , so that for  N  and  
G  large enough the substitution effect dominates. This establishes Part B.

Part C:  Log-differentiating (A2) with respect to  N  gives    w ˆ   L   =  N ˆ   / [(σ − 1)Den] . 
We then combine this expression with (A3) and use that for an increase in the number 
of  nonautomated products only,  NG  is a constant so that   G ˆ   = −  N ˆ   . Denoting    w ˆ    L  NT    
( NT  for “new tasks”), the change in   w L   , we then get

(A4)    w ˆ    L  NT  =  

⎡
 ⎢ 

⎣
  
 (1 − β) G (  (1 + φ w  L  ϵ−1 )    

μ
  − 1) 
   __________________________   

G   (1 + φ  w  L  ϵ−1 )    
μ
  +  (1 − G) 

   +   
 (1 − β) G (1 −   (1 + φ w  L  ϵ−1 )    

μ−1
 ) 
   ____________________________   

G   (1 + φ  w  L  ϵ−1 )    
μ−1

  +  (1 − G) 
  

 +    
  (σ − 1)    −1 

  _______________________   
G   (1 + φ  w  L  ϵ−1 )    

μ
  +  (1 − G) 

  

⎤
 ⎥ 

⎦
    N ˆ   ____ 
Den

   .

Hence,  low-skill wages always increase with the arrival of  nonautomated products. 
 Log-differentiating (7), one gets

   w ˆ   H   −   w ˆ   L   =  

⎛
 ⎜ 

⎝
  

μG   (1 + φ  w  L  ϵ−1 )    
μ
 
  _____________________  

G  (1 + φ w  L  ϵ−1 )    
μ
  + 1 − G

   +   
 (1 − μ) G   (1 + φ w  L  ϵ−1 )    

μ−1
 
   _______________________   

G  (1 + φ w  L  ϵ−1 )    
μ−1

  + 1 − G
  

⎞
 ⎟ 

⎠
    
 (ϵ − 1) φ w  L  ϵ−1 

  ____________ 
1 + φ w  L  ϵ−1 

     w ˆ   L  

 +   
⎛
 ⎜ 

⎝
  

G (  (1 + φ  w  L  ϵ−1 )    
μ
  − 1) 
  _____________________   

G   (1 + φ  w  L  ϵ−1 )    
μ
  + 1 − G

   +   
G (1 −   (1 + φ  w  L  ϵ−1 )    

μ−1
 ) 
   _______________________   

G   (1 + φ  w  L  ϵ−1 )    
μ−1

  + 1 − G
  

⎞
 ⎟ 

⎠
   G ˆ   .
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Using (A4) and that   G ˆ   = −  N ˆ   , we get that following an increase in the mass of 
 nonautomated products (keeping  NG  constant),

   w ˆ    H  NT  −   w ˆ    L  NT  =  

⎡
 ⎢ 

⎣
 

⎛
 ⎜ 

⎝
  

μ   (1 + φ  w  L  ϵ−1 )    
μ
 
  _____________________   

G   (1 + φ  w  L  ϵ−1 )    
μ
  + 1 − G

   +   
 (1 − μ)    (1 + φ  w  L  ϵ−1 )    

μ−1
 
   _______________________   

G   (1 + φ  w  L  ϵ−1 )    
μ−1

  + 1 − G
  

⎞
 ⎟ 

⎠
 

 ×   
 (ϵ − 1) φ  w  L  ϵ−1 

  ____________ 
1 + φ  w  L  ϵ−1 

     
  (σ − 1)    −1 

  _______________________   
G   (1 + φ  w  L  ϵ−1 )    

μ
  +  (1 − G) 

  

 −   
⎛
 ⎜ 

⎝
  

 (  (1 + φ w  L  ϵ−1 )    
μ
  − 1) 
  _____________________  

G  (1 + φ w  L  ϵ−1 )    
μ
  + 1 − G

   +   
 (1 −   (1 + φ w  L  ϵ−1 )    

μ−1
 ) 
  _______________________   

G  (1 + φ w  L  ϵ−1 )    
μ−1

  + 1 − G
  

⎞
 ⎟ 

⎠
 

 ×  
(

1 −   
βφ  w  L  ϵ−1 

 ___________  
 (1 + φ  w  L  ϵ−1 ) 

     
G   (1 + φ  w  L  ϵ−1 )    

μ
 
  _______________________   

G   (1 + φ  w  L  ϵ−1 )    
μ
  +  (1 − G) 

  
)

 

⎤
 ⎥ 

⎦
    G N ˆ   ____ 
Den

   ,

which simplifies into

(A5)    w ˆ    H  NT  −   w ˆ    L  NT  =   
 [ (  ϵ − 1 _ σ − 1   − β)    1 _ 

1 + φ  w  L  ϵ−1 
   −  (1 − β) ]   (1 + φ  w  L  ϵ−1 )    

μ−1
  φ  w  L  ϵ−1 
     ________________________________________________     

 (G   (1 + φ w  L  ϵ−1 )    
μ
  + 1 − G)  (G   (1 + φ w  L  ϵ−1 )    

μ−1
  + 1 − G) 

     G N ˆ   ____ 
Den

   .

Therefore, an increase in the mass of  nonautomated products reduces 
the skill premium (and increases the labor share) if and only if  1 − β 
> ( (ϵ − 1)/(σ − 1) − β ) / (1 + φ w  L  ϵ−1  ) . This in turn is true for   w L    sufficiently 
large (that is  N  large enough) or for  ϵ < σ .

Combining (A5) with (A4), we further get

    w ˆ    H  NT  =   
  (σ − 1)    −1 

  _______________________   
G   (1 + φ  w  L  ϵ−1 )    

μ
  +  (1 − G) 

  

 ×  

⎛
 ⎜ 

⎝
1 +   

G (1 − μ)   (1 + φ  w  L  ϵ−1 )    
μ−1

 
   _________________________   

 (G   (1 + φ  w  L  ϵ−1 )    
μ−1

  + 1 − G) 
     
 (ϵ − 1) φ  w  L  ϵ−1 

  ____________ 
1 + φ  w  L  ϵ−1 

  

⎞
 ⎟ 

⎠
      N ˆ   ____ 
Den

   .

Therefore, an increase in the mass of  nonautomated products leads to higher 
 high-skill wages. This establishes Part C. ∎

A2. Proof of Proposition 2

To see that   w Lt    is bounded from below, assume that  lim inf  w Lt   = 0.  Then 
as   H  t  

P   and   G t    admit positive limits, (7) implies that  lim inf  w Ht   = 0 . Plugging this 
in (6) gives  lim inf  N t   = 0 , which is impossible since   g  t  

N   admits a positive limit. 
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Therefore,   w Lt    must be bounded below, so that (6) gives   g  ∞   w H    = ψ  g  ∞  N   , where 
 ψ ≡ ((1 − β )(σ − 1) )   −1  . Further, using that   H  t  

P   admits a limit and that

(A6)   w Ht    H  t  
P  =  (1 − β)    σ − 1 _ σ    Y t    

gives the growth rate of   Y t   . To derive the asymptotic growth rate of   w Lt   , we consider 
in turn the cases  ϵ < ∞  and  ϵ = ∞ .

Subcase with  ϵ < ∞ .—We use equation  (A2), which gives   w Lt    as a function 
of   N t  ,  G t   , and   H  t  

P  . Assuming that  lim inf  w Lt    is finite leads to a contradiction, so 
that   w Lt    tends to  ∞ . Then (A2) implies that for   G ∞   < 1 ,

   w Lt   ∼   (  (  σ − 1 _ σ   β)    
  1 _ 
1−β  

  (1 −  G ∞  )    
 H  ∞  P  

 _ 
L

     ( G ∞    φ   μ )    ψ−1 )    

  1 _ 
1+β (σ−1) 

  

   N  t  
  

ψ _ 
1+β (σ−1) 

  
   ,

where   x t   ∼  y t    signifies   x t   /  y t   → 1 . This delivers (11).

Subcase with  ϵ = ∞ .—Low-skill wages are now defined as described in online 
Appendix B1.1, and equation (11) immediately follows from   G ∞   < 1 . ∎

A3. Analytical Appendix to Section 2

In this Appendix, we derive the system of normalized equation that character-
izes the equilibrium and prove Proposition  3. Online Appendix  B5 contains the 
proofs of intermediate results, of Corollary 1, and additional results mentioned in  
the text.

A3.1 Normalized System of Differential Equations.—Following Proposition 2, 
 high-skill wages, output, and consumption grow asymptotically proportionately to   N  t  

ψ   
with  ψ = ((1 − β )(σ − 1) )   −1   when   g  ∞  N   > 0  and   G ∞   > 0 . Therefore, to study 
the behavior of the system, we introduce the normalized variables    v ˆ   t   ≡  w Ht    N  t  

−ψ   
and    c ˆ   t   ≡  c t    N  t  

−ψ .  As   h  t  
A   mechanically tends to zero as the mass of  nonautomated 

firms grows, we introduce    h ˆ    t  
A  ≡  N t    h  t  

A .  We define   χ t   ≡    c t   ˆ     θ  /   v ˆ   t   , which allows 
to simplify the system (  χ t    is related to the mass of  high-skill workers in produc-
tion and therefore, given    h ˆ    t  

A  , to   H  t  
D   and   g  t  

N  ). Since the economy does not feature a 
 nonasymptotic  steady state, we need to keep track of the level of   N t    by introduc-
ing   n t   ≡  N  t  

−β/[(1−β )(1+β(σ−1))] ,  which tends toward zero as   N t    tends toward infinity. 
Finally, we define   ω t   ≡ ( w Lt    N  t  

−ψ/(1+β(σ−1))   )   β(1−σ)  , which asymptotes a finite posi-
tive number.

We now derive the system of differential equations satisfied by the normalized 
variables  ( n t  ,  G t  ,  h t  ,  χ t  ) . By definition, we get

(A7)    n ˙   t   = −   
β ____________________  

 (1 − β)  (1 + β (σ − 1) ) 
    g  t  

N   n t    .
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Rewriting (12) with    h ˆ    t  
A   gives

(A8)    G ˙   t   = η  G  t  
 κ ̃      (  h ˆ    t  

A )    
κ
  (1 −  G t  )  −  G t    g  t  

N  .

Defining normalized profits    π ˆ    t  A  ≡  N  t  
1−ψ   π  t  

A   and    π ˆ    t  N  ≡  N  t  
1−ψ   π  t  

N   and the normalized 
values of firms    V ˆ    t  

A  ≡  N  t  
1−ψ   V  t  

A   and    V ˆ    t  
N  ≡  N  t  

1−ψ   V  t  
N  , we can rewrite (14) and (15) as

(A9)   ( r t   −  (ψ − 1)   g  t  
N )    V ˆ    t  

A  =   π ˆ    t  A  +    V ˆ    t  
A    
⋅
   ,

(A10)   ( r t   −  (ψ − 1)   g  t  
N )    V ˆ    t  

N  =   π ˆ    t  N  + η  G  t  
 κ ̃      (  h ˆ    t  

A )    
κ
  (  V ˆ    t  

A  −   V ˆ    t  
N )  −   v ˆ   t     h ˆ    t  

A  +    V ˆ    t  
N    
⋅
    .

Equation (16) can similarly be rewritten as

(A11)  κη  G  t  
 κ ̃      (  h ˆ    t  

A )    
κ−1

  (  V ˆ    t  
A  −   V ˆ    t  

N )  =   v ˆ   t    .

Equation (17) implies that    V ˆ    t  
N  =   v ˆ   t   / γ , therefore using (A11) into (A10), we get

(A12)   ( r t   −  (ψ − 1)   g  t  
N )    v ˆ   t   = γ   π ˆ    t  N  + γ   1 − κ _ κ     v ˆ   t     h ˆ    t  

A  +    v ˆ     
⋅   t    .

Since   w  Lt  
β(1−σ)  =  ω t    n t   , we have using (8),

(A13)    π ˆ    t  N  =  ω t    n t     (φ +   ( ω t    n t  )      
1 _ μ   )    

−μ
    π ˆ    t  A  .

Combining (A8)–(A13), we derive in online Appendix B5.1

(A14)     h ˆ     
⋅
    t  
A
  =   

γ   h ˆ    t  
A   ω t    n t     (φ +   ( ω t    n t  )      

1 _ μ   )    
−μ

    π ˆ    t  A 
   ________________________  

 (1 − κ)    v ˆ   t  
  

 +   
γ   (  h ˆ    t  

A )    
2
 
 _______ κ   −   

κη  G  t  
 κ ̃      (  h ˆ    t  

A )    
κ
  (1 −  ω t    n t     (φ +   ( ω t    n t  )      

1 _ μ   )    
−μ

 )    π ˆ    t  
A 
    _____________________________________   

 (1 − κ)    v ˆ   t  
  

 + η  G  t  
 κ ̃      (  h ˆ    t  

A )    
κ+1

  +   
 κ ̃     h ˆ    t  

A 
 _____ 

1 − κ    (η  G  t  
 κ ̃  −1   (  h ˆ    t  

A )    
κ
  (1 −  G t  )  −  g  t  

N )  .

Rewriting (18) leads to   r t   = ρ + θ    c ˆ     
⋅   t   /   c ˆ   t   + θψ  g  t  

N .  Using this with (A12) and (A13), 
we get

(A15)    χ ˙   t   =  χ t   (γ  ω t    n t     (φ +   ( ω t    n t  )      
1 _ μ   )    

−μ
    
  π ˆ    t  A 

 ___ 
  v ˆ   t  

  

 + γ   1 − κ _ κ     h ˆ    t  
A  − ρ −  (θψ − ψ + 1)   g  t  

N )  .
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Together equations (A7), (A8), (A14), and (A15) form a system of differential 
equations that depends on   ω t  ,     π ˆ    t  A  /  v ˆ   t   , and   g  t  

N  . To determine    π ˆ    t  A  /   v ˆ   t   , note that profits 
are given by

(A16)  π ( w L  ,  w H  , α (i) )  =   
  (σ − 1)    σ−1 

 _ 
 σ   σ 

   c   ( w L  ,  w H  , α (i) )    
1−σ

  Y .

Using (3) and the definition of   ω t   , one gets

(A17)   π  t  
A  =   

  (σ − 1)    σ−1 
 _ 

 σ   σ 
     ( β   β    (1 − β)    1−β )    

σ−1
    (φ +   ( ω t    n t  )      

1 _ μ   )    
μ
   w  Ht  

− ψ   −1    Y t    .

Rearranging terms in (6) gives

(A18)    v ˆ   t   =   (  σ − 1 _ σ  )    
  1 _ 
1−β  

   β     
β _ 

1−β    (1 − β)    (G   (φ +   ( ω t    n t  )      
1 _ μ   )    

μ
  +  (1 − G)   ω t    n t  )    

ψ

  .

Using the relationship between the  high-skill wage bill and output in (A6), we get

(A19)   Y t   = σψ   v ˆ   t    H  t  
P   N  t  

ψ  .

Therefore, rewriting (A17) with (A18) and (A19), one gets

(A20)    
  π ˆ    t  A 

 ___ 
  v ˆ   t  

   =   
ψ   (φ +   ( ω t    n t  )      

1 _ μ   )    
μ
   H  t  

P 
   ____________________________   

G   (φ +   ( ω t    n t  )      
1 _ μ   )    

μ
  +  (1 − G)   ω t    n t  

   ,

which still requires finding   H  t  
P  . Using (3), (4),  x / l = φ  w  L  ϵ   , and aggregating over 

all automated firms, one obtains the total demand of machines:

   X t   = β  G t    N t   φ   (  σ − 1 _ σ  )    
σ
    ( β   β    (1 − β)     (1−β)  )    

σ−1
    (φ +   ( ω t    n t  )      

1 _ μ   )    
μ−1

   w  Ht  
− ψ   −1    Y t    .

Using (A18), this expression can be rewritten as

(A21)   X t   =   σ − 1 _ σ     
β  G t   φ   (φ +   ( ω t    n t  )      

1 _ μ   )    
μ−1

 
   ____________________________   

G   (φ +   ( ω t    n t  )      
1 _ μ   )    

μ
  +  (1 − G)   ω t    n t  

   Y t    .

This together with (A19) implies that    c ˆ   t    obeys

    c ˆ   t   =  

⎛
 ⎜ 

⎝
1 −   σ − 1 _ σ     

β  G t   φ   (φ +   ( ω t    n t  )      
1 _ μ   )    

μ−1

 
   ____________________________   

G   (φ +   ( ω t    n t  )      
1 _ μ   )    

μ
  +  (1 − G)   ω t    n t  

  

⎞
 ⎟ 

⎠
 σψ   v ˆ   t    H  t  

P   .

Combining this equation with (A18) leads to

(A22)   H  t  
P  =   

  ( β   β    σ − 1 _ σ  )    
  
 θ   −1 −β _ 
1−β  

    (1 − β)      
1 _ θ     χ  t  

  1 _ θ      ( G t     (φ +   ( ω t    n t  )      
1 _ μ   )    

μ
  +  (1 −  G t  )   ω t    n t  )    

ψ (  1 _ θ  −1) +1

 
      ___________________________________________________________      

 G t   ( (1 − β   σ − 1 _ σ  ) φ +   ( ω t    n t  )      
1 _ μ   )    (φ +   ( ω t    n t  )      

1 _ μ   )    
μ−1

  +  (1 −  G t  )   ω t  
   .
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Using the definition of   H  t  
D  , one can rewrite (13) for  high-skill workers as

(A23)   g  t  
N  = γ (H −  H  t  

P  −  (1 −  G t  )    h ˆ    t  
A )  .

Together (A20), (A22), and (A23) determine    π ˆ    t  A  /   v ˆ   t    and   g  t  
N   as a function of the orig-

inal variables   n t  ,  G t  ,   h ˆ    t  
A ,  χ t    and of   ω t   , which still needs to be determined. To do so, 

combine (7) and (6) to obtain an implicit definition of   ω t    :

(A24)    ω t   =   [  (  σ − 1 _ σ   β)    
  1 _ 
1−β  

    
 H  t  

P 
 _ 

L
   ( G t     (φ +   ( ω t    n t  )      

1 _ μ   )    
μ−1

   ( ω t    n t  )      
1−μ

 _ μ    +  (1 −  G t  ) ) 

 ×   ( G t     (φ +   ( ω t    n t  )      
1 _ μ   )    

μ
  +  (1 −  G t  )  ω t    n t  )    

ψ−1

 ]    

  
β (1−σ) 

 _ 
1+β (σ−1) 

  

 . 

Therefore, the system of differential equations satisfied by   n t  ,  G t  ,   h ˆ    t  
A ,  χ t    is defined by 

(A7), (A8), (A14), and (A15), with    π ˆ    t  A  /   v ˆ   t   ,   H  t  
P  ,   g  t  

N  , and   ω t    given by (A20), (A22), 
(A23), and (A24). The state variables are   n t    and   G t    and the control variables    h ˆ    t  

A   
and   χ t   .

A3.2 Proof of Proposition 3A.—To prove Proposition 3A, we show that the sys-
tem described in Section A3.1 admits a  steady state.

LEMMA A.1: The system of differential equations admits a steady state 
 ( n   ∗ ,  G   ∗ ,   h ˆ     A ∗ ,  χ   ∗ )  with   n   ∗  = 0 ,  0 <  G   ∗  < 1 , and positive growth  ( g   N   )   ∗  > 0  if

(A25)   κ   −κ    (γ (1 − κ)  / ρ)    
κ−1

  ρ / η + ρ / γ < ψH .

PROOF:
We look for a steady state with positive  long-run growth ( ( g   N   )   ∗  > 0 ) for the sys-

tem defined by (A7), (A18), (A14), and (A15) and denote such a (potential) steady 
state   n   ∗ ,  G   ∗ ,   h ˆ     A ∗ ,  χ   ∗   (we denote all variables at steady state with a       ∗  ). Following 
(A7), we immediately get   n   ∗  = 0.  Using (A8),   G   ∗   obeys

(A26)   G   ∗  =   
η   ( G   ∗ )     κ ̃      (  h ˆ     A∗ )    

κ
 
  ____________________  

η   ( G   ∗ )     κ ̃      (  h ˆ     A∗ )    
κ
  +  g   N∗ 

   .

We focus on a solution with   G   ∗  > 0  (when   κ ̃   > 0 ,   G   ∗  = 0  is also a solution); 
(A26) implies that with  ( g   N   )   ∗  > 0 ,   G   ∗  < 1  . Then, with  μ ∈ (0, 1) , (A24) implies 
that

   ω   ∗  =   [  (  σ − 1 _ σ   β)    
  1 _ 
1−β  

     H   P∗  _ 
L

    (1 −  G   ∗ )    ( G   ∗   φ   μ )    ψ−1 ]    

  
β (1−σ) 

 _ 
1+β (σ−1) 

  

  .
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Using (A20), (A15) implies that in steady state,

(A27)    h ˆ     A ∗  =   κ _ γ (1 − κ) 
    (ρ +  ( (θ − 1) ψ + 1)   g   N ∗ )  ,

which uniquely defines    h ˆ     A ∗   as an increasing function of   g   N ∗   (recall that  θ ≥ 1 ) 
with    h ˆ     A ∗  > 0  if   g   N ∗  > 0 . Then, for   G   ∗  > 0 , (A26) combined with (A27) defines  
  G   ∗   uniquely as an increasing function of   g   N ∗  . Equation (A23) also uniquely 
defines   H   P ∗   as a function of   g   N ∗  :

(A28)   H   P ∗  = H −   
 g   N∗ 

 _ γ   −  (1 −  G   ∗ )    h ˆ     A ∗  .

Equations (A20) and (A26) allow us to rewrite (A14) in steady state as

(A29)    
ηκ   ( G   ∗ )     κ ̃  −1    (  h ˆ     A∗ )    

κ
 
  ________________ 

1 − κ   ψ  H   P ∗  =   
γ _ κ     (  h ˆ     A ∗ )    

2
  + η  G  t  

 κ ̃      (  h ˆ     A ∗ )    
κ+1

  .

Since   G   ∗  ,    h ˆ     A ∗  , and   H   P ∗   are functions of   g   N ∗  , one can rewrite (A29) as an equation 
determining   g   N ∗  . A steady state with positive  growth-rate is a solution to

(A30)  f  ( g   N ∗ )  ≡   1 − κ _ κ     
γ  G   ∗    h ˆ     A∗  _______ 
ψ  H   P∗ 

    
(

  1 ________ 
κη   ( G   ∗ )     κ ̃   

     (  h ˆ     A ∗ )    
1−κ

  +   1 _ γ  
)

  = 1 ,

with   g   N ∗  > 0 . Indeed, (A22) simply determines   χ   ∗   as

(A31)   χ   ∗  =   (  σ _ σ − 1
  )    

  1 _ 
1−β   (1−θβ) 

    
  (1 − β   σ − 1 _ σ  )    

θ
    ( H   P∗ )    

θ
 
   __________________________   

 (1 − β)   β     
β _ 

1−β   (1−θ)     ( G   ∗  φ   μ )    ψ (1−θ)  
   ,

which achieves the characterization of a steady state for the system of differential 
equations defined by (A7), (A8), (A14), and (A15).

To establish the sufficiency of equation  (A25) for positive growth, note that 
as   g   N ∗  → 0 , then equations (A27), (A26), and (A28) imply that

  f (0)  =   
ρ _ ψH

   
(

  1 _____________  
η  κ   κ    (1 − κ)    1−κ 

     (  
ρ _ γ  )    

1−κ
  +   1 _ γ  

)
  .

In addition,  ( g   N∗ /γ) + (1 −  G   ∗ )   h ˆ     A ∗   is always greater than  ( g   N∗ /γ) , therefore for a 
sufficiently large   g   N ∗   (smaller than  γH ),   H   P ∗   is arbitrarily small, while for the 
same value   G   ∗   and    h ˆ     A ∗   are bounded below and above. This establishes that for   g   N ∗   
large enough,  f ( g   N ∗ ) > 1 . Therefore, a sufficient condition for the existence of at 
least one steady state with positive growth and positive   G   ∗   is that  f (0) < 1  (such 
that  f ( g   N ∗ ) = 1  has a solution), which is equivalent to condition (A25). The assump-
tion that  θ ≥ 1  further ensures that the transversality condition always holds. ∎

The steady state  ( n   ∗ ,  G   ∗ ,   h ˆ     A ∗ ,  χ   ∗ )  corresponds to an asymptotic steady state 
for our original system of differential equations (as   N t   → ∞  when   n t   → 0 ). 
Since   G ∞   =  G   ∗  ∈ (0, 1) ,   g  ∞  N   =  g   N ∗  > 0 , and   H  ∞  P   =  H   P ∗  > 0 , Proposition 2 
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applies (which is also in line with the normalized variables being constant in  steady 
state). Online Appendix Section B5.4 provides further details on the behavior of the 
economy close to the  steady state.

A3.3 Proof of Proposition 3B.—Here we prove Proposition 3B. Combining (20) 
and (19), we can write

   N t    h  t  
A  =   (κη  G  t  

 κ ̃    ( ∫ 
t
  
∞

  exp (−  ∫ 
t
  
τ
   r u   du) 

 ×  (  
 N t   _  w Ht      ( π  τ  

A  −  π  τ  
N )  −   1 − κ _ κ     

 N t   _  N τ  
     
 w Hτ   _  w Ht      ( N τ    h  τ  

A ) )  dτ) )    
  1 _ 1−κ  

  .

Using (A6) and that aggregate profits   Π t   =  N t  ( G t    π  t  
A  + (1 −  G t  )  π  t  

N  )  are a share  1 / σ  
of output, we can rewrite this equation as

(A32)    h ˆ    t  
A  =   

(
κη  G  t  

 κ ̃    
(

 ∫ 
t
  
∞

  exp (−  ∫ 
t
  
τ
   r u   du) 

 × (ψ H  t  
P   

 π  τ  
A  −  π  τ  

N 
  _________________  

 G t    π  t  
A  +  (1 −  G t  )  π  t  

N 
   −   1 − κ _ κ     

 N t   _  N τ  
     
  v ˆ   τ   _ 
  v ˆ   t  

     h ˆ    τ  
A ) dτ

)
 
)

    
  1 _ 1−κ  

  .

Recalling (8), we can write

   h ˆ    t  
A  =   

⎛
 ⎜ 

⎝
κη  G  t  

 κ ̃    
⎛
 ⎜ 

⎝
 ∫ 

t
  
∞

   
(

ψ  H  t  
P    

  (1 + φ  w  Lτ  
ϵ−1 )    

μ
  − 1
  __________________  

 G t     (1 + φ  w  Lt  
ϵ−1 )    

μ
  + 1

   exp ( ∫ 
t
  
τ
   ( g  u  

 π   N   −  r u  )  du) 

 −   1 − κ _ κ   exp ( ∫ 
t
  
τ
   ( g  u  

v   −  g  u  
N  −  r u  ) du)    h ˆ    τ  

A 
)

 dτ
⎞
 ⎟ 

⎠
 
⎞
 ⎟ 

⎠
    

  1 _ 1−κ  

  .

Consider a fixed   t ̂   > 0 . For an arbitrarily large  T , if   w L0    is sufficiently small relative 
to    φ ̃     −1  ,   w Lt    remains small relative to    φ ̃     −1   over  (0,  t ̂   + T ) . For any  τ ∈ (0,  t ̂   + T ) , 

we have that    
(1 + φ  w  Lτ  

ϵ−1  )   μ  − 1
  ______________  

 G t   (1 + φ  w  Lt  
ϵ−1   )   μ  + 1

   = μ φ  w  Lτ  
ϵ−1  + o(φ  w  Lτ  

ϵ−1  ) .38 Then for any  t ∈ (0,  t ̂  ) ,

   (  h ˆ    t  
A )    

1−κ
  ≤ κη  G  t  

 κ ̃    
(

 ∫ 
t
  
 t ̂  +T

   ψ  H  t  
P  (μφ  w  Lτ  

ϵ−1  + o (φ w  Lτ  
ϵ−1 ) ) exp ( ∫ 

t
  
τ
   ( g  u  

 π   N   −  r u  ) du) dτ

 +  ∫ 
 t ̂  +T

  
∞

    ψ H  t  
P   

  (1 + φ  w  Lτ  
ϵ−1 )    

μ
  − 1
  __________________  

 G t     (1 + φ  w  Lt  
ϵ−1 )    

μ
  + 1

   exp ( ∫ 
t
  
τ
   ( g  u  

 π   N   −  r u  ) du) dτ
)

  .

38 The notation  o(z)  denotes negligible relative to  z  (that is  f (z) = o(z) , if   lim z→0   f (z) / z = 0 ), and  O(z)  will 
denote of the same order or negligible in front of  z  (  f (z) = O(z)  if   lim sup z→0   | f (z) / z | < ∞ ).
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Further,   r u   = ρ + θ g  u  
C   with  θ ≥ 1 . In addition,   C u   =  Y u   −  X u   , with   X u    the 

aggregate spending on machines (initially negligible and later on a share of output 
bounded away from  1 ), and   π  u  

N   initially grows like   Y u   /  N u    (and from then on will 
grow slower), therefore,   r u   −  g  u  

 π   N   > ρ . Hence, one can write

    (  h ˆ    t  
A )    

1−κ
  ≤ κη  G  t  

 κ ̃    ( ∫ 
t
  
 t ̂  +T

  μψ  H  t  
P  φ  w  Lτ  

ϵ−1   e    ∫ t  
τ   ( g  u  

 π   N  − r u  ) du  dτ

 + o (φ  w  L t ̂  +T  ϵ−1  )  + o ( e   −ρ (T+ t ̂  −t)  ) )  .

Since   r u   −  g  u  
 π   N   > ρ , then   ∫ t   t ̂  +T   e    ∫ t  

τ  ( g  u  
 π   N  − r u  )du  dτ ≤ (1/ρ)(1 −  e   −ρ(  t ̂  +T−t) )  and we have

    (  h ˆ    t  
A )    

1−κ
  ≤ κη  G  t  

 κ ̃    (  
μψ  H  t  

P  φ _ ρ     max  
τ∈ (t, t ̂  +T) 

  
 
   ( w  Lτ  

ϵ−1 )  + o (φ  w  L t ̂  +T  ϵ−1  )  + o ( e   −ρT ) )  .

Therefore, since  T  is large and  φ  w  Lτ  
ϵ−1   is small, then    h ˆ    t  

A   must be small too. In fact, we 
get that    h ˆ    t  

A  = O((φ  w  L t ̂  +T  ϵ−1    )     
1 _ 1−κ    ) + o( e   −ρT  ) .

For any  t ∈ (0,  t ̂   ) , we can then rewrite (A15) as

(A33)    
  χ ˙   t   _  χ t     = γψ  H   P  − ρ −  (θψ − ψ + 1)   g  t  

N  + O (  (φ  w  L t ̂  +T  ϵ−1  )    
  1 _ 1−κ  

 )  + o ( e   −ρT )  .

Next, (4) and the corresponding equation for  high-skill labor demand in production 
imply

     L   NA  _ 
 L   A 

   =   
 (1 −  G t  )   (1 + φ  w  Lt  

ϵ−1 )    
−μ−1

 
   ______________________  

 G t  
    and     H   P,NA  _ 

 H   P,A 
   =   

 (1 −  G t  )   (1 + φ  w  Lt  
ϵ−1 )    

−μ
 
  ____________________  

 G t  
   .

Using these expressions in (5), and knowing that   w Lt   = O( Y t   / L)  so that   φ     
1 _ ϵ     Y t   / L 

= O( φ     
1 _ ϵ     w Lt  ) , we get

(A34)   Y t   =  (1 + O (φ  w  Lt  
ϵ−1 ) )   N     

1 _ σ−1     L   β    ( H  t  
P )    

1−β
  .

One then gets that wages obey

(A35)   w Ht   =  (1 + O (φ  w  Lt  
ϵ−1 ) )    σ − 1 _ σ   (1 − β)   N  t  

  1 _ σ−1  
   L   β    ( H  t  

P )    
−β

  ,

(A36)   w Lt   =  (1 + O (φ  w  Lt  
ϵ−1 ) )    σ − 1 _ σ   β  N  t  

  1 _ σ−1  
   L   β−1    ( H  t  

P )    
1−β

  .

Using (A21), we obtain   C t   =  Y t   −  X t   = (1 + O( G t   φ  w  Lt  
ϵ−1  )) Y t   , then using the defi-

nition of   χ t   , (A34) and (A35), we get

   χ t   =  (1 + O (φ  w  Lt  
ϵ−1 ) ) σψ  L   β (θ−1)     ( H  t  

P )    
 (1−β) θ+β

   N  t  
  

 (1−θ) β
 _ 

 (σ−1)  (1−β) 
  
   .



VOL. 14 NO. 1 217HÉMOUS AND OLSEN: RISE OF THE MACHINES

Differentiating and plugging into (A33) and using (A23), we get (recalling (A36) so 
that  d ln(1 + O(φ  w  Lt  

ϵ−1  )) / dt  will be of order  O(φ  w  Lt  
ϵ−1  )  as well)

   ( (1 − β) θ + β)    
  H  t  

P    
⋅
  
 _ 

 H  t  
P 
   = γψ  H  t  

P  − ρ −  (  θ − 1 _ σ − 1
   + 1) γ (H −  H  t  

P ) 

 + O (  (φ  w  L t ̂  +T  ϵ−1  )    
  1 _ 1−κ  

 )  + o ( e   −ρT )  ;

we dropped terms in  φ  w  Lt  
ϵ−1   since these are negligible in front of  (φ  w  L t ̂  +T  ϵ−1    )     

1 _ 1−κ    . The 
exact counterpart of this system admits a BGP with   H  t  

P   constant without transitional 
dynamics as in Romer (1990). Therefore, we have over the interval  (0,  t ̂   ) 

   H  t  
P  =   

 (  θ − 1 _ σ − 1   + 1) H +   
ρ _ γ  
  _______________  

ψ +   θ − 1 _ σ − 1   + 1
   + O (  (φ  w  L t ̂  +T  ϵ−1  )    

  1 _ 1−κ  
 )  + o ( e   −ρT )  

and

(A37)   g  t  
N  =   

γHψ − ρ ____________  
ψ +   θ − 1 _ σ − 1   + 1

   + O (  (φ  w  L t ̂  +T  ϵ−1  )    
  1 _ 1−κ  

 )  + o ( e   −ρT )  ,

which is positive under assumption (A25). With a low    h ˆ    t  
A  , (12) can be solved 

as   G t   =  G 0   exp 
(

−   
γHψ − ρ _ 

ψ +   θ − 1 _ σ − 1   + 1
   t
)

  + O((φ  w  L t ̂  +T  ϵ−1    )     
1 _ 1−κ    ) + o( e   −ρT  )  . This characterizes 

the solution over the interval  (0,  t ̂   )  for   w Lt    sufficiently small relative to    φ ̃     −1  . A 
small   w Lt    in return can be generated by a sufficiently small   N 0   , so that for any  a > 0 , 
there is an   N 0    low enough that the automation rate is lower than  a . This establishes 
Proposition 3B. ∎

A3.4 Proof of Proposition 3C.—We now prove Part C. The proof relies on two 
lemmas proved in online Appendix B5.3.

LEMMA A.2: If  κ(1 − β ) +  κ ̃   < 1  and   g  t  
N   has a positive limit, then   G t    cannot 

converge toward zero.

This lemma shows that automation must take off at some point; the second lemma 
is more technical.

LEMMA A.3: If   G t    is bounded above zero, then    h ˆ    t  
A   is bounded.

Under the assumptions of the Proposition,   G t    has a limit   G ∞    and   g  t  
N   a positive 

limit   g  ∞  N   . Then Lemma A.2 implies that   G ∞   > 0  and Lemma A.3 together with 
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(A8) that   G ∞   < 1 . Following Proposition 2, we then get that   w Lt   = O ( N  t  
  

ψ _ 
1+β (σ−1) 

  
 )   

or   ω t   = O(1) . Therefore, we can rewrite the system as (A8),

     h ˆ   
˙
    t  
A
  =   

γ   (  h ˆ    t  
A )    

2
 
 _______ κ   + η  G  t  

 κ ̃      (  h ˆ    t  
A )    

κ
  (  h ˆ    t  

A  −   
κ   π ˆ    t  

A 
 _ 

 (1 − κ)    v ˆ   t  
  ) 

 +   
 κ ̃   (η  G  t  

 κ ̃  −1    (  h ˆ    t  
A )    

κ+1
  (1 −  G t  )  −  g  t  

N    h ˆ    t  
A ) 
   ______________________________  

1 − κ   + O ( n t  )  ,

    χ ˙   t   =  χ t   (γ   1 − κ _ κ     h ˆ    t  
A  − ρ −  (θψ − ψ + 1)   g  t  

N )  + O ( n t  )  ;

knowing that

(A38)   H  t  
P  =   (  σ − 1 _ σ  )    

  1 _ 
1−β   (  1 _ θ  −β) 

    
  (1 − β)      

1 _ θ     β     
β _ 

1−β   (  1 _ θ  −1)    χ  t  
  1 _ θ      ( G t    φ   μ )         

ψ (  1 _ θ  −1)   
   ___________________________   

 G t    φ   μ  (1 − β   σ − 1 _ σ  ) 
   + O ( n  t  

  1 _ μ  
 )  ,

(A39)    
  π ˆ    t  A 

 ___ 
  v ˆ   t  

   =   
ψ  H  t  

P 
 _ 

 G t  
   + O ( n  t  

  1 _ μ  
 )  ,

and (A23). Using that   g  t  
N   and   G t    have limits in (A8) implies that    h ˆ    t  

A   must also have 
a limit. Using (A23), this implies that   H  t  

P   must also have a limit and therefore using 
(A38) that   χ t    must have a limit. In other words, the equilibrium path tends toward 
the  steady state  (   h ˆ     A ∗ ,  G   ∗ ,  χ   ∗ )  with   n t   → 0  defined in Lemma A.1. ∎

A4. Appendix to the Quantitative Exercise

This Appendix presents two exercises that complement Section III: a calibration 
on the first 30 years of data and an analysis of the role played by the automation 
externality. Online Appendix B11 contains additional details on the quantitative 
exercise.

A4.1  Out-of-Sample Prediction.—We reproduce our calibration exercise but only 
matching the first 30 years of data. Figure A1 reports the results, and Table A1 gives 
the new parameters. The model behaves very well out of sample. The predicted path 
and parameters are close to those of the baseline case. The calibrated model over the 
first 30 years slightly underestimates the pace of the rise of the  skill premium. The big-
gest parameter difference is a lower elasticity of substitution between  low-skill work-
ers and machines at 4.3 instead of 5.8. This decreases the incentive to automate, slows 
the growth in the  skill premium, and lowers the growth rate of equipment (panel D of 
Figure A1).

A4.2 The Role of the Automation Externality.—To analyze the role played by 
the automation externality, we recalibrate our model without it (i.e., we impose that   
κ ̃   = 0 ). Table A2 gives the resulting parameters, and Figure A3 reports the results. 
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The model still reproduces the paths for the labor share, GDP/employment, and 
equipment/GDP. Yet it does not capture the evolution of the skill premium. Indeed, 
the fast rise in the skill premium in the 1980s and 1990s requires a fast increase in 
automation, which, given the moderate decline in the labor share and the stable eco-
nomic growth, can only be brought about by a positive automation externality. The 
data clearly favor a positive automation externality (even though the exact value of   
κ ̃    is not precisely estimated; see online Appendix Table B4).

Figure A1. Predicted and Empirical Time Paths Only Matching the First 30 Years (until 1992)
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Table A1—Parameters (only matching the first 30 years)

Parameter  σ  ϵ   β 1    γ   κ ̃    θ  η  κ 
Value 5.80 4.34 0.60 0.43 0.55 1 0.40 0.66

Parameter  ρ   β 2    Δ   β 4     φ ̃     N 1963     G 1963   
Value 0.034 0.16 0.011 0.76 1.56 14.8 0.03

 

Table A2—Parameters (when   κ ̃    = 0)

Parameter  σ  ϵ   β 1    γ   κ ̃    θ  η  κ 
Value 4.95 4.95 0.66 0.51 0 1.15 0.30 0.87

Parameter  ρ   β 2    Δ   β 4     φ ̃     N 1963     G 1963   
Value 0.039 0.14 0.011 0.76 1.47 18.4 0.12

 



220 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS JANUARY 2022

Furthermore, we reproduce the exercise of Section IIIB without an automation 
externality. We fix the parameters to their values in the recalibrated model with   
κ ̃   = 0  and look for the (exogenous) paths of   N t    and   G t    that minimize the distance 
between the model and the data. Figure A2 shows that with this set of parameters, 
an exogenous technological model would indeed require a faster increase in   G t    to 
better match the data than in the endogenous growth model: the path looks closer to 

Figure A2. Paths for   N t    and   G t    in the Endogenous 
and Exogenous Growth Models without Automation Externality

Figure A3. Empirical Paths and Predicted Paths 
for the Endogenous and Exogenous Technology Models for   κ  ̃  = 0 
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that obtained in the endogenous model with   κ ̃   ≠ 0  than with   κ ̃   = 0 . If anything, it 
exhibits an even sharper increase in the 1980s and 1990s than in panel B of Figure 5. 
Figure A3 shows that this exogenous growth model still matches the data well.
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